PARTITIONING-DRIVEN CONVERGENCE IN THE
DESIGN OF RANDOM-LOGIC BLOCKS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Hema Kapadia
May 2000

(©Copyright by Hema Kapadia 2000
All Rights Reserved

i

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz
(Principal Adviser)

I certify that T have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Giovanni De Micheli

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

Approved for the University Committee on Graduate
Studies:

il

v

Abstract

The conventional methodology for computer-aided design of random-logic blocks re-
quires several iterations of logic synthesis and layout tools, and a significant amount
of manual intervention, before converging to an implementation that meets the de-
sign’s constraints. This thesis proposes Nebula, a new design flow that uses netlist
partitioning to achieve an optimal trade-off between two conflicting requirements for
design convergence: accurate wire-load modeling in synthesis and merging incremen-
tal netlist optimizations into layout. The flow iterates between low-level synthesis,
layout and re-partitioning optimizations. An experimental prototype, which emulates
the Nebula flow, was developed to explore its viability and limitations.

A partitioning scheme, implemented in the prototype system, accurately models
global wires during synthesis, while allowing room for incremental optimizations in
local logic. Experimental results show that in spite of overheads of optimizing a par-
titioned netlist, accurate wire-load modeling narrows the gap between post-synthesis
and post-layout timing in the prototype system. This leads to a faster design conver-
gence as opposed to the conventional methodology.

A timing-driven repartitioning heuristic was implemented, which improves post-
layout timing by reducing the contribution of global wire-loads along critical paths.
Results show that relocating 1% of all gates in a design prunes out 80% of its critical
paths. However, the scope of worst-case timing improvements is limited by the ability

to merge relocations into the existing layout.

vi

Acknowledgments

My journey to this dissertation was made possible by the guidance, encouragement,
and support of several people. I would like to take this opportunity to thank them.

I am grateful to my advisor, Prof. Mark Horowitz, who gave me the dream
opportunity to join Stanford University as his research assistant. Working with him
for the last seven years has been an enriching experience. I hope to have imbibed a
small part of his ability to see right through the crux of a problem, and the ”let’s
take a step back” attitude. I would like to thank him for his guidance and patience,
for providing generous resources, and for setting high standards.

My associate advisor, Prof. Giovanni De Micheli, enabled my transition into the
field of CAD research. I am thankful to him for his guidance and encouragement, for
introductions to industry personnel in this field, and for providing unlimited access
to his office library. Thanks to Prof. Kunle Olukotun for participating in my oral
defense committee. I would like to thank Prof. Balaji Prabhakar who chaired my
orals committee, and generously read this thesis for approval while accommodating
my deadlines in his busy schedule.

Thanks to Russ Segal and Dwight Hill at Synopsys for helpful discussions, and for
providing access to the Design Compiler code. Thanks to Prof. Eby Friedman from
University of Rochester for introducing me to the joy of reading technical papers, and
to Prof. Alexander Albicki for introducing me to the joy of writing technical papers.

I am indebted to members of the Stanford FLASH multiprocessor team for rookie
guidance, and for making me a ”tough cookie” over the four years on the project. I
learnt a lot from their combined technical genius. Specifically, I would like to thank

Prof. John Hennessey and Prof. Mendel Rosenblum for their mentorship. Special

vii

thanks to Ricardo Gonzalez, Mark Heinrich, Dave Ofelt, Dave Nakahira and Rich
Simoni for their friendship and guidance.

This thesis was made much more readable after Deborah Harber’s proof-reading
comments. I would like to thank her for the timely help and encouragement. Thanks
to Kathleen DiTommaso and Darlene Hadding for crucial administrative support.

I am fortunate to have had very smart and very friendly colleagues. I would like
to thank my office-mate Jeff Solomon for the frequent exchange of strong opinions
and for his help with LSI tools, .cshre files, and all things UNIX. Special thanks to
Evelina Yeung for her friendship, moral support and motivating talks about life after
graduation. Jules Bergmann developed, and yes, supported the Ver system, which
was crucial for this work. Ron Ho and Ken Mai thoroughly reviewed everything I
ever published. Thanks also to Shankar Govindaraju, Luca Benini, and other fellow
graduate students who made it a stimulating research environment.

I am thankful to Anju Gupta, Rajiv Kapur, Yashika Deva, Paddy-Gargi Mam-
tora and all other local friends who helped me keep a balanced outlook, consoled me
through stressful times, and persistently asked me the ”are you done yet?” question.
Special thanks to Raja for never letting me procrastinate. I am thankful to Girish Da-
hake, Vivek Vohra, Sujeet Kumar, Raka Chakravarty, Victor Adler, Falguni Shah and
Kokilaben Tirvedi for the positive influence of their friendships at crucial junctures
in my life.

I owe everything I am to the upbringing my family gave me, and to their strong
belief in my abilities. Thanks to my parents for letting me go far from home for better
education. I am grateful for the unconditional love and nurturing of my sister Hansa
who taught me how to read and write, and of my sister-in-law Pushpa. Thanks to my
two brothers Hridaynath and Ashutosh, brother-in-law Harshadbhai and sister-in-law
Ketkibhabhi, who always ensured of my growth and happiness. I would also like to
thank my in-laws for their support.

And last but not least, I would like to thank and congratulate my husband Atul
for surviving the last five years of my student life. I could not have done this without

his love, encouragement, and creative perspective on technical as well as life matters.

viii

Contents

Abstract
Acknowledgments
1 Introduction

2 Background
2.1 Design of the MAGIC Chip,
2.1.1 Chip-level Planning
2.1.2 Gate-level Implementation
2.2 Conventional Design Flow
2.2.1 Static Timing Analysis
2.2.2 Wire-load Estimation,
2.2.3 Full Synthesis Lo
2.2.4 Initial Cell-Placement
2.2.5 Detailed Cell-Placement
2.2.6 Reoptimization and Layout-Merge

3 Bridging the Gap Between Synthesis & Layout
3.1 Synthesis-driven Layout
3.2 Layout-driven Synthesis
3.2.1 Timing Analysis for Layout-driven Synthesis
3.2.2 Buffering and Sizingo
3.2.3 Relocation and Re-wiring

X

vii

10
12
13
14
15
17
18
19
20

3.2.4 Logic Restructuring
3.3 Simultaneous Synthesis and Layout
3.3.1 Simultaneous Technology Mapping and Linear Placement . . .

3.3.2 Tterating Constraint Generation, Synthesis, and Floorplanning

A CAD Flow Targeting Design Convergence

4.1 An Industry Tool for Design Convergence

4.2 Architecture of Nebula oL
4.2.1 Partitioning and Wire-load Estimation
4.2.2 Cluster Placement
4.2.3 Synthesizing Partitioned Logic
4.2.4 Detailed Cell-placement in a Partitioned Layout
4.2.5 Timing-driven Repartitioning

4.3 An Experimental Prototype L.
4.3.1 Initial Synthesis and Partitioning
4.3.2 Floorplanning Lo
4.3.3 Resynthesis with a Hybrid Wire-load Model
4.3.4 Detailed Cell-placement
4.3.5 Timing-driven Repartitioning

4.4 Summary ... e

Partitioning for Better Wire-Load Models

5.1 A Hybrid Wire-load Model for Logic Synthesis
5.1.1 Back-annotation from Layout
5.1.2 Wire-load Models for Local Nets
5.1.3 Wire-load Models for Global Nets

5.2 Partitioning Schemeo oo Lo
5.2.1 Identifying Cluster Boundaries
5.2.2 Merging Small Clusters
5.2.3 Maximum Cluster Size

5.3 Experimental Results,
5.3.1 Maximum Cluster Size for the Prototype System

5.3.2

Comparison of the Gap Between Synthesis and Layout

5.4 Summary oL

6 Timing-driven Repartitioning

6.1 Heuristic for Gate Relocation

6.1.1
6.1.2

Motivation for Path Enumeration

Potential For Timing Improvement

6.2 Implementation oL o

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

Initial Timing Analysis
Computing PTT oo
Picking a Relocation,
ECO Placement L.
Incremental Timing Analysis

Measuring Timing Improvement

6.3 Experimental Results o 0o 0oL,

6.3.1
6.3.2
6.3.3
6.3.4

Incremental Timing Improvements
Design Speed Lo o
Overall Timing Quality
Applying Relocation with Driver-Sizing

6.4 Future Work

6.4.1
6.4.2

Extending the Scope of Relocations with Logic Duplication . .
Extending the Scope of Layout Merges

6.5 Summary e

7 Conclusions
7.1 Future Work

7.1.1
7.1.2

Bibliography

Synergy of Post-Layout Optimization Techniques

Soft Boundaries in Synthesis and Layout Optimizations

xi

68
74

75
76
78
80
82
83
85
85
86
86
87
87
87
89
90
91
93
93
94
96

97
98
99
99

101

xii

List of Tables

5.1
5.2

6.1
6.2
6.3

Benchmark Designs o oo Lo Lo 64
Number of Partitions Created in the Benchmark Designs 68
Paths Leading to the Worst-Case Endpoint 78
Timing Results After Relocation 89
Timing Quality After Relocation 90

xlil

xiv

List of Figures

2.1 Block Diagram of MAGIC 8
2.2 Floorplan of MAGIC 11
2.3 Conventional Methodology 14
2.4 Limitation of Statistical Wire-Load Models 16
2.5 Conventional Methodology with Post-Layout Optimizations 21
3.1 Example of Duplications Required in Wireplanning 25
4.1 Nebula - A CAD Flow Targeting Design Convergence 38
4.2 Example of Technology Mapping Across Clusters 43
4.3 Prototype Design System 45
5.1 Example Floorplan for Hybrid Wire-Load Modeling 53
5.2 Example Netlist for MFFC Clustering o6
5.3 Pseudo code of Partitioning Procedure 58
5.4 A Case For Collapsing Single-Fanout Nets 59
5.5 A Case For Blind Merge Of Clusters 60
5.6 Scaling Predictions for Cyjre/pm, and Max Num_Gates 63
5.7 Wire-load Correlation Vs. Maximum Cluster-Size 66
5.8 Layout Overheads Vs. Maximum Cluster-Size 67
5.9 Timing Violations Vs. Maximum Cluster-Size 68
5.10 Layout Overhead in the Prototype System 69
5.11 Synthesis Overhead in the Prototype System 70
5.12 Comparison of Wire-load Correlation 71

XV

5.13 Accuracy of Wire-load Models in the Prototype System

5.14 Comparison of Worst-case Delays

6.1 Paths Leading to the Worst-Case Endpoint
6.2 Example Netlist for Timing-driven Repartitioning
6.3 Flowchart of Timing-Driven Repartitioning Tool
6.4 Timing Improvements Through Successive Relocations : 1O
6.5 Timing Improvements Through Successive Relocations : IOPI
6.6 Timing Improvements Through Successive Relocations : Magic
6.7 Timing Quality: IOPI
6.8 Comparison of Worst Negative Slack
6.9 Comparison of Number of Gates Sized
6.10 PTI of gates and Successful Relocations

XVl

Chapter 1
Introduction

Chip design is a complex problem that needs constant innovation to keep up with in-
creasing size, functional complexity and performance of single-chip systems. Computer-
aided design tools are used to optimize the logical implementation of a chip as well
as to determine the physical locations and interconnections of various components on
the chip. Picking the correct logical structure depends on the physical topology, but
the physical topology changes with changing logical structures. In early computer-
aided design (CAD) tools this coupling between logical and physical design was not
handled directly. Instead the designer went through several iterations of logical and
physical design, refining the view of one with respect to the latest implementation of
the other. These refinements made non-incremental changes to the design description,
resulting in a flow that sometimes failed to converge to an implementation that met
the design’s constraints. To aid convergence, the designer had to manually intervene
by making small changes to the logical or physical implementation, or by changing the
specification of the design in order to help the chip through the tool flow. As design
complexity has increased, this lack of convergence in the conventional design tools
has become problematic and new tools that bridge logical and physical design are
starting to appear. This thesis explores some of the issues that need to be addressed

to fully integrate logical and physical design.

This work in CAD methodology grew out of our experience with a large chip-design

project at Stanford University. Our team of six students designed a 2M transistor

2 CHAPTER 1. INTRODUCTION

ASIC called MAGIC in a 0.5um standard-cell technology. Chapter 2 presents both
an overview of the computer-aided design flow used on MAGIC and the tools involved
at various stages of the chip-design process. Trouble at the lowest level of the con-
ventional CAD tool flow, which consists of time-consuming iterations between logic
synthesis and layout of each random-logic block before arriving at its final gate-level
implementation, motivated this work. Initial logic synthesis steps in this flow use ap-
proximate wire-load predictions before the layout is determined. Inaccuracies in these
predictions result in new timing paths after layout that were not foreseen by synthe-
sis. Later synthesis steps optimize the logic along these timing paths by making small
local changes to the netlist using accurate wire-load information from the existing lay-
out. However, layout tools have a limited ability to incorporate such netlist changes
without perturbing the locations of the unchanged logic. Such perturbations end up
nullifying the wire-load assumptions made by local synthesis refinements, resulting
in another set of unforeseen timing paths. There is no guarantee that an iteration
of synthesis, followed by layout, will lead to incremental improvements in the netlist.
Hence, there is no upper bound on the number of iteration required in order to arrive
at an implementation that meets the design’s performance target. This problem is
widely referred to as a lack of design convergence (or closure), or more specifically
as a lack of timing convergence (or closure). While ideally the design flow should
have no iterations, the industry average today is 8 iterations for a typical design to
reach timing closure [1]. Over-design is an expensive workaround often used, where
the performance target of the design is significantly lower than what can be achieved

with its underlying technology.

This lack of convergence in the conventional CAD flow is expensive due to the
amount of design effort and resources required to meet a design’s performance and
time-to-market targets. Hence, bridging the gap between synthesis and layout tools
has been an active area of research in recent years. Several techniques have been
proposed for improving convergence in the conventional flow through incremental
netlist refinements [2], [3], [4], [74], [6] [7]- Also, new design flows have been proposed
that change the nature of interaction between synthesis and layout to make iterations

between the two more incremental and productive [8], [9], [10]. Another methodology

is being explored to turn the optimization flow around in such a way that it does not

require iterations [11], [12]. Chapter 3 provides an overview of these techniques.

The discussion about related research will lead to the architecture of Nebula, our
proposal for a CAD flow that targets design convergence by merging logic synthesis
and layout in a unified tool. This flow is presented in Chapter 4. Low-level synthesis
and layout transforms are iterated in Nebula, to keep a consistent view of wire-loads
and timing throughout the optimization flow. Timing is checked after each low-level
synthesis change is picked and merged into the current layout, before incorporating the
change into the netlist. Nebula employs netlist partitioning to reach a middle ground
between two conflicting requirements: accurate wire-load modeling and incremental
optimizations. Netlist partitioning creates regions of placement consisting of small
logic clusters. Low-level synthesis decisions are iterated with cluster placement while
maintaining soft cluster boundaries that have irregular shapes and allow movement of
logic across them. Wire-loads are estimated accurately and updated consistently by
using the exact placement of the clusters and the approximate regions of placement of
individual gates within clusters. If incremental changes made by synthesis change the
sizes of clusters, cluster placement is updated along with the wire-load of inter-cluster
nets. Incremental changes made to local logic within each cluster are absorbed by the
layout without affecting any wire-loads, because local wire-loads are modeled based

on the area of the clusters and not on the exact placement of individual gates.

Several challenging problems need to be solved before a CAD system can be built
based on Nebula. While netlist partitioning creates accurate wire-load models in this
flow, it also reduces the optimization space of synthesis and layout algorithms. A key
challenge is to find a partitioning scheme that achieves the best trade-off between
predictability and optimization space. Partitioning a netlist early in the design flow
pushes the prediction problem from synthesis into partitioning, where wrong logic
may cluster together due to lack of accurate physical information. A post-layout
repartitioning scheme needs to be added to this flow to improve timing by relocating
logic across partition boundaries. A prototype design methodology that emulates the
Nebula design flow was created using conventional synthesis and layout tools, to serves

as an experimentation platform that allows us to study the viability and limitations of

4 CHAPTER 1. INTRODUCTION

Nebula for improving design convergence. Implementation of the prototype system is
presented in the second half of Chapter 4. Chapters 5 and 6 use the prototype system

to experiment with our solutions to some of the challenges of the Nebula design flow.

Chapter 5 explores a hybrid wire-load model that uses a combination of clus-
ter placement and areas of individual cell-placement to derive accurate estimates for
global (inter-cluster) wire-loads and approximate estimates for local (intra-cluster)
wire-loads. Wires that are likely to be modeled inaccurately by approximate wire-
load models are identified from the netlist structure, and the netlist is then partitioned
along those wires. Since synthesis transforms can now use accurate estimates of global
wires, such partitioning maximizes the impact of this wire-load model by applying
it to the ”"problematic wires” in the netlist. Next, the maximum cluster size is de-
rived, with the objective to allow incremental layout while keeping approximately
modeled local wires predictable. This objective minimizes the impact of potential
inaccuracies in wire-load predictions on netlist timing. Comparing these partitioning
and wire-load modeling solutions with the conventional methodology, experimental
results show that making wire-loads predictable and widening the scope of incremen-
tal layout through netlist partitioning enables faster convergence to the desired final
design implementation. However, the experiments also show that the lack of soft
cluster boundaries in the prototype system results in area and timing overheads due

to reduced optimization spaces of synthesis and layout tools.

As a first step towards creating soft partition boundaries, Chapter 6 presents
a heuristic for moving logic across partitions based on post-layout timing analysis.
The heuristic identifies gates that add significant global wire-length to many timing-
critical paths due to the physical locations of their parent clusters, and relocates them
to another cluster that appears just before or just after those gates along many critical
paths. Experimental results show that while the heuristic gives marginal improvement
in the worst-case delay, it significantly reduces the total number of critical paths in
a design. This heuristic is also applicable within the context of the conventional
methodology as another post-layout optimization technique for helping designs meet
timing targets at a late stage in the CAD methodology, without having to resort to

manual intervention or iterations with synthesis.

Finally, Chapter 7 concludes this thesis. The key observation is that accurate wire-
load modeling and incremental layout capability in the Nebula design flow reduces the
gap between synthesis and layout views of wire-loads and timing. Adding a timing-
driven repartitioning step further helps convergence in this flow by correcting early
partitioning decisions based on the latest timing. However, the scope of all post-layout
optimization techniques is limited by their ability to merge changes into the existing
layout. Future research needs to explore using several different techniques together
to get the most benefit from them. An important area of future research towards
design convergence is creation of synthesis and layout tools that optimize a partitioned
netlist without incurring any overheads, by the treating partition boundaries as soft

boundaries.

CHAPTER 1. INTRODUCTION

Chapter 2
Background

Our work in CAD methodology grew out of a computer architecture research pro-
gram at Stanford called FLASH, which explored building a large-scale distributed-
shared-memory multiprocessor. The core of the FLASH machine was MAGIC, a 2M
transistor ASIC which acted as the memory controller for each node in the multipro-
cessor [13]. The design of this chip used a conventional CAD flow which consisted of
initial floorplanning, global routing and timing estimation at the chip level, followed
by logic synthesis, detailed placement and routing within each random-logic block at
the gate level. This chapter first presents the conventional chip-level CAD flow in
the context of large designs such as MAGIC, and next focuses on the methodology
for gate-level implementation of individual blocks. The optimization flow of the gate-
level CAD methodology is described, including a summary of individual CAD tools
that make up its building blocks. This discussion will show a lack of convergence in
this flow stemming from loose coupling between logic synthesis and layout, and also
from non-incremental optimizations that result in an inconsistent view of wire-loads

among the various steps of the flow.

2.1 Design of the MAGIC Chip

Design of the MAGIC chip started with the system architecture of FLASH, a FLexi-

ble Architecture for SHared memory. FLASH is intended to provide a common hard-

7

8 CHAPTER 2. BACKGROUND

ware platform on which the relative merits of different memory sharing protocols are
studied [14, 15, 16]. Each node of the FLASH machine contains: a high-performance
off-the-shelf microprocessor used as the compute processor, a portion of the machine’s
global memory, a network port connecting the node to the rest of the machine, I/O
devices, and a custom node controller chip - MAGIC. MAGIC, Memory And Gen-
eral Interconnect Controller, handles all communication within the node as well as
between the node and the network. It moves data between the components of the
node, and manipulates the state of the corresponding memory locations to comply

with the memory sharing protocol being executed.

Incoming - MC -
Message Header
. - PI L
Instruction
Cache
Message 5B
PP Data
Data Cache
(off-chip) - NI -
Outgoing
Message Header ™ 10 ™
Control Macropipeline Interfaces Data Staging

Figure 2.1: Block Diagram of MAGIC

The architectural definition of MAGIC was driven by three factors: its functional
definition, the requirement for flexibility of running different memory sharing pro-
tocols, and the goal of operating at low latency and high bandwidth to ensure that
the flexibility does not come at the cost of performance overhead. Figure 2.1 shows
the MAGIC architecture in a block diagram. The functional definition of MAGIC
called for three blocks that interface to external components of the node: a proces-
sor interface (PI) to the compute processor, I/O interface (I0) to the PCI bus [17],
and a network port interface (NI). We added a memory controller (MC) block to

2.1. DESIGN OF THE MAGIC CHIP 9

interface with the main memory, which is the node’s portion of the global memory.
Data communication between the interface blocks and manipulation of memory state
are controlled by the protocol processor block (PP), which is a programmable RISC
core giving flexibility to run any memory-sharing protocol. While the protocol code
and data reside in a reserved portion of the node’s main memory, we added data
and instruction caches to enable high-speed access to protocol code and data used
frequently by the PP. Furthermore, we separated data movement from protocol state
manipulation to achieve low latency and high bandwidth in MAGIC. The protocol
state manipulation is done by a macropipeline made up of three functional blocks
- Inbox, PP, and QOutbor. The data is copied once into a staging area called DB
which contains sixteen data buffers, each large enough to store one cache line. Thus,
the architectural definition also defined the functional partitioning of MAGIC, which
consists of eight major functional blocks: NI, PI, MC, IO, Inboz, PP, Outbox and DB.

The functional blocks of MAGIC were assigned to one of six designers for imple-
mentation. Hardware description languages such as Verilog HDL or VHDL [18, 19]
provide a platform for describing and simulating hardware in register-transfer logic
(RTL) format. Alternatively, designers can begin with a higher-level description of
a design using a programming language such as C or C++ [20, 21]. CAD tools
are available for synthesizing such high-level descriptions into register-transfer logic
(RTL) format described in Verilog or VHDL [22, 23, 24, 25, 26]. High-level syn-
thesis tools schedule and bind high-level operations to resources by making trade-offs
between the latency in number of clock cycles and the area of well-characterized struc-
tures, such as memories and arithmetic operations. These tools are highly effective
for designing graphics and DSP systems that require converting data-manipulation
algorithms, typically consisting of loops, into datapath-intensive hardware. However,
for the functional blocks of MAGIC, mainly consisting of state machines that commu-
nicate with well-specified interfaces, the design challenge was not in picking the right
way to implement a functionality from several different ways. Rather, the challenge
was to interpret the requirements of the different interfaces and to synchronize the
exchange of information between them in terms of timing and format. Hence, we

designed the functional blocks of MAGIC using Verilog.

10 CHAPTER 2. BACKGROUND

We described the RTL of all the functional blocks of MAGIC in behavioral Ver-
ilog, with a few structural instantiations for large datapath modules and memories.
I was responsible for designing the IO interface. The design of my block, as all the
remaining blocks, began with understanding the functional specification of all in-
put/output interfaces - namely the PCI bus protocol, communicating headers with
Inbox and Qutboz, and exchanging data with DB. This understanding determined the
datapaths, state-machines and other random-logic I needed to implement to exchange
information between MAGIC and PCI bus by responding to MAGIC messages and
PCI commands, while managing common resources in /(0. Since the designers de-
veloped all blocks on the chip concurrently, the implementation of 10 evolved with
changes in the interfaces of Inboz, Outbor and DB.

While RTL development was in progress, we did chip-level planning determined

the high-level look of the chip layout.

2.1.1 Chip-level Planning

Once the primary input/outputs of the chip as well as the input/outputs of all
functional blocks were known, we decided locations of primary input/output pins
of MAGIC as well as of each functional block. This led to a chip-level floorplan of the
functional blocks. The floorplan was updated each time new implementation details
about the functional blocks were made available through implementation of more
functionality in the RTL.

For chips with many functional blocks each interfacing with many other functional
blocks, RTL planning tools are available for chip-level planning to determine the rel-
ative placement of the blocks that gives the best area and timing. RTL planning
derives the area, wire-load and timing constraints on the boundaries of functional
blocks, and even improves on the functional partitioning to reduce the amount of
global wiring on the chip [27, 28, 29]. The logic inside each block is roughly mapped
to pre-characterized instances to estimate the area and timing of the block. Chip-
level trade-offs are made between the area, timing and locations of different func-

tional blocks to ensure that all blocks fit on the chip and meet the chip-level timing

2.1. DESIGN OF THE MAGIC CHIP 11

R N R e

= PIReqQ
Lot}

JumnpTalle

2 PCntDatapath

FIFSITDAMPRT
PIDataPath
FlkS=oBrOat:

Inby oI hghE IntaxDatapatl InboxPC

=

seBsDatapath
I0PGiDBDatapeth
Poilnterface
10 MiznBsDatapath

Rk

Figure 2.2: Floorplan of MAGIC

constraints. These trade-offs are made by iterating automatic floorplanning, global

wire-routing and timing analysis tools [30, 31, 32, 33],
The floorplan of MAGIC is shown in Figure 2.2, where memories are shaded dark

and functional blocks are shaded lighter. The memories have pre-determined size
and geometries, making them hard macros. The rest of the logic is made up of
soft macros with sizes and geometries that were determined by the floorplanner. The
fabrication technology put several constraints on the placement of hard macros. Large
designs with such constraints in the floorplan are not handled well by the floorplanning
tool of the layout system used for MAGIC. Therefore, we manually floorplanned the
chip. Each designer periodically synthesized their partially implemented blocks into
logic gates to keep track of their latest size and timing characteristics. The timing
constraints and capacitive loading of global nets on the boundaries of the major

functional blocks were determined by iterating chip-level floorplanning with manual

12 CHAPTER 2. BACKGROUND

exchange of block-level timing requirements between the designers.
These area, timing and wire-load characterization on the input/outputs of func-
tional blocks were used to derive gate-level implementation constraints on the bound-

aries of each block.

2.1.2 Gate-level Implementation

Using the timing constraints and wire-loads of global nets derived by chip-level plan-
ning, the mostly behavioral RTL description of each functional block was converted
to detailed gate-level implementation by each designer. It is common practice to
use module compilers for non-critical or well-known datapath and memory modules
(34, 35] and to use manual design for datapath or memory modules with aggres-
sive performance targets to take advantage of circuit design techniques [36], [37].
Blocks with large regular structures such as the PP instruction cache, internal mem-
ories used in NI, PI and Inboz, and two 64-bit wide integer datapaths of the PP
were designed using LSI's datapath and memory compiler tools. Since the DB had
many read/write ports and was critical to achieving MAGIC’s performance target of
100MHz clock-cycle, its circuit-level implementation was designed manually by two
designers through iterations between circuit design, block-level floorplan, and HSpice
simulations. In Figure 2.2, datapaths designed using the LSI datapath compiler are
shaded darker than random-logic blocks. The regularity of logic makes manual de-
sign of datapaths and memories feasible. On the other hand random-logic blocks,
describing state machines and other control logic, were designed using automatic
logic synthesis [38] and layout [39], [40], [41] tools.

While logic synthesis converts the RTL description of a random-logic block into
gates from a standard-cell library, layout decides the physical placement of these gates
and routes nets that connect them. Standard-cell libraries give several implementa-
tions of logic gates and regular structures with pre-characterized parameters, such as
timing, input loading, and output drive. We used LSI Design’s 0.5um standard-cell
library lcb500K along with C'mde and SILO tool suits [41] for layout, and Synopsys
Design Compiler [38] for logic synthesis of MAGIC’s random-logic blocks. The logic

2.2. CONVENTIONAL DESIGN FLOW 13

of each functional block was further partitioned into sub-modules by its designer for
design readability and faster run-times during synthesis. Since the actual wire-load
of nets was not known during logic synthesis, the post-layout wire-load of nets was
predicted using models based on empirical data from previous layouts and the netlist
structure. Synthesis was repeated with refined wire-load models derived from the
latest layout until the layout of the block met its timing and area constraints.

The design flow of the MAGIC chip shows that each stage of the chip-design
process iterates between logical and physical design. This is due to the fact that
picking the correct logical structure depends on the physical topology but the physical
topology changes with changing logical structures. As the design moves to lower levels
of abstraction, the number of iterations increase since there are more components
with unknown locations and logical structures. The next section focuses on iterations
between gate-level logic synthesis and cell placement done in the conventional design

flow at the lowest level of abstraction.

2.2 Conventional Design Flow

The conventional flow for standard-cell based design of random-logic blocks is shown
in Figure 2.3. This flow was widely used until 1998, and is being augmented and often
replaced by new flows proposed recently [12, 10, 42, 43, 39, 44, 8, 9]. The flow starts
with a standard-cell library and corresponding wire-load models, and with the RTL
description, area constraints and timing constraints of a design. The steps performed
by a logic synthesis tool are shaded light and those performed by a layout tool are
shaded dark.

The two tools communicate information through data files that follow standard
formats. The input to the first logic synthesis step is a hardware-description language
(HDL) file, describing the behavioral RTL of the design. Synthesis optimizes the
design netlist and generates another HDL file with a gate-level RTL description. The
layout tool determines rough initial placements of these gates. If the design does
not meet timing constraints after placement, full synthesis is repeated using physical

information from layout which is back-annotated on the netlist through set_load and

14 CHAPTER 2. BACKGROUND

RTL, Constraints,
Cell Library, Statistical
Wire-load Models

Full Synthesis

HDL, SDF, set_load

Figure 2.3: Conventional Methodology

SDF files. The set_load file gives the capacitive load of each net and the standard
delay format (SDF) file gives delays through each gate and net segment. Iterations
between full synthesis and initial placement continue in this manner until timing
constraints are met after the initial placement, when the flow proceeds forward to
detailed layout.

Both synthesis and layout tools use static-timing analysis to calculate delays in the
design, both for generating SDF reports at the end of each step, and for identifying

timing-critical portions of the design during optimizations within the tool.

2.2.1 Static Timing Analysis

Static timing analysis [45, 46] traverses the netlist graph twice in reverse topological
order [47, 48] to calculate the latest arrival time and the earliest required time of each
node in the netlist graph. A netlist graph consists of nodes representing gate pins and
primary input/output pins of the design, and of edges representing interconnections
of those nodes. Timing constraints on the primary input/outputs of the design and
the desired clock speed are used to calculate the timing slack of each node, which
is the difference between the required signal arrival time and the worst-case actual
arrival time of the node. Nodes with negative timing slack are critical, because they
violate the timing constraints of the design. Primary inputs and data outputs of

synchronous logic elements such as flip-flops and latches are timing sources, whereas

2.2. CONVENTIONAL DESIGN FLOW 15

primary outputs and data inputs of synchronous logic elements are timing sinks.
Timing paths go from timing sources to sinks, and have timing slack equal to the
slack of the sink node. Timing paths with negative timing slack are called critical
paths. The most critical path decides the maximum speed at which the design can be
clocked. Both synthesis and layout tools give higher priority to optimizing the timing
of critical paths even at the expense of some area increase, and recover area from
other non-critical parts of the netlist. Thus, it is very important for synthesis to have
an accurate notion, not only of the worst critical paths of the netlist, but also of the
relative criticality of paths in order to pick the right logic for timing optimizations.
During static timing analysis, gate delays are derived using pre-characterized tim-
ing information from the standard-cell library, which depends on the parasitic loading
at the output of each gate. Wire-delays, as well as the output loading of each gate,
are derived from the parasitic loading of wires in the design. Determining wire-loads
in a layout is a matter of interpreting the physical information already available.
However, wire-loads need to be estimated for timing-analysis during synthesis since
the gate locations and the wire-routes are unknown. Thus, the accuracy of timing
analysis during synthesis depends on the accuracy of its wire-load estimates. The

next section describes wire-load estimation techniques for logic synthesis.

2.2.2 Wire-load Estimation

Before any layout is done, statistical wire-load models, provided by the standard-cell
library, are used to estimate net-lengths during synthesis. Statistical wire-load models
characterize all nets with the same fanout count by the same wire-load capacitance.
The model provided by standard-cell library vendors is derived from the statistical
distribution of post-layout wire-loads of nets in previous designs that have similar area
and are based on the same library and technology. This model usually represents the
median of the distribution for each fanout.

After initial layout is done, the actual wire-loads of nets are back-annotated to
logic synthesis, allowing synthesis to re-optimize the netlist with more accurate wire-

load models. Custom statistical wire-load models are derived from the statistical

16 CHAPTER 2. BACKGROUND

distribution of wire-loads back-annotated from the latest layout of the design. Custom
models are more accurate than library-provided statistical models, since the data used
to derive the model represents the size, aspect ratio, and type of netlist connectivity
of the design. Such models are refined further by trimming a small percentage of
all nets from the top and bottom of the wire-load distribution in order to ignore
outliers. Another refinement makes the model more conservative by picking a wire-
load number that represents higher than the 50 percentile point in the distribution
for each fanout. However, the inherent limitation of all statistical models is that all

nets with the same fanout are represented by one number.

0.7

0.6 - = Post-Placement

05 - ¢ Synthesis Estimate

™ .
o []
8 04 r ®
C
S .
c 03 r d
S .
[..
o 0.2 - - ne
i
0.1 r '
0
0 500 1000 1500 2000

Nets Sorted by Fanout and Post-Layout Capacitance

Figure 2.4: Limitation of Statistical Wire-Load Models

Figure 2.4 illustrates the error in wire-load estimation when a custom statistical
model was used for all internal nets of a 7K-gate design in a 0.5um technology. The
figure compares the post-placement wire-load of nets, shaded light, with the corre-
sponding custom wire-load estimate used by full synthesis, shaded dark. Points on the
x-axis represent nets sorted by increasing fanout and then by post-placement wire-
load capacitance. It is evident here that the post-placement wire-load capacitance has
a wide distribution for each fanout, which is modeled by one number. Even though
the wire-load of 80% short and medium-length nets is estimated either conservatively
or accurately, the longest 20% nets are highly underestimated.

Two techniques have been proposed for estimating wire-loads using parameters

2.2. CONVENTIONAL DESIGN FLOW 17

derived from the netlist structure [49, 50]. These techniques analyze the fanin and
fanout cones of nets, to sort them by expected wire-load capacitances. Nets are
separated into short, medium and long categories. This enables piece-wise linear
modeling of the wire-load distribution in a design using a different statistical model
for each of the three categories. These models are more accurate than fanout-based
models, because each category is modeled separately within a given fanout. However,
due to the steep tail of wire-load distribution for each fanout seen in Figure 2.4, these
models are also inaccurate for long nets even though the estimation errors are lower
than fanout-based models.

Statistical wire-load models are used by the full synthesis step in the flow of Figure

2.3. The next section describes this step.

2.2.3 Full Synthesis

A logic synthesis tool parses the RTL of a netlist and applies Boolean and algebraic
transformations to minimize its logic [51], [52]. The netlist is usually represented
in an internal graph format, where primary input/output pins as well as Boolean
logic expressions make up the nodes of this graph, whereas interconnections between
nodes make up the edges. Technology mapping maps this graph to gates from the
standard-cell library being used, while meeting the area and timing constraints of the
design.

Technology mapping partitions the netlist graph into smaller cones of logic and
matches these cones against graphs representing library cells. Dynamic programming
is used to pick the best set of graph matches that meet the area constraints while
minimizing the delay through the design. The timing analysis uses statistical wire-
load models given by the library or custom models derived from earlier layout to
estimate wire-lengths of nets that connect the logic cones. The minimum unit of
optimization here is a small logic cone, typically similar to the size of a few basic logic
gates. Since this is the technology-dependent portion of synthesis optimizations, it is
most susceptible to inaccuracies in wire-load estimates. Later in this thesis, we will

look at peer research combining technology mapping with layout, and our work will

18 CHAPTER 2. BACKGROUND

increase the size of the smallest optimization unit of this step to a larger cluster of
gates in a new design flow.
Technology mapping creates gate-level representation of the design, which is sent

to the layout tool for initial cell-placement in Figure 2.3.

2.2.4 Initial Cell-Placement

The gate-level description generated by logic synthesis is converted to the lowest level
description in terms of silicon layers by an automatic layout tool [31, 53]. Initial
cell-placement decides the relative placement of all gates. In order to meet the to-
tal area constraint and the timing constraints, the total length of interconnections
between gates is minimized. Interconnection lengths between timing-critical gates
are minimized while non-critical gates are placed to minimize the area. Constructive
cell placement algorithms are used to give the initial locations of gates. Such algo-
rithms determine relative locations of all interconnected gates close to one another
[54, 55, 56|, although these locations could be overlapping. Since the nets are not
routed at this stage, wire-lengths are estimated using the placement of their pins.
These estimates are used to derive placement cost functions, such as total intercon-
nect length, and to perform static timing analysis.

The wire-length of a net can be roughly estimated as the half-perimeter of the
bounding box enclosing all pins of the net [57]. While this estimate is fairly accurate
for nets with three or fewer pins, a more accurate estimate is needed for higher
fanouts. Higher fanout nets can be estimated accurately by drawing a spanning tree
that connects all of its pins once [58]. A spanning tree estimates a realistic route of
the net, while ignoring the effect of other nets and of the potential area congestion
that could alter the actual routing.

After initial placement, static timing analysis gives more accurate timing infor-
mation about the design compared to the timing estimated by full synthesis. Due to
the inaccuracy of statistical wire-load models used by full synthesis 2.4, a design that
meets timing constraints after full synthesis does not always meet timing constraints

after initial placement. In that case a custom statistical wire-load model is derived

2.2. CONVENTIONAL DESIGN FLOW 19

by back-annotating net-lengths extracted from initial placement. Full synthesis is re-
peated with the custom wire-load model, followed by another pass through the initial
placer. Neither full synthesis nor initial placement use the output of the previous pass
of the tool as an initial solution, rather they start from scratch each time. Hence,
both are unable to preserve the wire-load model used by earlier passes. Such non-
incremental iterations between full synthesis and initial placement are repeated until
the the design meets timing constraints after initial placement, when it is taken to

the detailed cell-placement step.

2.2.5 Detailed Cell-Placement

Detailed placement takes the rough initial placement as a seed solution and optimizes
it further by using a corrective placement tool. Corrective placement algorithms use
random cell movements to improve this rough initial placement for a given objective
function such as area or total length of interconnections or both [54, 59|, while en-
suring legal (non-overlapping) locations for all gates. Cells in a standard-cell library
usually have the same height but different widths, so legal cell placement consists
of rows of uniform height cells separated by channels of space kept open for rout-
ing. Significant changes are made to the initial placement, changing the wire-lengths
of several nets. Since constructive placers use random algorithms, the fanout-based
custom wire-load model used by full synthesis can not predict these changes in wire-
lengths.

The longest nets with underestimated wire-loads, which appear in the tail of
the wire-load distribution for each fanout in Figure 2.4, affect design convergence in
several ways. Synthesis picks the wrong logic structure to drive such a net, resulting
in insufficient drive after placement. Since timing is a worst-case metric, such nets
end up on critical paths after placement. Also, synthesis has the wrong notion of
relative criticality of paths. Hence, placement may reveal new critical paths that
are not well optimized for timing, whereas other relatively non-critical paths may be
unnecessarily optimized by synthesis. The post-placement timing of the design may

have higher worst-case delay, more critical paths in violation of the timing constraint,

20 CHAPTER 2. BACKGROUND

and some non-critical logic that has been over-optimized by synthesis. Thus, even if
the design met timing after initial placement, there is no guarantee that the timing
would be met after detailed placement.

Sylvester and Keutzer show that the delay of medium-length wires is not likely to
increase in comparison to gate-delay as technology scales, hence the impact of such
wires on design timing is not likely to increase [60]. However, Ho et al. [61] predict
an increase in the number of long wires on a chip as well as in each module as higher
integration will motivate synthesizing larger design blocks to manage chip complexity.
They also show that as technology scales, long wires will have increasing impact on
design timing since an average library gate will be able to drive shorter and shorter
wires before the wire-delay becomes a significant fraction of the gate delay. This will
make the tails of the wire-load distribution, such as the one shown in Figure 2.4,
even longer; escalating the problems created by the inaccuracy of statistical wire-load
estimation.

Timing-driven placement algorithms use static-timing analysis to sort gates and
nets in the design by the relative criticality of timing paths going through them.
Higher preference is given to optimizing the layout of more critical gates and nets in
this list [62], [63]. Such algorithms refine the cost function of placement algorithms
by introducing critical-path timing information in it, but they do not help design
convergence in this flow. This is due to the fact that the relative criticality of gates
and nets is not updated while changes are begin made to the layout. Hence, timing-
driven layout algorithms also suffer from the problem of estimating the timing too
early and not keeping it consistent with the latest layout.

Thus, more logic synthesis is required to fix timing violations of new critical paths

that appear after detailed placement.

2.2.6 Reoptimization and Layout-Merge

The design flow of Figure 2.3 needs to be extended in order to fix critical paths
appearing after detailed placement due to inaccurate wire-load estimation during

earlier synthesis. This extended flow is shown in Figure 2.5. The reoptimization

2.2. CONVENTIONAL DESIGN FLOW 21

RTL, Constraints,
Cell Library, Statistical
Wire-load Models

> Full Synthesis

HDL, SDF, set_load

Reoptimization
HDL

HDL, SDF, set_load

n

Figure 2.5: Conventional Methodology with Post-Layout Optimizations

step performs limited synthesis transforms to fix timing violations while preserving
the layout that was committed thus far. Such transforms consist of driver sizing,
buffer/inverter insertion and re-structuring of logic along timing-critical paths. Re-
cent research on these and other post-layout timing-optimization techniques will be
discussed in Chapter 3. Accurate wire-loads derived from estimated routes in de-
tailed placement are back-annotated to synthesis, hence the initial timing analysis
during reoptimization gives accurate timing information corresponding to the current
layout. Back-annotated wire-loads are maintained on all nets with no changes or
in-place changes in their fanin or fanout logic. In-place changes typically consist of
exchanging gates in synthesis that can be similarly exchanged in layout because the
two gates have the same physical footprint. This is usually done when a gate is re-
placed by a different drive-strength implementation of the same logic gate. However,
nets with changed logic on their fanin or fanout are represented by a custom wire-load
model derived from the initial back-annotation, since synthesis does not know where

the new gates will be placed.

Netlist changes made by reoptimization are merged with the existing placement in

22 CHAPTER 2. BACKGROUND

the layout-merge step, using an engineering change order (ECO) placement tool that
performs incremental layout [64], [65]. ECO placers nudge cells around their original
locations to accommodate new or upsized cells. The successful implementation of an
ECO depends on the number and amount of changes attempted, and also depends on
the area-utilization of the original placement. Often the addition of many new gates
and fragmentation of layout area requires random placement of previously placed
gates, which nullifies the wire-load back-annotation used by reoptimization to pick
its transforms. Hence, maintaining incremental layout changes limits the amount of
optimizations that can be allowed during reoptimization.

Iterations between reoptimization and layout-merge are repeated until the layout
meets timing constraints, at which point it is sent for wire-routing. Timing problems
discovered after routing are usually fixed by in-place sizing and manual buffer inser-
tions, since the amount of detail committed in layout does not allow for significant
changes in the netlist.

This design flow has an unfortunate property; as more accurate information be-
comes available through increasing detail in layout, less freedom is available in syn-
thesis to use it. Reoptimization is very effective in pruning out timing problems by
making small changes to the netlist at a late stage in the design cycle. However, in
tightly constrained designs such limited optimizations are not sufficient to fix timing
problems that are created due to wrong logic structures picked by earlier full syn-
thesis. Netlist-level granularity of tool iterations, inaccuracy of statistical wire-load
models and non-incremental nature of layout tools result in an inconsistent view of
wire-loads between synthesis and placement throughout this flow. Hence, there is no
guarantee that one iteration in Figure 2.5 will give better timing than the previous
one. When these iterations do not converge, either the design is taken to a previous
stage of the flow, or the designer manually makes changes to the layout or the netlist
in order to arrive at the final design implementation. Either of the two solutions costs
a large amount of designer effort and time.

Addressing the limitations of this methodology has been an active area of research
in recent years. The next chapter covers related research in the area of bridging the

gap in the wire-loads and timing viewed by synthesis and layout.

Chapter 3

Bridging the Gap Between
Synthesis & Layout

Deep-submicron fabrication technologies have led to the integration of entire system-
on-chip (SoC), with several millions of gates and aggressive performance targets.
Shrinking device sizes and increasing chip complexity has led to new design challenges
such as controlling power dissipation, maintaining signal integrity along long wires,
and achieving high performance. All of these tasks must be completed in short time-
to-market schedules in order to be competitive. Increasing design complexity directly
translates into increasing requirements on design automation tools. CAD techniques,
for predictable convergence to an implementation that meets the design’s constraints,
have been a topic of active research in recent years.

A CAD flow is convergent if the design meets its constraints, such as area, timing,
power dissipation, signal integrity rules, etc., within a known maximum number of
iterations. If the design constraints are too tight, an implementation that meets
all constraints may not exist, or may not be achievable in a given CAD flow. In
such cases, the CAD flow is convergent if, within a known maximum number of
iterations, it arrives at a best-effort (not necessarily optimal) design implementation
with some constraint violations. Such designs would require relaxing some of the
design constraints, in order to meet time-to-market constraints. Our work focuses

on timing convergence, which is the problem of design convergence restricted to two

23

24 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

conflicting constraints: timing and area. Chapter 2 showed that the conventional
CAD flow lacks timing convergence since there is no upper bound on the number of
netlist-level design iterations needed before design constraints are met, or before it is
known that future iterations would not improve constraint violations. This chapter
presents related research which addresses this problem, and the next chapter presents
our approach.

Keutzer et al. [66] described the impact of deep-submicron technology on large
scale designs, and on the future of the design automation methodology. While their
paper does not describe implementation details, it does propose various high-level al-
ternatives for tighter interaction between synthesis and physical design that fall into
three categories: synthesis-driven layout, layout-driven synthesis, and simultaneous
synthesis and layout. Research work in these three areas is described in Sections
3.1-3.3. Synthesis-driven layout takes a radical approach where synthesis drives the
layout instead of estimating its outcome. Layout-driven synthesis techniques make
incremental optimizations to the netlist topology and layout, thus improving the im-
plementation generated by earlier passes of synthesis and layout tools. Simultaneous
synthesis and layout techniques iterate low-level synthesis and layout transforms in
an incremental fashion, while keeping a consistent view of wire-loads and timing be-
tween the two and creating a convergent optimization flow. The discussion involving
related research leads to our view of the ideal optimization flow that merges synthesis

and layout in one integrated tool.

3.1 Synthesis-driven Layout

Synthesis-driven layout techniques budget the timing of the design during logic syn-
thesis. These timing budgets serve as constraints that the layout tool is required
to meet through placement and sizing. Instead of predicting post-layout wire-loads
during synthesis, synthesis-driven layout makes the layout obey cell-delay and wire-
length assumptions made by synthesis. This approach has the potential for creating
a forward-only methodology that does not require iterations between synthesis and

layout.

3.1. SYNTHESIS-DRIVEN LAYOUT 25

A synthesis-driven layout methodology, based on wire-planning during logic syn-
thesis, is being developed by Brayton et al. [67], [68], [11]. In wire-planning, logic
synthesis distributes delay among global wires and functional blocks at the chip-level
and among gates and local wires at the block-level. Block-level synthesis produces a
netlist with region-based gate-placement constraints. Synthesis optimizes the netlist,
using timing information derived from the assumption that the layout will meet its
gate-placement constraints. The placement constraints ensure that every path from
a primary input to a primary output of the block are no longer than the Manhattan
distance between its endpoints, which enables simple but accurate wire-load modeling
during synthesis. The placement engine has to meet the gate-placement constraints,
but is free to pick gate sizes in order to meet corresponding gate-delay budgets as-
sumed by synthesis. This is enabled by a cell-library that has many different sizes for

each logic gate.

yi z=cd y2

= (at+b)z =a'z
a b c¢c d
Figure 3.1: Example of Duplications Required in Wireplanning

However, if a node is in the fanin cone of two paths going in opposite directions,
it has to be duplicated to ensure Manhattan lengths for both paths. This is shown
in the example of Figure 3.1. Here, node z belongs to the fanin cones of two primary
outputs y1 and y2. In order to ensure that the path from ¢ to y1 is not longer than the
Manhattan distance from ¢ to y1, z should to be placed within region R1(z). Similarly,
for the path from d to y2, z should be placed in region R2(z). Since R1 and R2 are
non-overlapping, z needs to be duplicated. Due to such duplications, wire-planning
suffers from exponential area overheads even in small designs. Its applicability will
depend on future work done to address this limitation.

Magma Design Automation [12] is a startup company that has taken a similar
approach. This approach is based on the work by Brand et al. [69] which proposed

that synthesis should be done to guarantee a performance target, and that layout can

26 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

meet the same target if continuous gate-sizes are available. Magma’s FizedTiming
methodology uses a common netlist database and static timing analyzer for both
synthesis and layout algorithms. Their methodology freezes the timing of the design
during synthesis using logical effort [70] to estimate and budget post-layout timing.
The netlist is mapped to ”superCells” that represent the functional implementation
of the logic with constant delay but variable area. Next, their placement tool performs
sizing, buffer insertion, and logic restructuring; along with placement; in order to
maintain gate-delay budgets by matching gate sizes to their output load. The sizes of
non-critical superCells are reduced to make room for increase in the sizes of critical
superCells during placement. However, logical effort does not model wire-delays
that are significant in large designs and that also change with wire-length changes
caused by resizing superClells in the fanout of long wires. Due to this, it is unclear
whether this methodology scales effectively to large designs. In our opinion, the
effectiveness of this methodology depends on the placement engine’s ability to find
avenues for making sizing trade-offs that keep the design area reasonably low, while

incorporating changes in delay budgets due to logic restructuring and buffering.

3.2 Layout-driven Synthesis

As seen in Section 2.2.6, reoptimization and layout-merge are important steps for nar-
rowing the gap between synthesis and layout timing in the conventional methodology.
Research in layout-driven synthesis (also referred to as post-layout optimization) tech-
niques focuses on improving the effectiveness of these steps. These techniques make
local changes to the netlist or the layout using transforms that target a few of the
worst critical paths; based on accurate wire-load and timing information available
after layout. As discussed in Section 2.2.6, the scope of such transforms is limited by
the ability of the layout tool to incrementally merge netlist changes without signifi-
cantly perturbing unchanged portions. Moreover, converging to timing improvements
through the application of these transforms also depends on the accuracy of its tim-
ing analysis engine. Section 3.2.1 describes the impact of timing analysis on the

effectiveness of layout-driven synthesis transforms. Sections 3.2.2-3.2.3 describe the

3.2. LAYOUT-DRIVEN SYNTHESIS 27

research in layout-driven synthesis heuristics, divided in three categories based on
their target optimization space: buffering and sizing transforms improve the drive on
heavily-loaded nets; relocation and re-wiring transforms shorten either net-lengths
or logic depth along critical paths; and logic re-structuring transforms resynthesize
critical logic to improve timing. The techniques presented here fit very well into the

conventional CAD flow, and are incorporated in most commercial CAD tools today.

3.2.1 Timing Analysis for Layout-driven Synthesis

Timing analysis is used to choose parts of the netlist for applying a layout-driven
synthesis transform. Furthermore, it is used after applying such a transform to accept
or reject the changes. More accurate timing analysis is computationally expensive but
gives a more convergent flow of post-layout timing optimizations.

The timing analysis engine needs to estimate the capacitive loading of nets on
driving gates and the propagation delay of nets. If routing is not done, the length of
a net is estimated by less accurate measures, such as half-perimeter of its bounding
box [57]; or by more accurate but time consuming measures, such as spanning-tree
approximation of its Steiner route [58]. The propagation delay (or RC-delay) is
roughly estimated using the product of lumped resistance and capacitance for a given
net-length. A more accurate calculation of RC-delay is done by viewing the net as a
distributed RC tree, and deriving its Elmore delay [71], [72]. The Elmore delay of a
RC network represents the first moment of its impulse response.

Either the timing of the most critical path or several long paths can be considered
when choosing a layout-driven synthesis transform. Tightly constrained designs have
several timing paths with similar timing, and sharing a lot of logic. Hence, fixing
only the worst path may introduce new paths that are also affected by the trans-
forms. A more conservative, but computationally more expensive, approach would
consider several of the longest paths when choosing a transform. The complexity of
enumerating all paths in a netlist with N nodes is O(e") [47]. Alternatively, only
the top K critical paths can be enumerated using the algorithm proposed by Ju and

Saleh [73] which also allows for the enumeration to be stopped when a desired max-

28 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

imum CPU time is spent. Enumerating a higher number of paths before picking a
transform improves the chances of getting timing improvements, without introducing
new critical paths.

The granularity of interaction and the consistency of wire-load data, between ac-
tual layout and the layout-driven synthesis transform, determines whether the trans-
form converges to timing improvements. Some physical information is lost when the
topology or placement of logic on a net is changed. If several netlist or layout changes
are made before analyzing post-layout timing, the interaction of different transforms
may have a negative impact on the overall timing. A safe, but computationally more
expensive, approach would be to accepts only those transforms that improve timing
after the layout has been updated for each low-level transform.

Research in layout-driven synthesis techniques, presented below, differ in the type
of transforms performed, in the accuracy of timing and wire-load analysis, and in the

granularity of netlist modifications made before layout and timing are updated.

3.2.2 Buffering and Sizing

Inserting buffers as repeaters on very long nets is a very effective way of improving
the RC delay of a net, while reducing the load seen by the net’s driving gate. The
technique by Sato et al. [2] derives segmented wire capacitances and resistances
from the layout tool, and calculates the Elmore delay of nets for timing analysis [71].
Their technique chooses terminals on the most critical path for buffer insertion on
high-fanout nets and for gate sizing. Kannan et al. [3] ignore the RC delay of wires
in their timing analysis but derive accurate wire-load capacitances through detailed
analysis of the fanout tree of each net. Their technique also chooses nets on the worst
critical paths for buffer insertion. The layout has to be able to absorb new buffers in
specific locations along a net’s route in order to get the benefit of buffer insertion.
Driver sizing improves timing by upsizing those gates that significantly contribute
to critical path delay due to excessive capacitive loading on their outputs. Chuang and
Hajj [4] calculate the timing slack for all gates using lumped RC models for wires; and

they solve a linear program to minimize the slack of critical gates and those directly

3.2. LAYOUT-DRIVEN SYNTHESIS 29

connected to them through gate-sizing and relocation. Sizing makes small changes
to the layout to accommodate for differences in area of gates with different drive
strengths. Usually these are absorbed in the existing layout by nudging neighboring
gates away.

Buffering and sizing are inexpensive transforms that improve the drive on heavily-
loaded nets, but require small amount of layout merge. Buffering is very effective
in pruning out timing problems due to the parasitic loading of long nets. Sizing
effectively fixes gate drives on underestimated short to medium length nets. However,
their scope is limited. Inserting a buffer on local nets of a block takes up delay and
area. This can be avoided if a stronger logic structure is synthesized to drive the net.
Sizing is not always possible since only a limited amount of upsizing can be done on

a gate before other gates in its fanin cone are overloaded.

3.2.3 Relocation and Re-wiring

Gate relocation moves critical-path gates closer in order to improve timing, by reduc-
ing the wire delay along critical paths. Chuang and Hajj [4] use linear programming
to derive optimal netlist-level relocations based on timing analysis of the current
layout. However, making many relocations at once before analyzing their impact
on post-layout timing results in non-incremental layout changes that end up with
worse timing. Instead, it would be safer to use a heuristic that interleaves low-level
relocation decisions with incremental layout and timing updates.

Marek-Sadowska et al. [74, 5] find equivalent cones of logic in a netlist, and re-
wire gates along critical paths to bypass unnecessary logic stages. Their technique
does slack calculation on all gates and chooses nets on and in the vicinity of the
critical path for re-wiring and other transforms. In order to consider the effect on
other similar critical paths, they also consider the timing of 5 of the next longest
paths going through a net as a secondary objective when choosing the net. This is a
convergent, technique, since every transform chosen is accepted only if it gives timing

improvements after layout merge.

Their paper also shows that post-layout optimizations should be applied before

30 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

detailed routing, since it is more difficult to absorb netlist changes through ECO
when all the details are already committed in the layout. They show that applying
re-wiring and buffer insertion together, followed by gate sizing, gives better timing
improvements rather than applying any of the three techniques separately. So far,
the different layout-driven synthesis techniques exist as individual tools in commercial
layout and synthesis systems. There is no one post-layout optimization tool that takes

the advantage of simultaneously applying buffering, sizing, relocation and re-wiring.

3.2.4 Logic Restructuring

Logic re-structuring is more effective for timing improvements than other post-layout
optimization techniques due to its wider scope. Post-layout logic restructuring of
gates on and close to the critical path is shown to improve timing by Lee et al. [6]
and Stenz et al. [7]. Both of these techniques choose logic on and around the most
critical path in a design, and re-synthesizes it to improve timing. Computational cost
limits the number of critical paths being considered for restructuring. Also, the lack

of incremental layout tools limit the amount of logic that can be restructured.

Layout-driven synthesis techniques are very effective in pruning out timing prob-
lems at a late stage in the design by making local changes to a design based on
accurate physical information. However, these techniques improve timing by making
corrective changes at a late stage in the design flow. Tightly constrained designs,
with many critical paths that share a lot of logic and that have similar timing, hit
the scope limitations of these techniques. Hence, post-layout timing optimizations

are not sufficient in fixing the lack of convergence in the conventional methodology.

There is a need for more pro-active approaches earlier in the methodology that
can achieve timing convergence by picking the right logic structures to drive the right

loads.

3.3. SIMULTANEOUS SYNTHESIS AND LAYOUT 31

3.3 Simultaneous Synthesis and Layout

Simultaneous synthesis and layout techniques improve the accuracy of information
exchanged and the granularity of optimizations performed by synthesis and layout
iterations, creating a more convergent flow starting from first synthesis. Identifying
a design flow for simultaneous synthesis and layout, and finding solutions to the
challenges involved in developing a CAD system along such a flow, has been the
focus of our work as well as of other concurrent efforts including one company and
two academic research projects. Monterey Design Systems [10] is a startup company
developing a tool for simultaneous synthesis and layout. Their tool is described in
more detail in Chapter 4. The two research projects are described in the following

subsections.

3.3.1 Simultaneous Technology Mapping and Linear Place-

ment

One such approach was developed by Pedram et al. [8], which targets small designs. In
this technique, technology mapping choices are made simultaneously with placement
choices; to avoid problems of wire-load estimation. In order to achieve this, a netlist is
hierarchically partitioned into trees with a given maximum number of nodes per tree.
For each tree, different linear placement choices are considered and two-dimensional
trade-off curves for gate-area vs. required number of routing tracks are plotted.
The netlist is floorplanned by selecting globally best trade-off points of all trees; the
minimum area is the objective.

Next, this implementation needs to be optimized for timing. Timing analysis uses
accurate wire-loads of global (inter-tree) nets derived from the initial floorplan. For
each tree on a critical path, three-dimensional trade-off curves are plotted for the
gate-area, number of routing tracks, and signal arrival time at the root of the tree.
Critical paths are fixed one at a time by solving these three-dimensional trade-offs
for new technology map, floorplan, and linear placement choices within each tree.

This flow uses partitioning to reduce errors due to wire-load estimation, by fixing

the wire-lengths of global nets in the floorplanning steps and using them to do accurate

32 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

timing analysis during the timing-optimization step. However, partitioning reduces
the optimization space of technology mapping and linear placement transforms from
the entire netlist to the size of each tree.

Iterations between synthesis and layout are eliminated in the floorplanning step
by enumerating all technology map and linear placement choices up front, before
choosing the best implementation for each tree. The timing optimization step has
to iterate between fixing critical paths and re-calculating the 3-dimensional trade-off
curves based on new timing. Such iterations do not assure timing convergence, since
fixing one critical path at a time has the inherent limitation that some fixes can

introduce new critical paths.

3.3.2 TIterating Constraint Generation, Synthesis, and Floor-

planning

Su et al. [9] presented a methodology for updating timing-constraints on cluster
boundaries to enable convergence in iterations between timing-driven resynthesis and
floorplanning.

This methodology uses partitioning to create timing boundaries between tightly
connected logic clusters. First, a synthesized netlist is coarsely partitioned by clus-
tering all logic that is clocked by the same source. Large clusters are broken down to
a desired maximum size using a traditional partitioning scheme [75, 76]. Very small
clusters are merged together using a clustering value that encourages merging those
clusters that are connected strongly together through signals as well as shared critical
paths [77].

Clusters in the partitioned netlist are treated as soft macros that have irregularly
shaped boundaries. These clusters are floorplanned using a timing-driven soft-macro
placer which determines their locations and shapes. Detailed placement is done within
each macro, followed by accurate timing analysis using wire-lengths extracted from
the layout. Timing constraints are tightened on the boundaries of critical macros
and relaxed on the boundaries of non-critical macros. The soft macro with the worst

timing slack on its boundaries is re-synthesized, and the timing-driven soft-macro

3.3. SIMULTANEOUS SYNTHESIS AND LAYOUT 33

placer is run again to recompute the shapes and locations of the soft macros.

The main advantage of this methodology is its ability to update the floorplan, and
also the ability to budget timing constraints on cluster boundaries based on accurate
timing derived from detailed placement. Hence, it is ideally suited for accurately
characterizing the floorplan and sub-module level timing constraints in very large de-
signs that usually can not be handled flat by a synthesis tool. However, the timing
constraints of a cluster are not dynamically updated based on synthesis choices made
in other clusters sharing timing paths. Hence, similar to the flow proposed by Pedram
et al. [8], the optimization space of logic synthesis and layout is restricted to individ-
ual clusters and would give suboptimal results if small designs are partitioned into
even smaller clusters. Moreover, critical paths in a small design would go through
several different clusters, requiring several iterations between cluster-level logic syn-
thesis and soft-macro placement before converging on the right timing budgets on
cluster boundaries. Hence, this methodology is not suitable for gate-level design of

individual sub-modules of large designs.

Netlist partitiong used in the works of Pedram et al. [8] and Su et al. [9] enables
accurate timing analysis based on partial layout of partitions. Furthermore, parti-
tioning isolates parts of the netlist within each cluster; these can be changed locally
without affecting the top-level timing information. This gives a powerful combina-
tion of predictable global wire-loads and the ability to make incremental changes to
the design, which should be the key characteristic of an ideal CAD flow. Instead of
restricting the partitions to be trees, such a flow should use a partitioning scheme
similar to the one of [9] that uses the netlist topology and timing to reduce overheads
in synthesis optimization space by ensuring that strongly connected logic can be op-
timized together. In order to assure timing convergence, the ideal flow should pick
the maximum cluster size to ensure that changes in wire-loads of local nets within a

cluster do not significantly affect the overall timing of the netlist.

Arbitrarily shaped cluster boundaries of [9] reduce layout-area overheads due to
partitiong. The ideal CAD tool should make these boundaries even softer by allow-
ing movement of logic across them. This would enable updates in early partitioning

decisions based on the latest timing. The granularity of timing optimizations in [9] is

34 CHAPTER 3. BRIDGING THE GAP BETWEEN SYNTHESIS & LAYOUT

too coarse since an entire cluster is resynthesized before its floorplan or timing con-
straints are re-evaluated. On the other hand, the granularity of timing optimizations
in [8] is too local since it looks at one critical path at a time. The ideal CAD tool
should do global timing optimizations, while updating the layout and wire-loads after
each low-level netlist change in order to ensure timing convergence. The next chapter
presents our proposal for the architecture of an ideal CAD flow and describes the

challenging problems that need to be solved before it is implemented as a tool.

Chapter 4

A CAD Flow Targeting Design

Convergence

For predictable convergence to the final implementation of a design, a CAD flow needs
to merge synthesis and layout optimizations in one integrated tool that interleaves
low-level synthesis and layout transforms. The view of both wire-loads and timing
should be kept consistent between synthesis and layout steps through the flow. In
order to achieve this consistency, synthesis should do away with statistical wire-load
modeling. Instead, synthesis should estimate wire-loads based on current and poten-
tial future co-ordinates of gates in the layout. Layout should take hints from synthesis
when updating these co-ordinates and should make incremental changes that keep
previous synthesis and layout choices valid throughout the methodology. After each
low-level netlist change is incorporated in the layout, wire-loads as well as timing
should be updated to keep a consistent view of the design. Making synthesis aware
of gate locations would give highly accurate wire-load estimates, however it would
make it even more difficult to do incremental layout modifications. The discussion
in Chapter 3 showed that netlist partitioning can be used to address this trade-off
between accuracy of wire-load estimates and flexibility of netlist optimizations.

We propose Nebula, a design flow that uses partitioning for timing convergence by
targeting the optimal trade-off between accuracy of wire-load estimates and flexibility

of incremental optimizations. Nebula iterates between low-level synthesis, layout, and

35

36 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

partitioning transforms. Each iteration is followed by an update of wire-loads and
timing, in order to reject non-convergent iterations and to synchronizes the design
parameters viewed by synthesis and layout subsystems. Nebula creates clusters of
strongly connected logic, and loosely fixes the relative placement of these clusters
early in the flow. It uses a new wire-load model that roughly estimates local wires
within each cluster, but accurately calculates the wire-load of timing-critical global
wires between the clusters. This creates nebulous regions of local areas in clusters,
within which the netlist can be incrementally optimized without nullifying previous
wire-load estimates that motivated those optimizations. However, the accuracy of
wire-load estimation and the flexibility of incremental layout changes comes at the
cost of reduced optimization space due to partitioning. We propose changing the
view of partition boundaries in the flow, to make them appear as ”soft” boundaries.
Soft boundaries are enforced in the low-level iterations of Nebula by selectively relo-
cating parts of a logic cluster to another partition. This allows the flow to correct
early partitioning choices rendered sub-optimal by the timing of the latest netlist
implementation.

A commercial CAD tool based on a similar flow is being developed by Monterey
Design Systems [10], which is described in Section 4.1. However, implementation
details of Monterey’s flow are unknown and several questions remain unanswered
about the challenging problems that need to be solved before such a flow is made
into a CAD tool. Section 4.2 describes the Nebula flow we propose, and identifies the
challenging problems that need to be solved in order to make each step of the flow a
reality. We have developed an experimental prototype of Nebula using commercially
available synthesis and layout tools to validate different approaches to solving these

challenging problems. This prototype CAD system is presented in Section 4.3.

4.1 An Industry Tool for Design Convergence

Monterey Design Systems [10] is a startup company developing a tool for simul-
taneous synthesis and layout. Their Dolphin physical design system uses common

timing engine and data structures for synthesis and layout, essentially converting the

4.2. ARCHITECTURE OF NEBULA 37

methodology into a unified tool. This tool is implemented with parallel algorithms
that take advantage of the memory capacity and processing power of commercially
available multiprocessor hardware; improving the speed and scalability of complex
optimizations for large designs. The tool starts with coarse wire-load estimates at
the top-most level of hierarchy to make high-level design choices. These estimates are
refined further as the tool partitions the netlist into smaller clusters for local optimiza-
tions. Instead of netlist-level iterations between synthesis and layout, their tool does
iterations at all levels of hierarchy down to very small clusters, with increasing accu-
racy in wire-load estimates derived from the layout. Cluster boundaries are treated
as soft boundaries, having irregular shapes and allowing logic to be moved across
clusters. This gives added freedom to synthesis and layout transforms, of optimizing
logic across cluster boundaries at various levels in the design hierarchy,

While the design flow in this architecture follows closely along the lines of Nebula,
key implementation details, determining its viability, remain unpublished. For exam-
ple, the criteria for partition at each level of hierarchy needs to be determined based
on two factors: how the partitions are used for wire-load modeling at that level, and
how flexible the boundaries are at lower levels of hierarchy. The wire-load model at
each level needs to cater to the amount of detail committed in synthesis and layout
at that level while taking advantage of the physical information available thus far. To
decide when logic should be moved across cluster boundaries, a post-layout timing
optimization technique needs to isolate the right logic for movement while minimiz-
ing unnecessary perturbations in layout. This chapter discusses these implementation

challenges in the framework of Nebula.

4.2 Architecture of Nebula

Figure 4.1 shows the architecture of Nebula, the CAD flow we propose for target-
ing timing convergence during gate-level optimizations. The RTL description of the
design is mapped to structural logic by initial synthesis using statistical wire-load
models provided by the standard-cell library. The structural netlist is partitioned

into clusters of logic gates. Initial cluster placement first estimates the layout area

38 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

Read RTL,
Library,Constraints

l

Initial Synthesis

l

Partitioning

Cluster Placement,
Initial Cell-Placement

Q Timing-driven)

Repartitioning

l

Detailed Cell-
Placement

)
C Routing)

Figure 4.1: Nebula - A CAD Flow Targeting Design Convergence

Detailed Synthesis

required by each cluster. Using these area estimates, the cluster-placement step de-
termines the relative placement of these clusters based on their interconnections and
the design’s timing and area constraints. Initial cell-placement determines rough ini-
tial locations of the logic within each cluster, providing data for wire-load modeling
during later synthesis steps. Wire-lengths are estimated from this layout to derive
a wire-load model for detailed synthesis. This model accurately calculates the wire-
load of global (inter-cluster) nets based on the current cluster placement, but roughly
estimates the wire-load of local (intra-cluster) nets. This keeps local wire-loads in-
dependent of detailed cell-placement within the clusters while giving accurate global
wire-loads. Detailed synthesis uses this wire-load model to optimize the logic within

each cluster; where the goal is to meet the design’s timing constraints.

Initial partitioning is done early in Nebula, before accurate timing information

is available. While the logic and the layout are being optimized during this flow,

4.2. ARCHITECTURE OF NEBULA 39

some partitioning decisions may need to be revisited in light of the latest timing
information. Unnecessary global wire-length may be added to critical paths due to
the location of the partition containing a cluster of logic. If such logic is relocated to
another partition containing gates that shares many critical paths with it, global wire-
loads can be reduced along critical paths to improve timing. Such relocations would
also give synthesis better control over timing optimizations, since it can optimize
several timing-critical logic gates simultaneously if they are all within one partition.
The timing-driven repartitioning step makes such decisions for relocating logic across

partition boundaries based on the latest timing and layout.

At the core of the design flow in Figure 4.1, low-level synthesis, cluster placement
and re-partitioning transforms are iterated. In order to keep wire-loads consistent
between synthesis and layout, each low-level synthesis transform is followed by an
update in the placement, incorporating the latest netlist changes into the layout.
Such updates usually make small changes to the relative placement of clusters when
the area taken by the logic inside a cluster changes due to the synthesis transform.
Neighboring clusters are nudged around their original locations to accommodate for
the new area or shape of such clusters. Global wire-loads are updated to reflect
these changes in the cluster placement. Initial cell-placement is repeated in clusters
with changed logic, area, or shape; and local wire-load estimates are updated for
those clusters. Since wire-load estimations use coarse statistical models, any local
changes in the layout of the clusters are automatically incremental since they do not
significantly affect the wire-load assumptions made by earlier synthesis transforms.
Thus, detailed synthesis in this flow has accurate global wire-loads that are consistent

with the latest layout and timing of the netlist.

The last synthesis transform is thrown away and a new transform is attempted if
the design does not converge closer to meeting its implementation constraints after
the layout is updated and timing-driven repartitioning is attempted. Otherwise,
the synthesis transform is accepted and detailed synthesis continues with the next
transform. In order to avoid getting stuck in local minima, the criteria for rejecting
one or a number of previous transforms needs to be determined. Initially, several

synthesis transforms are allowed to occur in each iteration, before deciding to reject

40 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

them if the design does not converge after layout. As the optimization flow progresses,
the number of transforms allowed before evaluating their impact on convergence is
gradually lowered. When the design meets its constraints during these low-level
iterations, detailed cell-placement is run within the floorplan created by the cluster-
placement.

Three properties of the iterations in Nebula aid timing convergence:

1. Synthesis uses accurate wire-load models that are constantly updated to reflect

every small layout change caused by netlist changes.

2. Any local changes in the layout within the clusters have insignificant effect on
the overall timing of the design, since such changes do not affect the wire-load

assumptions made by earlier synthesis transforms.

3. Non-incremental changes in the netlist or the layout do not find their way
into the design, since low-level iterations that increase constraint violations are

rejected.

Thus, the timing impact of each iteration is bounded by the low-level granularity
of iterations, and by the hybrid wire-load model. Hence, Nebula promises faster con-
vergence than the conventional CAD flow. Implementation of such a CAD system
requires solving challenging problems in the underlying tools to enable such con-
vergence through low-level iterations without incurring significant overheads. These

implementation challenges are described in the following subsections.

4.2.1 Partitioning and Wire-load Estimation

A partitioning scheme and corresponding wire-load model are needed to enable ac-
curate wire-load prediction in synthesis, while allowing room for incremental layout
optimizations throughout the steps of the Nebula design flow.

As we saw in Chapter 2, accurate wire-load estimation is crucial to ensuring timing
convergence in a CAD flow. Conventional synthesis tools estimate the wire-load of

a net using either a statistical model or a back-annotated capacitance from earlier

4.2. ARCHITECTURE OF NEBULA 41

layout. However, as seen in Section 2.2.6, gates connected to terminals of back-
annotated nets can not be changed during synthesis optimizations. The wire-load
estimation scheme in Nebula should use the relative placement of clusters to accurately
model global nets that are unlikely to change significantly through the flow. Moreover,
to allow incremental optimizations of local logic structures and of the layout of each
cluster, local nets and local segments of global nets should be roughly estimated using
custom statistical wire-load models. This calls for the synthesis engine to create a
hybrid wire-load model for global nets that uses a combination of back-annotation

and statistical modeling.

Conventional partitioning schemes cluster logic structures with the objective of
reducing the area and timing contributed by long inter-cluster wires. On the other
hand, the objective of the partitioning scheme in Nebula is twofold: to enable accurate
global wire-load modeling and to create regions of grey area for incremental local
optimizations. Hence, its should identify nets that are likely to be unpredictable
and partition along those. It should also keep strongly connected logic together
so incremental synthesis steps can optimize it further with fewer changes in cluster

boundaries and hence fewer changes in global wire-lengths.

There are two conflicting requirements on the sizes of clusters created by the parti-
tioning scheme in Nebula. Partitioning a design into very small clusters would reduce
the optimization space of cluster-level synthesis and cell-layout algorithms, calling for
large clusters. Moreover, the clusters need to be large enough to be able to absorb
changes in their local logic structures within their layout geometry. However, since
local wire-loads are approximately modeled, the worst-case local parasitics should be
small enough to ensure that estimation errors on local wire-loads do not significantly
affect the post-layout timing of the design. This requires the partitioning scheme to

make smaller clusters.

Depending on the size of the clusters, partitioning can result in sub-optimal im-
plementations due to restricted optimization space of detailed synthesis and cell-
placement algorithms. These algorithms need to be modified to maintain a reason-
able local optimization space, while preserving partition boundaries used to create

accurate models of global wire-loads. The following three subsections address these

42 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

requirements of treating partition boundaries as ”soft” boundaries in conventional

synthesis and layout algorithms.

4.2.2 Cluster Placement

The first cluster placement decides the initial size and shape of clusters, while subse-
quent cluster-placement steps update those to reflect netlist and timing changes made
by synthesis transforms. If the design has a few large clusters, the relative placement
or boundaries of clusters are unlikely to change significantly due to low-level synthesis
optimizations within the clusters. However, if the design has several small clusters,
low-level synthesis transforms may require significant changes to the sizes or relative
placement of the clusters. This may result in a fragmented layout area if the clus-
ters are required to have rectangular geometries. In order to avoid overheads due
to fragmented layout area, the cluster-placement engine needs to create soft clus-
ter boundaries with irregular shapes that can be modified without fragmenting the

layout.

4.2.3 Synthesizing Partitioned Logic

Conventional synthesis tools optimize each cluster of a partitioned design separately,
and perform minimal boundary-optimizations at the top level. Boundary optimiza-
tions are restricted to removing redundant nets and propagating inversions. Depend-
ing on the size of the clusters in Nebula, this restriction can result in significant
overhead in the quality of the design implementation produced by detailed synthesis,
since it reduces the optimization space of synthesis algorithms. Hence for small clus-
ter sizes, synthesis needs to treat clusters as soft boundaries across which critical logic
can be optimized. However, if the synthesis engine in Nebula is allowed to synthesize
complex gates by collapsing logic from two or more clusters, it would also need to
estimate the wire-loads of new global nets created in that process.

This is shown in the example of Figure 4.2, where gates UI, U2 and U3 belong
to partitions S1, §2 and S3 respectively. If synthesis with soft boundaries collapses
the logic of gates UI-3 in one gate U4, global nets N4 and N5 go away and four

4.2. ARCHITECTURE OF NEBULA 43

Ni— S1 S2 s1 S2
N2 |N3 N2
N1
u2 N3
S4 S5 S4 S5
N4 If>
N5| S6 S6
U3 S3 L S3

u4
N6 N6

Figure 4.2: Example of Technology Mapping Across Clusters

new global nets N1-3,N6 appear. To calculate the wire-load of these nets, synthesis
would have to determine whether U4 should be placed in cluster S1, S2 or S%; and
also determine the approximate pin-locations of the new global nets. This requires
the addition of layout knowhow to synthesis algorithms, along with the enabling of
layout algorithms to follow placement directives from synthesis. If the granularity of
iterations in Nebula is small, the timing-driven repartitioning step could create soft
boundaries by re-clustering critical logic together so future synthesis transforms can

optimize it.

4.2.4 Detailed Cell-placement in a Partitioned Layout

Similar to detailed synthesis, detailed cell-placement should preserve the top-level
interconnection structure of global nets to allow accurate modeling of global wire-
loads. With a conventional tool, cell-placement would be done separately within each
cluster. If the clusters are small, this would result in a significant loss of optimiza-
tion space, giving a layout with suboptimal area and timing. For such designs, the
cell-placement engine should optimize the design as a flat netlist but with region con-
straints on individual cells confining them within the area of their parent cluster’s

location.

44 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

4.2.5 Timing-driven Repartitioning

A post-layout timing optimization scheme is needed for moving logic across cluster
boundaries to improve early partitioning choices in light of the current logical and
physical implementation of the netlist. The scheme for timing-driven repartitioning
should relocate those gates that would give the most timing improvements. It is
important for such a scheme to make incremental changes to the layout and netlist in
order to maintain convergence. Before accepting a relocation, it should be verified that
the relocation improves timing after the relocated logic is merged into the existing
layout. As discussed in Section 3.2.1, accuracy of the timing-analysis engine is a
key factor in such post-layout timing optimization techniques. Hence, the timing
analysis engine should accurately estimate parasitics and timing from the layout.
Also, the timing of several critical paths should be considered together when making
a relocation decision, to ensure that fixing one path does not worsen the delay of
several other paths that share logic with it and have similar delay. Since such detailed
timing analysis is exponential in the size of the design (3.2.1), the accuracy of timing

analysis engine used should be chosen based on the size of the design.

As described in the previous subsections, implementation of the Nebula flow for
gate-level optimizations requires several enhancements to the conventional tools. In
this work we explored implementations of two such enhancements: a partitioning
scheme and corresponding wire-load model for creating accurate wire-load estimates
while enabling incremental layout optimizations, and a scheme for timing-driven
repartitioning. We implemented these enhancements in an experimental prototype of
Nebula, using commercially available CAD tools. The prototype allows us to study
the viability of Nebula in achieving convergence through iterations of synthesis and
layout optimizations. It also gives some insight into the limitations of Nebula that
need to be addressed before it is used to make gate-level timing convergence a reality.

The next section describes this prototype system.

4.3. AN EXPERIMENTAL PROTOTYPE 45

4.3 An Experimental Prototype

In the prototype system we implemented those steps of the Nebula design flow that
play a key role in enabling timing convergence, and used conventional synthesis and
layout tools for the remaining steps. Hence, we implemented the partitioning scheme
and the corresponding wire-load model that create accurate wire-load prediction while
allowing incremental layout optimizations. Since it was beyond the scope of this
work to develop new synthesis and layout tools that optimize a partitioned design
without incurring overheads, we used conventional synthesis and layout tools for
netlist optimizations in the prototype system. This prevents us from breaking down
the netlist-level iterations between synthesis and layout, supported by conventional
tools, into lower level iterations called for in Nebula. Thus, the prototype system only
does one pass through all synthesis and layout step of Figure 4.1. We implemented
a timing-drive repartitioning scheme that takes the final placement generated in the
prototype and performs incremental timing optimizations by relocating logic across

partition boundaries.

RTL, Constraints,
Cell Library, Statistical
Wire-load Models

A 4

Initial Synthesis

Partitioning
v

Hierarchical Netlist

Hybrid Wire-load
Model

A 4

Resynthesis

Figure 4.3: Prototype Design System

46 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

The prototype design flow is shown in Figure 4.3. We used Synopsys Design
Compiler [38] for logic synthesis and LSI Logic’s CMDE and SILO tool suits [41] for
layout steps in the prototype. The technology was lcb500k, LSI's 0.5um standard-cell
library. The Design Compiler was enhanced to use our hybrid wire-load model derived
from the initial floorplan of the partitioned netlist. Netlist manipulations, required
for the partitioning and timing-driven repartitioning steps, were implemented in the
Vex netlist database system [78], [79]. The following sections describe the steps of

the prototype system and its limitations.

4.3.1 Initial Synthesis and Partitioning

The initial synthesis step optimizes the RTL description of a design with the objective
to meet its design constraints, using statistical wire-load models from the standard-cell
library. Partitioning creates clusters of strongly connected logic where the maximum
size of a cluster is small enough to allow statistical wire-load modeling on local wires.
This partitioning scheme will be discussed in detail in Chapter 5. Thus, this step
creates a new netlist with two levels of hierarchy, where the top level has the design
with instantiations of all clusters and global wires, and the next lower level has all

the clusters containing logic gates and local wires.

4.3.2 Floorplanning

A conventional floorplanning tool from the LSI tool suit determines the shapes and
locations of the clusters. In order to fix the wire-load of the top-level segments of
global nets, the floorplanning step also determines pin locations on the boundaries of
individual clusters.

Since the LSI tool suite does not have an automatic pin-assignment tool, we
implemented a simple pin-assignment algorithm in Vez. The inputs to this algorithm
are: floorplanned locations of clusters in the LSI floorplan format (.cfun), and gate-
level Verilog description of the partitioned netlist. For each cluster, its boundary
and the entire floorplan are divided into four quadrants with respect to the center

of the cluster. For each input/output net of the cluster, its pin location is assigned

4.3. AN EXPERIMENTAL PROTOTYPE 47

to the quadrant containing the geometric center of all of its fanin/fanout locations.
Here, the location of a gate is represented by the center of the cluster containing it;
whereas the location of a primary input/output pin of the block is represented by its
pre-defined pin location. Pins within a quadrant of a cluster are arbitrarily sorted

and assigned equi-distant locations along the two edges of the quadrant.

Neither the LSI floorplanner nor the pin-assignment algorithm are timing-driven.
This makes the timing-driven repartition step quite important for converging to a

design’s timing constraints in the prototype system.

Next, LSI's rough initial placement tool determines the initial cell-placement
within each floorplanned cluster. The placement tool is run with a area-utilization
target of 55-65%. This low area-utilization allows room for making changes in the

area taken by the logic local to the clusters without perturbing the floorplan.

4.3.3 Resynthesis with a Hybrid Wire-load Model

Using accurate wire-load information derived from the floorplan, one way to resyn-
thesize the netlist would be to characterize timing and wire-loads on the boundaries
of each cluster separately and to optimize the clusters independently. However, this
would restrict the optimization space of synthesis transforms to each cluster, giving
suboptimal synthesis output. Instead, the partitioned netlist is resynthesized as a
whole to allow the synthesis tool to make trade-offs in the boundary conditions of
each cluster while making local synthesis choices within each cluster. This also allows
the synthesis tool to optimize logic across partition boundaries as much as possible in
the tool. While the Synopsys Design Compiler does not modify boundaries of logical
partitions, it does limited optimizations across boundaries through inversion propa-
gation and removal of redundant signals. Physical information from the partial layout
created by the floorplanning step is used to generate an accurate wire-load model for
resynthesis. We call this a hybrid wire-load model, since it uses a combination of
back-annotation and statistical modeling. This wire-load model is described in detail
in Chapter 5.

48 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

4.3.4 Detailed Cell-placement

Within the floorplanned geometry of each cluster, LSI’s detailed cell-placement tool
is run with the target of achieving maximum area-utilization. Since the cluster sizes,
determined by floorplanning, change after resynthesis; a significant amount of com-
paction or expansion of the floorplan may be required after the detailed cell-placement
step. Compaction of the floorplan makes global nets shorter than the back-annotation
used for resynthesis, resulting in some nets being over-driven at the expense of un-
necessary area. However, this is more desirable than expansion, which makes global
nets longer than the earlier back-annotation; resulting in new timing paths due to
insufficient drive on some nets. A low area-utilization target of 55-60% in the floor-
planning and initial cell-placement step guarantees that resynthesized clusters would
either fit or be smaller than their floorplanned geometries. The floorplan is revisited
after detailed cell-placement is done in all clusters to remove any empty spaces and
overlaps. Since there was no tool for floorplan compaction in the LSI tool suit, we
manually compacted the floorplan.

The correlation between wire-loads estimated by resynthesis and generated after
detailed placement is expected to be high since the top-level connectivity of global
nets is fixed by floorplanning, and the wire-load of local nets varies within small
geometries of clusters. Thus, if timing constraints were met after resynthesis, they

also would be met after detailed placement.

4.3.5 Timing-driven Repartitioning

This step improves post-layout timing by selectively relocating logic across parti-
tion boundaries. This enables the prototype flow to re-visit early partitioning and
floorplanning decisions based on post-layout timing. Chapter 6 presents a heuristic
for timing-driven repartitioning implemented in the prototype system, and shows its
potential for improving convergence in the Nebula design flow through experimental
results. This heuristic improves post-layout timing by reducing the contribution of
global wire RC to critical-path delays. In Nebula, such a heuristic would also enable

future synthesis steps to optimize critical logic by re-grouping critical gates within a

4.4. SUMMARY 49

cluster.

4.4 Summary

This chapter presented the architecture of Nebula, a CAD flow for bridging the gap
between logic synthesis and layout. The proposed flow aims to improve convergence
to the final design implementation, by interleaving small-scale synthesis and layout
decisions and by keeping wire-loads consistent between synthesis and layout. Netlist
partitioning is used at the core of this approach, which separates unpredictable nets
from predictable ones. Unpredictable nets are modeled accurately using partial lay-
out information, and predictable nets are confined to small geometries for reasonable
statistical modeling. The prototype design flow was developed based on conven-
tional CAD tools to emulate key steps of Nebula in order to understand its viability
and limitations. This prototype will be used in the next two chapters to derive ex-
perimental results that explore the effectiveness of better wire-length estimation on
synthesis results, identify the overheads of partitioning a design before detailed logical
and physical optimizations are done, and evaluate the effectiveness of timing-driven
repartitioning for timing convergence.

Next, Chapter 5 presents a partitioning scheme and a hybrid wire-load model for
the Nebula design flow.

20 CHAPTER 4. A CAD FLOW TARGETING DESIGN CONVERGENCE

Chapter 5

Partitioning for Better Wire-Load
Models

Partitioning is a key step for enabling convergence in the CAD flow proposed in Fig-
ure 4.1. It enables accurate wire-load modeling during synthesis, which creates a
consistent view of wire-lengths and timing between synthesis and layout subsystems.
Partitioning also creates regions of grey area in the netlist that allow incremental
local optimizations during low-level iterations between synthesis and layout. How-
ever, partitioning a design can reduce the optimization space of synthesis and layout
algorithms by confining them to individual partitions.

This chapter first presents a hybrid wire-load model, consisting of both back-
annotation from layout and statistical estimates, for accurately predicting global
wire-loads while allowing incremental changes in local logic. Section 5.2 presents
a partitioning scheme that enables such wire-load models. It also derives the size
of individual partitions for achieving the optimal trade-off between the advantages
and overheads of partitioning. The partitioning scheme and wire-load model were
implemented as part of the prototype tool flow of Figure 4.3. Experimental results in
Section 5.3 show the overheads of partitioning, especially when it is used with con-
ventional tools in the prototype flow. In spite of these overheads, results comparing
the prototype with the conventional methodology show that using this partitioning

scheme and the corresponding hybrid wire-load model reduces the gap between logic

o1

52 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

synthesis and layout.

5.1 A Hybrid Wire-load Model for Logic Synthesis

The hybrid wire-load model uses a combination of back-annotation from layout and
statistical modeling to derive accurate wire-load estimates that also allow room for
future netlist optimizations. It consists of back-annotating wire-loads from layout
that separate local wires and local segments of global wires from global segments
of global wires. Local wires and local segments of global wires are used to derive
statistical models within each partition; whereas global segments of global wires are
are back-annotated. Implementation of this model within the context of the prototype

design flow is described in the next three subsections.

5.1.1 Back-annotation from Layout

Net-lengths are estimated from layout using LSI's net-length estimator and delay cal-
culator tools. The net-length estimator uses Steiner-route estimates based on the
floorplan and cell-placement to derive net-lengths from the layout. The delay cal-
culator converts this estimate into wire-load back-annotation using the per micron
wire capacitance of the lcb500k technology. This back-annotation is generated in
the standard format accepted by the Synopsys Design Compiler. Global nets are
broken down into segments contained within each hierarchical boundary, namely the
top-level segment and several cluster-level segments. The wire-load of each segment
is back-annotated separately. Local nets are treated in the conventional way, by
back-annotating their total wire-load.

For example, Figure 5.1 shows a floorplan with two local nets N1 and N2, and
one global net N3. For the purpose of back-annotation, N3 is broken down into a
top level segment S7Ty3, and four cluster-level segments S1y3 — S4y3 corresponding
to clusters U1 —U4. The back-annotation data shown in Figure 5.1 contains separate
entries for each of these segments, and one entry for every local net.

Most commercial layout systems including the LSI tool suit do not generate seg-

5.1. A HYBRID WIRE-LOAD MODEL FOR LOGIC SYNTHESIS 33

US [TNL Back-Annotation
W set_load(N1)
U2 s4 set_load(N2)
J:—Szm I_I' N set_load(S1,,),
STy — N3 | set_load(S2,,),

set_load(S3,;),

r |: -
Sl N2 S—:l,) set_load(S4,,),

NS set_load(ST,,)

Ul U6 u3

Figure 5.1: Example Floorplan for Hybrid Wire-Load Modeling

mented back-annotation for nets spanning different hierarchical levels. In order to get
around this, we first extract the total lengths of global nets by running the net-length
estimator at the top-level. Next, we extract the lengths of local segments of global
nets and the lengths of local nets, by running the net-length estimator again within
each cluster. However, the delay calculator generates back-annotations for only those
nets that are enclosed within the given hierarchical level. Since the local segments of
global nets are not enclosed within individual clusters, we create a pseudo boundary
around each cluster before running the delay calculator. We developed a tool in Vex
to automate this process. This tool creates a new design for each cluster’s netlist
and inserts an inverter ring around it, enclosing local segments of global nets within
the cluster. Running the delay calculator on each of these netlists gives local back-
annotation for each cluster, consisting of local nets and local segments of global nets.
Next, the back-annotation for each local segment of a global net is subtracted from
its total back-annotation to generate the back-annotation for the top-level segment
of that net.

This back-annotation data is used to create separate wire-load models for local

and global nets.

o4 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

5.1.2 Wire-load Models for Local Nets

Custom statistical models are generated for each cluster using the back-annotation
data of local nets and local segments of global nets present in the cluster. We use the
Synopsys Design Compiler’s create_wire_load command that generates a statistical
wire-load model for a module based on the statistical distribution of back-annotated
wire-loads. During resynthesis the wire-load of a local net is looked up from this
statistical model of the cluster enclosing the net. For the example of Figure 5.1, net
N1 is modeled by the fanout-based custom statistical wire-load model of its parent
cluster U5, and net N2 is modeled by that of its parent cluster U6 as shown in
Equation 5.1.

wireload(N1) = custom_model_lookup(fanout(N1),Ub)
wireload(N2) = custom_model_lookup(fanout(N2),U6) (5.1)

Custom statistical wire-load models are influenced by the size, aspect ratio and
type of netlist structure within each cluster. Therefore, they estimate the wire-loads
of local nets more accurately than the area-based statistical model used for initial
synthesis. Moreover, the inaccuracies of statistical modeling has a smaller impact on
the overall timing of the design since each cluster is made small enough to have a
narrow distribution of local wire-loads. Even the wires in the tail of the post-layout
wire-load distribution within each cluster are short enough to be sufficiently driven
by an average library gate; hence underestimation does not result in critical timing
paths otherwise caused by over-loaded gates. The maximum size of a cluster, for
ensuring that underestimated wire-loads do not affect timing, is derived in Section
5.2.3.

5.1.3 Wire-load Models for Global Nets

In order to maintain consistency with layout, conventional synthesis tools do not
modify any gates connected to a back-annotated net. However, this reduces the opti-

mization space of synthesis transforms and defeats the purpose of using an accurate

5.2. PARTITIONING SCHEME 95

wire-load model to pick the right logic structure to drive global nets. Hence, we re-
quested Synopsys Inc. for access to the Design Compiler source code, and modified
it as part of this work, to model global nets in a segmented fashion during synthesis
optimizations. The total wire-load of a global net is calculated, by adding of the back-
annotated wire-load of its top-level segment with the statistical wire-load of each of
its local segments. For the example of Figure 5.1, the wire-load of global net /N3 is

modeled by Equation 5.2.

wireload(N3) = back_annotation(STy3) +
custom_model lookup(fanout(S1ys),U1)
custom_model lookup(fanout(S2ys3), U2)
custom_model_lookup(fanout(S3y3),U3)

((S4n3),U4) (5.2)

custom_model_lookup(fanout(S4y3),

This model maintains the top-level back-annotation which remains unchanged,
while incorporating wire-load changes due to arbitrary changes in the fanout of local
segments of global nets during resynthesis. The partitioning scheme used in the
Nebula flow should take advantage of the accuracy of global wire-loads provided by

this model. The next section describes our implementation of such a scheme.

5.2 Partitioning Scheme
The goal of the partitioning scheme is twofold:

1. To take advantage of the accuracy of global wire-load models; by identifying
unpredictable nets from the structure of the netlist and partitioning along those

nets.

2. To maintain reasonable accuracy in statistical estimates of local nets; by de-
termining a maximum budget for the size of a cluster which ensure that the

post-layout measurements of local wire-loads have a narrow distribution around

o6 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

their statistical median.

5.2.1 Identifying Cluster Boundaries

After initial logic synthesis, a flat design netlist is partitioned to separate nets into
two categories: global nets interconnecting the clusters and local nets enclosed within
the clusters. During hierarchical resynthesis, global nets are modeled accurately using
partial layout whereas local nets are modeled statistically.

The partitioning scheme identifies unpredictable nets from the netlist structure
and partitions along them so that they can be modeled accurately. To identify unpre-
dictable nets, we look for nets that go to several loosely connected gates in the netlist.
Since the cost functions of all placement algorithms attempt to reduce the distance
between interconnected gates, loosely connected gates would be placed at arbitrary
locations with respect to each other. Hence, the connecting net is more likely to fall
into the tail of the post-layout wire-load distribution, such as the one shown in Figure
2.4. On the other hand, nets that go to strongly connected gates are more likely to be
short, since strongly connected gates would be placed in close vicinity of each other
by any placement algorithm. Such nets are made local since they are likely to be
close to the statistical median of the fanout-based wire-load distribution, and hence

can be modeled with reasonable accuracy using a statistical model.

Cus<”
N1 u2 \\
N2)
p }9\-\//
— ~N
N

Figure 5.2: Example Netlist for MFFC Clustering

Figure 5.2 shows an example netlist, where statistical wire-load modeling would
estimate equal wire-loads for nets NI and N2, since both nets have 3 fanouts. How-

ever, fanouts of N1 go to gates U1, U2 and U3 that are strongly connected to each

5.2. PARTITIONING SCHEME o7

other since their fanout cones converge into gate U4. Fanouts of N2 go to gates UJ,
U6 and U7 that have no other inter-connection. Using any placement engine with
reasonable cost functions, U1-U4 would to be placed closer to each other, making N1
a relatively short net. Gates Uj-U7 have stronger connections to other parts of the
netlist than each other, so they are likely to be placed arbitrarily with respect to each
other. This would make N2 a relatively long net with unpredictable wire-load. Thus,
the discrepancy in wire-loads between synthesis and placement would be higher for
N2 as compared to N1. Hence, N2 is classified as a global net, whereas N1 is classified

as a local net.

This initial partitioning is done within the Vex framework using the clustering
algorithm proposed by Cong et al. in [80] and [81], which creates maximal fanout-free
cones (MFFC) of logic in a netlist. An MFFC contains gates and nets with fanouts
that all end up in one sink, which is the root of the cone. Our implementation of this
algorithm starts with the primary outputs as the roots of MFFCs and traverses the
fanin cone of each primary output. It creates an MFFC out of the netlist in this fanin
cone until it finds a gate that has outputs going to fanin cones of multiple MFFC
roots. Such gates are made roots of new MFF(Cs and their fanin cones are further
searched, until the entire netlist is covered by MFF(Cs. The complexity of this search
is O(N + E); where N represents the number of gates and primary outputs in the
netlist, and F represents the number of nets and their fanouts. This algorithm would
put net N1 in Figure 5.2 inside a logic cone that is rooted at net N2. Due to many
multiple fanout nets, we found that the average size of a MFF(C was only 3-4 gates
and the maximum was 20 gates. Hence, these MFF(Cs are merged to form larger

clusters using the heuristics discussed in the next subsection.

5.2.2 Merging Small Clusters

MFFC(Cs are merged to form larger clusters that are smaller than a desired maximum
size, as shown in the pseudo code in Figure 5.3. The minimum cluster size is set
to a number very close to the maximum size, since it is desirable to keep the size

of each cluster large for high degrees of freedom in local synthesis and placement

o8 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

optimizations. The two while loops merge pairs of clusters if their combined size is
smaller than the maximum size. The while loops exit either when there are no more
clusters smaller than the minimum size, or when an iteration does not give any further

reduction in the number of clusters.

PartitionNetlist() {

ClusterList = MFFC_Cluster(Netlist) ;
old_smallClusters = 0;
smallClusters = Num_Small_Clusters(ClusterList) ;

while ((smallClusters > 0) && (old_smallClusters '= smallClusters)) {
ClusterValues = Compute_ClusterValues(ClusterList) ;
Sort_In Decreasing Order (ClusterValues) ;
Merge Clusters(ClusterValues, ClusterList) ;
Collapse_Single Fanout Nets(ClusterList) ;
old_smallClusters = smallClusters;
smallClusters = Num_Small_Clusters(ClusterList) ;

}

while ((smallClusters > 0) && (old_smallClusters '= smallClusters)) {
Blind Merge(ClusterList) ;
old_smallClusters = smallClusters;
smallClusters = Num_Small_Clusters(ClusterList) ;

}
}

Figure 5.3: Pseudo code of Partitioning Procedure

In the first while loop, Compute ClusterValues computes a clustering value for
all cluster pairs that share at least one input net, giving up to N? clustering values
for N clusters. Next, pairs of clusters are sorted by decreasing clustering values.
Merge_Clusters merges the pair of clusters with the highest clustering value, if nei-
ther cluster has merged with another cluster of higher clustering value. The clustering
value for clusters ¢+ and j is given in Equation 5.3, where IOy is the pin-count and
Sizey is the size (in number of gates) of a cluster k. IN;; is the number of inputs

shared by clusters 7 and j, and FanQOut,; is the total fanout of shared inputs.

. IN;;
Clustering.Value = 2 (IO — IN;;) x FanOut;; x Sizey,

k=1,j

(5.3)

5.2. PARTITIONING SCHEME 99

This clustering value encourages merging of clusters sharing many inputs with
small fanout, essentially converting global nets with small fanout counts into local
nets. This is motivated by the fact that a net with a large fanout count is more
unpredictable before layout than one with a small fanout, because higher degrees of
freedom are available in placing all the members of the net’s fanout. The clustering
value also discourages merging of clusters with many input/outputs that are not
shared with each other, which reduces congestion on cluster boundaries. Finally, the
clustering value encourages merging of smaller clusters over larger ones, resulting in

evenly sized final clusters.

S2

s1
N1 |

D T

Figure 5.4: A Case For Collapsing Single-Fanout Nets

Next, Collapse_Single Fanout_Nets localizes nets that have all fanouts going to
one cluster by merging their source and destination clusters. Since the majority of the
wire-load of such a net is going to be modeled statistically in the destination cluster,
the back-annotation at the top level does not help in accurate modeling. Hence, such
nets are localized. Figure 5.4 shows an example, where net NI in and has fanouts
in clusters S7 and S2 only. Collapse_Single Fanout_Nets localizes NI by merging
clusters S7 and S2.

If small clusters remain at the end of the first while loop, they are blindly merged in
the second loop by Blind Merge. Clusters are sorted by increasing size, and adjacent
pairs are merged. This case occurs commonly for a primary input of the design that
gets buffered and goes to many loosely connected gates in several different clusters.
Blind Merge merges such a buffer with the smallest cluster in its fanout. This is
shown in the example of Figure 5.5. Here a primary input of the design gets buffered
by gate U1, which drives several fanouts in clusters S§1, S2 and S3. Since there is no
one obvious cluster that UI belongs to, Blind _Merge merges it with S2, the smallest

cluster in its fanout.

60 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

S1

Primary [}\ —
Input | P S3

oy

Figure 5.5: A Case For Blind Merge Of Clusters

The minimum cluster size should be large enough to reduce overheads in synthesis
and layout optimizations space. On the other hand, the maximum cluster size should
be small enough to allow statistical modeling of local wire-loads without having an

impact on timing convergence. The next section derives this maximum cluster size.

5.2.3 Maximum Cluster Size

If the worst case wire-load of a net in a cluster does not over-load the average library
gate, even the nets in the tail of the wire-load distribution are sufficiently driven by
the average gate. In such clusters, statistical wire-load modeling can be applied to
local nets without resulting in significant discrepancies in critical-path timing between
synthesis and layout. To estimate the size of a cluster that has reasonable worst-case
wire-loads, we find the longest wire an average gate can drive and then determine
the number of gates that fit in a rectangle with a half-perimeter equal to that wire
length.

To determine the maximum output capacitance an average library gate can drive
before it gets too slow, we use the process-independent model of gate delay described
by Sutherland et al. [70], [82]. In this model, the delay of a single-stage gate consists
of parasitic delay and effort delay. The parasitic delay is due to the internal parasitic
capacitance of a gate, and is independent of the its drive-strength as well as output

loading. For gates with significant output loading, the effort delay dominates its

5.2. PARTITIONING SCHEME 61

total delay. The effort delay (or gate effort) of an average library gate is given by
Equation 5.4. C,,; is the output capacitance (wire-load + pin-load), Cj, is the input
capacitance, and g is the the logical effort of the gate. The logical effort of a gate
represents how much its driving capability is weakened by its transistor topology, as
compared to the ideal driving capability of an inverter. The characteristics of an
average library gate are derived by profiling the usage of different types of gates in
various designs, and using the profile to calculate the weighted mean of the C;, and

g of all gates.

9 % Cout

EffortDelay = c

(5.4)

Thus, the maximum output capacitance that can be driven by an average gate
is shown in Equation 5.5. Here, MaxzEffort represents the budget on the maximum
effort delay of a gate which is not too overloaded for its size. From [70], independent
of the technology, the delay through a gate is minimum when its effort delay is 4, but

remains near-minimum for effort delays from 2 to 8.

MazEffort x Cy,
g

Budget.Cy < (5.5)

For an average fanout of FanOut per net, the maximum C,,; seen by a gate in
a sub-block with a half-perimeter P is given in Equation 5.6. The first term is the
maximum wire capacitance given by the product of maximum wire-length and wire-
capacitance per micron of length in the given technology. Here, the maximum length
of a wire in a cluster is approximated as the half-perimeter P of the cluster.! The
second term is the total input capacitance of the loading gates, which is the average
fanout per net (FanOut) multiplied by the input capacitance of an average library

gate.

Maz.Cour < (P X Cyirejum) + (FanOut x C;y,) (5.6)

I This approximation is accurate for nets with up to 3 fanouts, and can be up to 100% inaccurate
for 4 and 5 fanouts [51]. However, this estimate can be used here without incurring significant errors;
since local wires, created by the partitioning scheme of Section 5.2, have a low average fanout of 2.8.

62 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

Thus, to ensure that an average library gate is not too slow when driving the worst-
case local wire-load in a cluster, we need to ensure that the Max.C,,; of Equation
5.6 is lower than the Budget.C,,; of Equation 5.5 in that cluster. This gives a budget

for the maximum half-perimeter of a cluster, as shown in Equation 5.7.

(MazEffort — (FanOut X g)) x Cyy,
g X sz're/um

P< (5.7)

For placement quality, the aspect ratio of a cluster is limited to an upper limit S,
which translates the half-perimeter of the cluster to its area A as shown in Equation
5.8. For a desired cluster utilization U, and the area of an average library gate Agqe,
the maximum number of gates in a cluster is derived from its area using Equation
5.9.

P?xS
Maz_Num Gates < iqu v (5.9)
gate

Using Equation 5.8 and 5.9 in Equation 5.7, the maximum number of gates in a

cluster is given by Equation 5.10.

((MazEffort — (FanOut x g)) x Ci)?> x S x U

Max_Num_Gates <
N (g X Cwire/um X (S + 1))2 X Agate

(5.10)

For the 0.5um standard-cell library used in this work, Cyire/um was 0.2fF /um.
For an average library gate, the C;, was 0.035pF', g was 1.34, and the gate area was
281.6um?. The average fanout of local nets within clusters was 1.3. Using these
values in Equation 5.10 with conservative budgets on MazEffort, S and U of 8, 8 and
0.65 respectively, the maximum cluster size is 152 gates. With lenient budgets of
14, 4 and 0.75 the maximum size is 1019 gates. To incorporate this budget into the
Nebula design flow proposed in Chapter 4, we use a realistic aspect ratio of 4 that
represents typical geometries of layout blocks. Also, we use conservative budgets of 8

and 0.65 for the MazEffort and the area-utilization. These budgets give a cluster-size

5.2. PARTITIONING SCHEME 63

budget of 246 gates.

(a) Scaling of Wire Capacitance/length

1.200

1.000 -

0.800 -+

0.600 -+

Normalized Results

0.400 - A

0.200 4 —®— Conservative e
—e— Optimistic
A Linear Scaling (s)

0.000 T T T T
0.25 0.18 0.13 0.1 0.07 0.05
Technology (micron)

(b) Scaling of Maximum Gates Per Cluster

—m— Conservative
—®— Optimistic
--A--Inverse Scaling (1/s)

Normalized Results
w
!

0.25 0.18 0.13 0.1 0.07 0.05
Technology (micron)

Figure 5.6: Scaling Predictions for Cyre/um, and Max_Num_Gates

With technology scaling, Cj, scales down linearly, Ay, scales down with the
square of technology and Cyire/um Scales down very slowly [83]. Since the scaling
of G, and Ayq. cancel each other in Equation 5.10, the budget for the maximum
number of gates per cluster increases very slowly, inversely proportional to the square
of Cyire/um scaling. Figure 5.6(a) shows both aggressive and conservative scaling
predictions for Cyre/um Scaling which uses corresponding scaling assumptions from

the SIA road map [84], [85]. Compared to the linear scaling curve, shown in the same

64 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

graph; both the conservative and aggressive scaling assumptions give very slow scaling
of Cire/um- Figure 5.6(b) shows the corresponding scaling for the maximum number
of gates per cluster budget, and also shows the inverse scaling curve for comparison.
It is evident here that the maximum number of gates per cluster increases much more
slowly than the technology, hence the cluster-size budget can be assumed to remain
constant with technology scaling. Hence, once the budget for the maximum number
of gates per cluster is derived for a given library using some representative designs for

data profiling, the same budget can be used for scaled down versions of that library.

5.3 Experimental Results

Table 5.1: Benchmark Designs

| Design | # Gates |
Conv. 2164
I0 Proto. 2258
Conv. 7537

IOPI | Proto. 7205
Conv. 12775
Magic | Proto. 12043

Experiments were done on three control-logic blocks of the MAGIC chip designed
by the FLASH multiprocessor team [13]. Table 5.1 shows the number of library
cell-instances of the three designs (also referred to as number of gates here), when
implemented in the conventional methodology (Conv.) and and the prototype system
(Proto.). We collected experimental results to first derive the best partition size in
the prototype system. Using this partition size, we did more experiments to compare
design implementations generated by the prototype system with those generated by

the conventional design flow.

5.3. EXPERIMENTAL RESULTS 65

5.3.1 Maximum Cluster Size for the Prototype System

The maximum number of gates per cluster given by Equation 5.10 was derived to
make statistical wire-load modeling reasonably accurate on local wires, making local
wire-loads more predictable during synthesis. This budget would work well in a
design flow that treats partitions as soft boundaries in both synthesis and layout
algorithms. However, the prototype design system uses conventional tools that treat
partition boundaries as hard logical and physical boundaries during synthesis and
layout, leading to reduced optimization space in both tools. The budget derived in
Section 5.2.3 does not account for this overhead.

To come up with a meaningful budget for the prototype system, we did experi-
ments on the three benchmark designs. We targeted these experiments to study the
trade-offs between wire-load predictability given by small cluster sizes and optimiza-
tion space gained by large cluster sizes. Using the prototype system, each design was
implemented with different cluster sizes between the conservative budget of 152 and
lenient budget of 1019 gates derived in Section 5.2.3. The results of these experiments
for the IO design, containing around 2000 gates, are shown in Figures 5.7 through 5.9.
The x-axis in these graphs represents the maximum cluster size in each experiment
sorted in decreasing order. The largest size of 2K represents the conventional method-
ology with 1 cluster, and the remaining sizes correspond to further partitioning of the
flat design with 2, 3, 5, 10 and 19 clusters respectively.

Since an ideal wire-load model would estimate synthesis wire-loads to be equal to
the post-placement measurements, we did a linear regression analysis of the estimated
and the measured wire-loads. Thus, accuracy of a wire-load model is represented by
the correlation coefficient, which is the R? coefficient given by a least-square regression
analysis [86]. Figure 5.7 shows this correlation coefficient for the different cluster-size
budgets. Small cluster sizes create more partitions, making a higher fraction of nets
as more accurately modeled global nets. Smaller clusters also give higher accuracy
in local nets and local segments of global nets due to small layout geometries. Hence
smaller cluster sizes give a better correlation between synthesis and post-placement
wire-loads.

Figure 5.8 shows the layout overheads of partitioning. The y-axis represents values

66 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

0.9 A

0.8 1

0.7 A

Correlation Coefficient, R?

0.6 A

05 T T T T T
2K 1K 720 460 265 152
Cluster Size Budget

Figure 5.7: Wire-load Correlation Vs. Maximum Cluster-Size

of various results normalized with respect to those of the flat methodology, represented
by the first data point of the corresponding curve. The first curve from the bottom
gives average utilization of cluster area, which decreases with smaller cluster sizes
because the placement tool has smaller optimization space. The total layout area
shown by the next curve increases with reducing cluster sizes due to two factors: the
reduced cluster-area utilization shown by the first curve, and the fragmentation of
layout area. Fragmentation of layout is mostly an artifact of the layout tool we used.
The LSI tool suit required all odd cluster columns to align with odd columns of the
top-level layout, all columns to be of equal width, and the partitions to be rectangular
regions for automatic floorplanning. The requirement for column alignments wasted
one column of area in clusters with odd number of columns. After re-synthesis the
sizes of clusters changed but the floorplan could not re-align cluster boundaries, due to
the requirement of having strictly rectangular regions. This resulted in fragmentation
of the layout area, giving poorer overall utilization. The third curve in Figure 5.8
gives total post-placement wire-load capacitance in the design. Smaller clusters give
higher total wire-load capacitance due to the area overhead of partitioning, and due
to a higher number of global nets created by more partitions.

Figure 5.9 shows the worst-case timing violation for a 9ns clock-cycle target. The

two curves show the timing violations estimated by resynthesis, and those measured

5.3. EXPERIMENTAL RESULTS 67

25
—M— ClusterArea Utilization
—@— Layout Area

2 1 --A- Toal Wire-load A

1.5 A

0.5

Normalized Results wrt Flat Design

2K 1K 720 460 265 152
Cluster Size Budget

Figure 5.8: Layout Overheads Vs. Maximum Cluster-Size

after detailed placement. The post-layout timing violation determines the speed of
the design. Thus, the speed of the design depends on the initial solution given by

post-synthesis timing estimate, and the gap between synthesis and layout timing.

The gap between synthesis and layout timing is determined by the accuracy of
wire-load approximations, layout area overheads, and characteristics of individual
floorplans. Both the largest and the smallest cluster sizes have a large timing gap.
With 2K gates per cluster, this gap is due to inaccurate wire-load modeling during
synthesis. With 152 gates per cluster, the layout overheads discussed above result
in the large gap between post-synthesis and post-layout timing. Cluster sizes of 460
and 265 combine a large optimization space for synthesis and placement with a small
cluster size for high correlation between synthesis and layout; resulting in the best
post-layout timing. Since the cluster size of 460 also has lower area and total wire-
capacitance from Figure 5.8, it is the best size to use for the technology and tools

used in this work.

The next section gives experimental results that compare the conventional method-
ology of flat synthesis and layout with the prototype system using the best cluster

size of 500 gates derived here.

68 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

12
-0- Synthesis & Layout

=
I

o
o

Worst Negative Slack (ns)
o o
IN o

}g
\

2k 1k 720 460 265 152

Cluster Size Budget
Figure 5.9: Timing Violations Vs. Maximum Cluster-Size

5.3.2 Comparison of the Gap Between Synthesis and Layout

We designed each of the three bench mark design twice: once using the prototype sys-
tem and once using the conventional design flow, and compared the two implementa-
tions. The Verilog description of each design was synthesized in a 0.5um standard-cell
library from LST logic (Icb500k). Custom statistical wire-load models were used for
logic synthesis in the conventional methodology, as well as for the first flat synthesis
step of the prototype system. Designs were partitioned in the prototype design flow,
using the maximum cluster-size of 500 derived in Section 5.3.1. Table 5.2 shows the

number of partitions created in each design.

Table 5.2: Number of Partitions Created in the Benchmark Designs

‘ Design |# Gates ‘# Partitions‘
Conv. 2164 1
I0 Proto. 2258 5
Conv. 7537 1
IOPI | Proto. 7205 16
Conv. 12775 1
Magic | Proto. 12043 27

5.3. EXPERIMENTAL RESULTS 69

For the resynthesis step of the prototype system, we enhanced the Synopsys Design
Compiler to use the hybrid wire-load model described in Section 5.1. Floorplanning
and placement were done using LSI Design’s CMDE tools. The SILO tool suit of
LSI Design was used for its ability to flatten cluster macros at the top hierarchical
level while respecting the floorplan created earlier. The ability to flatten individual
clusters at the top-level enables the prototype system to extract wire-loads of global
nets in a design after initial or detailed cell-placement occurs within each cluster. We
used the Vex netlist database system [78] to implement the remaining steps of the
prototype system; such as partitioning, creation of segmented back-annotation for
the hybrid wire-load model, and pin-assignment in the floorplan.

The following discussion compares various parameters between the two design
flows, to illustrate the overheads and advantages of the prototype system. Results
for the prototype system were taken from netlists generated at the end of resynthesis
and detailed placement steps in Figure 4.3. Results for the conventional flow were

taken after the first flat synthesis and detailed placement steps in Figure 2.5.

Experimental Results: Overheads in the Prototype Design Flow

0.8 7
5 078 | < 6
= 0.76 =
N 074 - . E 51
= 072 - H Conventional \c_:s/
ﬁ '07 | Methodology 4
© .
5 068 - o etodoogy 5 2
5 066 - ¥ 3 5
% 064 - 2
=) i 4 14
O 0.62

0.6 - 0

10 10PI Magic 10 I0PI Magic
Design Design

Figure 5.10: Layout Overhead in the Prototype System

Figure 5.10 compares the cluster-area utilization in the prototype system with the
total area utilization of the conventional methodology, and also compares the total

layout areas of the two methodologies. The three benchmark designs are arranged by

70 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

increasing size on the x-axis. The area utilization of clusters is lower in the prototype
system due to reduced optimization space for placement algorithms, and remains the
same for all three designs because the same maximum cluster size is used for all three.
The area utilization in the conventional methodology improves for larger designs due

to larger optimization space for placement algorithms, and it tops off at 0.79.
Design IOPI: 7K Gates

1.2
-®- Synthesis - Layout

1 -
0.8 1
0.6 1

0.4 4

Worst Negative Slack (ns)

0.2

0 & T T T T T
Flat 5k 4k 2k 1k 720 500

Cluster Size Budget

Design Magic: 13K Gates

1.2
+@®- Synthesis & Layout

0.8

0.6 -

0.4

Worst Negative Slack (ns)

0.2

Flat 5k 4k 2k 1k 720 500
Cluster Size Budget

Figure 5.11: Synthesis Overhead in the Prototype System

Reduced area utilization within clusters, combined with the fragmentation of lay-
out area, results in much larger total layout area in the prototype system. The
worse-case utilization overhead of the prototype system is 15%, whereas the maxi-
mum area overhead is 36%. The maximum overhead is in the largest design, since it
has the maximum number of clusters that result in the maximum fragmentation of

the floorplan. This area overhead also leads to longer wires, which affects the timing

5.3. EXPERIMENTAL RESULTS 71

of the design.

Figure 5.11 shows the effect of synthesis optimization space on timing in the
prototype system. The two curves show the same data as Figure 5.9, for designs
IOPI and MAGIC. The x-axis shows cluster sizes ranging from flat, all the way to the
optimal cluster size of around 500 gates. 500 gates per cluster gives the best post-
layout timing due the narrowest gap between synthesis and layout timing. However,
a much larger cluster size of 5K also gives the best post-layout timing even though
the gap between synthesis and layout is large. This is due to the fact that the post-
synthesis timing for 5K gates per cluster is much better than that for 500 gates. It is
evident from Figure 5.11 that as cluster sizes decrease, resynthesis does a worse job of
optimizing the design. This is due to the fact that the Synopsys Design Compiler does
limited optimizations across partition boundaries in a hierarchical netlist, consisting
of inversion propagation and removal of redundant nets. Hence, the optimization

space available to synthesis decreases with smaller clusters, resulting in worse timing.

Experimental Results: Advantages of the Prototype Flow

M Conventional Methodology

@ Prototype Methodology

Correlation Coefficient, R 2

0PI MAGIC
Design

Figure 5.12: Comparison of Wire-load Correlation

Figure 5.12 compares the correlation coefficient (R? coefficient) of estimating the
actual wire-loads measured after layout with synthesis wire-load models. The hybrid
wire-load model used for resynthesis in the prototype system is significantly more

accurate than the custom statistical model used in the conventional methodology,

72 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

1
0.9 Synthesis Estimate

0.8 | ¢ Post-Layout Measurement

0.7 A
0.6 A
0.5 A
0.4
0.3 A
0.2
0.1

0=

1 1001 2001 3001 4001 5001 6001
Sorted Nets

e

Capacitance (pF)

Figure 5.13: Accuracy of Wire-load Models in the Prototype System

resulting in higher correlation coefficients in all three designs. In our experiments we
also found that global wire-loads had much higher correlation coefficients than local
wire-loads in the prototype system. This is expected from the way global and local
wires are estimated by the hybrid wire-load model. As we go to larger designs in the
prototype system, the higher correlation of global wires dominates the overall wire-
load correlation. Hence, the correlation coefficient marginally improves for larger
designs in the prototype system. We expect this trend to saturate pretty quickly
for even larger designs. The correlation in the conventional methodology gets worse
for larger designs since wire-loads vary in bigger geometries, making the tail of the

wire-load distribution of Figure 2.4 wider and taller for each fanout.

This difference in wire-load modeling is illustrated by Figure 5.13, which compares
synthesis estimates and post-layout measurements of wire-loads using the prototype
system on the same design as the one used in Figure 2.4. The x-axis gives all nets
sorted by increasing fanout and post-layout wire-load, and the y-axis gives wire-load
capacitance values in pF. Comparing Figures 2.4 and 5.13, it is evident that the

limitation of statistical wire-load modeling is removed in the prototype system.

Figure 5.14 compares synthesis estimates and post-placement measurements of

the longest delays in the two methodologies. There is a large disparity between post-

5.3. EXPERIMENTAL RESULTS 73

10
m B Conventional Layout
< 95 -
= B New Layout
2 9- |
- O New Synthesis
o
o 8.5 - O Conventional
= Synthesis

10 IOPI Magic

Figure 5.14: Comparison of Worst-case Delays

synthesis and post-placement timings seen in the conventional methodology, which
leads to iterations between synthesis and layout discussed in Section 2.2. Figure 5.12
showed that statistical wire-load models of the conventional design flow are signifi-
cantly less accurate than the prototype flow, especially for larger designs. However,
the timing gap between synthesis and layout is only marginally worse in the con-
ventional methodology. This is due to the fact that the advantage of predictable
wire-loads in the prototype flow are diminished by the overheads of partitioning.
Also, for the 0.5um technology used here, even the largest benchmark design does
not have wire delays that are comparable to gate delays. Hence, errors in wire-load
modeling are only seen as increased gate delays after layout. With larger designs or
smaller technologies, this gap between synthesis and layout timing would be higher

in the conventional methodology.

Accurate wire-load modeling in the prototype system results in realistic timing
prediction by synthesis, which is very close to the timing measured after placement.
Thus, in spite of the overheads of using partitioning with conventional tools, the
prototype system successfully reduces the gap between synthesis and layout timing
by accurately predicting wires during synthesis. This results in fewer surprise critical
paths after placement, reducing the need for iterations between synthesis and layout

before timing constraints are met.

74 CHAPTER 5. PARTITIONING FOR BETTER WIRE-LOAD MODELS

5.4 Summary

This chapter presented a hybrid wire-load model for accurately modeling wires using
part back-annotation and part statistical models that are derived from partial layout
of a partitioned netlist. Since this model accurately estimates inter-cluster wires,
the corresponding partitioning scheme partitions a netlist along those nets that are
unpredictable due to their netlist structure. The maximum size of each cluster is
calculated to ensure that an average library gate can drive the longest local wire
in the cluster. This enables statistical modeling of local wires without having a
significant impact on the timing of the netlist due to errors in wire-load estimation.
Thus, this partition scheme gives the optimal trade-off between accuracy of wire-load
models and ability to incrementally optimize the netlist in low-level design iterations
proposed by the Nebula design flow.

Results show that the prototype system gives high predictability in wire-lengths
and timing during synthesis. Using partitioning with conventional synthesis and lay-
out tools results in overheads in the quality of synthesis optimizations and in the
layout area. This limits the advantage of the predictability. Overcoming the over-
heads due to reduced optimization space in cell-placement and logic synthesis calls
for algorithms that optimize netlists across partition boundaries. Also, fragmentation
of floorplanned area calls for a floorplanner that creates soft cluster boundaries with
arbitrary shapes, since such shapes can be re-aligned without loosing any area. Some
of the requirements for synthesis and layout tools that treat partitions as soft bound-
aries were discussed as part of the Nebula flow in Chapter 3. Chapter 7 discusses
ideas for future work in creating such tools.

As a first step towards creating soft partition boundaries in the low-level iterations
of the Nebula flow, a heuristic needs to be developed for moving logic across partitions
based on the latest timing information are needed. The next chapter presents such a
heuristic for timing-driven repartitioning, implemented within the framework of the

prototype system.

Chapter 6
Timing-driven Repartitioning

Netlist partitioning is used at several stages of the chip-design process. Netlists are
functionally partitioned early in the design cycle to distribute design responsibility
across teams of designers and to do early planning of chip area and characterization
of global wire-lengths. Functional blocks are further partitioned during floorplanning
to generate sub-modules with sizes managed by synthesis and layout tools. This par-
titioning is usually done by a traditional partitioning algorithm such as mincut [76].
Netlist-structure based partitioning is used within synthesizable blocks; to reduce the
complexity of placement [80], [7] and to manage the complexity of graph-matching
during technology mapping [51].

A partitioning scheme applied at an early stage in any design flow relies on in-
complete or inaccurate timing information. This pushes the prediction problem from
logic synthesis to partitioning, and creates discrepancies in timing viewed by the ini-
tial partitioning and the final layout. The partitioning criteria may cluster gates in
such a way that some gates end up in non-optimal locations; these gates can not
be optimized by placement or synthesis due to the physical boundaries created by
partitioning. If a critical path goes through such a gate, there is potential to improve
its timing by moving the gate to another partition which contains other gates on the
path.

This chapter presents a heuristic for timing-driven repartitioning, to improve crit-

ical timing paths that are created due to early partitioning choices. Based on timing

75

76 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

analysis done after detailed placement, this heuristic identifies logic that adds the
most global wire-length to the most critical paths. Next, the heuristic looks for a
partition where this logic should be relocated in order to improve the timing of all
critical paths going through it. If the heuristic finds such a partition, the logic is
relocated to that partition. Instead of considering only the worst critical path, all
paths worse than a desired maximum timing violation (also referred to as timing
slack) are considered in this technique. This global view of timing paths gives incre-
mental timing improvements, not only reducing the longest delay in the design, but
also reducing the number and total delay of all critical paths considered.

Timing is improved by reducing global wire-loads along critical paths. Since crit-
ical gates are relocated together, such repartitioning also gives the opportunity for
later synthesis transforms to synthesize larger clusters of critical logic together within
one partition. Hence, such repartitioning is an important part of the low-level syn-
thesis and layout iterations that are part of the Nebula flow proposed in Chapter
4.

Section 6.1 describes the heuristic for choosing gate relocations and motivates
the extent of timing-analysis required to make the heuristic effective in improving
post-layout timing. Section 6.2 presents the implementation of the heuristic as an
automated tool for timing-driven repartitioning. This heuristic was implemented in
the prototype CAD system of Figure 4.3 to improve timing after the detailed cell-
placement step. Experimental results in Section 6.3 show the effectiveness of the
heuristic as a layout-driven synthesis technique for timing improvements at a late

stage in the design cycle.

6.1 Heuristic for Gate Relocation

Beginning with the placement and timing information of a partitioned netlist, the
heuristic identifies gates that contribute most to the overall timing quality of the
design due to the locations of their parent partitions in the netlist floorplan. Such
gates are relocated to another partition which reduces the global wire-length along

critical timing paths. Those gates that give the most timing improvement along the

6.1. HEURISTIC FOR GATE RELOCATION 7

most critical paths, while not hurting other critical paths, are chosen for relocation.
This is quantified by a heuristic called the Potential for Timing Improvement (PTI)

of relocating a gate.

The gate with the maximum PTT is chosen for relocation along with the cluster
of gates, belonging to the same partition and sharing critical paths with the chosen
gate. This cluster is relocated to another partition that contributes the most timing
improvement to the PTI of the chosen gate. Small clusters are preferred over large
ones since they would cause smaller perturbation to the original layout. The chosen
cluster is moved to another partition containing gates that appear just before or just
after the chosen cluster along many critical paths. Therefore, the hop to the cluster’s
current partition is removed from those paths. To minimize adverse effects on other
paths, higher priority is given to relocating clusters that are loosely connected to their
parent partitions, but tightly connected to the new partitions. Also, clusters with
fewer desired new locations are preferred over those with many conflicting relocation

requirements.

Since this heuristic falls into the class of layout-driven synthesis techniques dis-
cussed in Section 3.2, two key issues were addressed while developing the heuristic:
the accuracy of timing analysis, and convergence to the final design implementation.
Accurate timing analysis is achieved by using the LSI layout tool’s net-length extractor
followed by the delay calculator to accurately estimate the timing from a placement,
rather than using lumped RC models for wires or simplistic models for gate delays.
To avoid creating new timing paths while fixing the most critical path, all paths with
timing slacks, higher than a desired maximum, are treated as critical paths. Thus, all
timing-paths within a window of timing slack are enumerated in order to choose gates
for relocation. To assure convergence, each relocation is followed by a layout-merge
and timing analysis. If the relocation doesn’t improve timing after being merged into

the existing layout, it is rejected.

The following subsection motivates the need for path enumeration with the use
of an example netlist and critical-path information from benchmark designs of the
MAGIC chip. Next, Section 6.1.2 derives the formula for PTL

78 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

6.1.1 Motivation for Path Enumeration

Fixing only the worst or the top few critical paths at a time has the inherent limitation
that new critical paths may arise due to a fix. This is especially true if the timing of
several paths is very close and the paths share many gates [45]. Table 6.1 and Figure
6.1 illustrate this for the longest timing paths, seen after detailed placement in the

three benchmark designs used for the experiments in Chapter 5.

Paths Sorted by Timing Violation

s
Y - o—
Y GRS Racsnnd
A e R d
M“ —. Wm
- wm
’(;’\ -0.1 AA.- mm
c i -
~— - o Rad
o AA- M“
2 :_ ”:u»m
S 02 4= -~
> . -
(@] ’““
£ -
£ 035 s 10
*
:’ * IOPI
+ Magic
'04 T T T T
0 50 100 150 200

Figure 6.1: Paths Leading to the Worst-Case Endpoint

Table 6.1: Paths Leading to the Worst-Case Endpoint

‘ Design ‘ Paths ‘ Sources ‘ Instances ‘ Paths/Gate ‘

10 39 5 68 26
I0PI 81 8 113 36
Magic 200 8 104 101

Figure 6.1 shows the timing violation of paths leading to the worst-case endpoint
in each design on the y-axis, and sorted by decreasing negative slack on the x-axis.
There are many paths with very similar timing slacks leading to the same endpoint.
Table 6.1 shows detailed statistics of these paths. The four columns represent the

number of critical paths that are in violation of a 9ns clock-cycle target, the number

6.1. HEURISTIC FOR GATE RELOCATION 79

of different timing sources and total number of distinct library cell-instances (gates)
on these paths, and the average number of paths going through each of those gates.
We can see that critical paths have a lot of shared logic, since many paths start from
a common timing source and each logic gate belongs to several different critical paths.
Hence, relocating gates to fix the worst path, without considering other paths closely

related in timing and logic, is likely to result in worse timing on the other paths.

S1 0 S2 S3
I_n ua
U
1
U5
1 Path Slack
us P1:U2,459,106| -lns
S6 S4 P2:U2,4,5,9,10,7 -1ns
5 P3:U3,59,10,6 [-0.95ns
U P4:U3,59,10,7 [-0.95ns
7 V10) o5 P5:U1,8,106 | -0.9ns
P6: U1,8,10,7 -0.9ns

Figure 6.2: Example Netlist for Timing-driven Repartitioning

Figure 6.2 shows an example floorplan of a netlist containing partitions S1-56,
six critical paths P1-P6, and their timing slacks. Only those netlist connections that
belong to one of these critical paths are shown in the figure. Gate U10 belongs to all
six critical paths and contributes the most to the global lengths of these paths due
to its location in the floorplan. If the cluster U9,U10 is relocated to partitions S3 or
S4, the global wire-length along paths P1, P3 and P5 would be significantly reduced,
improving their timing. However, the global wire-length along P2, P4 and P6 would
increase, making their timing worse. Similarly, moving the cluster U8,U10 to the left
side of the floorplan would improve the timing of P2, P4 and P#6; however, this would
make the other three paths worse. Since the timing violations of all six paths are very
close, the worse-case violation in the netlist could end up being worse than 1ns after
either of these relocations. Hence, there is no right place to relocate gate U10.

On the other hand, gate U5 belongs to four of the six critical paths and contributes
as much global wire-length as U710 to those paths. Relocating the cluster U4, U5 to S2
or S5 would reduce the global wire-length along P1,P2,P3 and P/, while not affecting
paths P5 or Pé.

80 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

The heuristic presented here considers this interplay of critical paths; all paths
with negative timing slacks worse than a maximum desirable slack are treated as
critical paths, and all critical paths are enumerated in order to choose gates for

relocation.

6.1.2 Potential For Timing Improvement

PTI is the metric for estimating the Potential for Timing Improvement of candidate
logic clusters and their new locations. We derive a formula for PTT here that considers
various timing, layout and netlist parameters, and accurately estimates the relative
potential for timing improvement of various relocation choices.

A timing path can be viewed as a series of gate clusters. Each cluster belongs to a
single partition called its parent partition. Clusters along a timing path are separated
by global wires. Along a path, each cluster has a source partition driving the global
net input of the first gate of the cluster, and a destination partition containing logic
that is driven by the global net output of the last gate of the cluster. For example,
path P71 in Figure 6.2 has four logic clusters U2, U4,U5, U9,U10, U6 separated by
three global nets. Along this timing path, S8 is the parent partition of logic cluster
U4,Ub, whereas S1 and S5 are its source and destination partitions.

Let PTI(P,C) denote the potential for timing improvement along timing path P,
by moving cluster C' from its parent partition S¢ to its source or destination partition.
This PTI can be estimated by the timing slack of P multiplied by the ratio of the
total global length along P over the global length, if the hop to S¢ was removed from
P. Here the global length of a path is the total Manhattan distance between centers
of consecutive partitions and primary IO pin locations along the path. This is shown

in Equation 6.1.

GlobalLen(P)

PTI(P,C) = P
(P, C) = Slack(P) x G enP — 50)

(6.1)

However, from Table 6.1, every gate in a cluster may belong to several other
clusters as part of other critical paths. Hence, the PTI of relocating a gate ¢ is the
sum of PTIs of each cluster it belongs to along each critical path through g. This is

6.1. HEURISTIC FOR GATE RELOCATION 81

shown in Equation 6.2, where C; is the cluster of local logic of g along path P;, for N
paths going through g.
N
PTI(g) = Y. PTI(P,C;) (6.2)
i=1
If there are many gates in cluster C, this move is likely to perturb many other
critical paths. To encourage moving small clusters over large ones, the PTI(P,C) is

divided by the size of the cluster (in number of gates) in Equation 6.3.

GlobalLen(P) y 1
GlobalLen(P — S¢) Size(C)

PTI(P,C) = Slack(P) x (6.3)

If a gate has a lot of direct fanin or fanout (fanlO) terminals in its parent parti-
tion as opposed to the source or destination partitions, it should be discouraged from
moving since it is likely to affect many other paths in the parent partition. Similarly,
if the gate has a lot of fanlO in the source or destination partition it should be en-
couraged to relocate. However, if different critical paths through a gate have different
source and destination partitions, there would be many conflicting locations where
the gate could be relocated. As illustrated by the example of Figure 6.2, moving
such a gate could result in worse timing if the timing slacks of paths with different
source and destination partitions are similar. These criteria are taken into account
in the PTI(g) in Equation 6.4. Here IO(g,S) is the number of fanlO terminals of
g in partition S, Sp is the parent partition of g, and Ss, and Sp, are the source
and destination partitions of g along path P;. NSgp(g) is the number of distinct
combinations of source and destination partitions where g can be relocated along all

critical paths going through it.

PTI(g)

X ivj(PTI(PZ-,CZ-) « 1009, 55)) + IO(g’SDi)) (6.4)

- NSsplg) &= I0(g, Sp)

Equation 6.4 is used to sort all gates on all critical paths of a design by their PTI.
The gate gr with the maximum P7TT is selected for relocation. For each partition
Sk € {Sp,,Ss,Vi = 1,2...N} to which a gate gr can possibly be relocated, the

PT1(gr, Sk) is computed from Equation 6.5. This equation uses the same summation

82 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

formula as Equation 6.4, however the summation is over only those K critical paths

along which Sk is either the source or destination partition of gg.

K 10(gr, Ss.) + I0(gg, Sp.
PTI(gR,SK):Z<PTI(PZ-,Ci)>< (gr Ig) (gr Dl)) (6.5)
=1 (9r, Sp)

The partition Sg with the maximum PTI(gg, Sg) is chosen as the new location for
gate gg. All gates that fall into the parent cluster Sp of gg, and belong to any of the
K critical paths considered in computing PTI(gg, Sr), are combined in a relocation
cluster C'g along with gr. Cpg is relocated to Sg to ensure that the hop to Sg is
removed from all critical paths shared by gg and Sg, having Sr as the source or
destination partition of gg.

Experiments with the different parameters in this heuristic show that the PTI(g)
from Equation 6.4 gives the best overall timing improvements, which consists of: the
worst-case timing slack, the total number of critical paths above a desired maximum
timing slack, and the total timing slack of those paths. The basic formula of Equation
6.2 gives the same improvement in the total number of critical paths as the Equation
6.4 but inferior worst-case timing and hence inferior total timing slack of all critical
paths. Both worst-case and total timing slacks improve when the cluster size is
added to PTI(P,C) in Equation 6.3, and improve even further when the conflicting
relocation requirements and the relocating gate’s fanout are taken into account by
Equation 6.4. Thus, considering only the timing slack of paths and global length
added due to a partition prunes out as many critical paths as the final equation.
However, adding the remaining netlist-structure based parameters identifies better
relocations that give more timing improvements on those paths.

The next section describes our implementation of this heuristic as an automatic

tool for applying post-layout timing-driven repartitioning to a design.

6.2 Implementation

Figure 6.3 shows the flowchart of the timing-driven repartitioning tool, as it was

implemented in the prototype system. The tool begins by reading the floorplan

6.2. IMPLEMENTATION 83

Floorplan,
SDF Timin

Initial Timing
Analysis

Compute PTI
1

Pick Relocation

New SDF Timing

Incremental Timing
Analysis

Figure 6.3: Flowchart of Timing-Driven Repartitioning Tool

locations of partitions, timing constraints, and detailed timing of the design. Timing
information is generated from the detailed placement engine using LSI’s Net-length
estimator and Delay Calculator tools. This generates timing in the Standard Delay
Format (SDF), which gives the delay of every timing edge in the design including gate
delay, wire delay, flip-flop setup/hold, and clock-Q edges. The following subsections

discuss each step of the flowchart.

6.2.1 Initial Timing Analysis

A Vezx routine converts the SDF file into a directed acyclic timing graph of the netlist.
Gate pins and primary I/O pins of the netlist make up the vertices, and net connec-
tions and connections through gates make up the edges of the timing graph. Any

cycles in the graph are broken at flip-flops by not adding edges corresponding to

84 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

setup times. Instead, setup times are stored as arrival-time constraints on the vertex
representing the data input of the flip-flop. Thus, primary inputs of the design and
clock pins of flip-flops are timing sources in this graph; whereas primary outputs of
the design and data inputs of flip-flops are timing sinks. The rise and fall delay of
each edge and its monotonicity are annotated to avoid false paths in static timing

analysis due to illegal rise/fall transitions.

The timing graph is topologically ordered using the depth-first search algorithm
[47]. Furthermore, the graph is traversed twice in forward and reverse topological
order to annotate arrival times, required times, and worst-case slacks at vertices. The
complexity of topological sort is linear, O(NN + E) and of each traversal is also linear,
O(N) where N is the number of vertices and E is the number of edges in the graph.
Static path sensitization analysis techniques can be used to enhance this static timing
analysis, to ignore the timing of false paths and delay edges that are never exercised
during the actual operation of the netlist [87], [88]. All timing sources and vertices

with negative timing slacks worse than a desired maximum are treated as critical.

Critical paths are enumerated by doing a depth-first search for critical vertices
in the fanout of every critical timing source. The algorithm for enumeration stops
the depth-first search at timing sinks and non-critical vertices, and prunes out non-
critical partial and full paths. During path enumeration, the parameters necessary to
compute the PTI of Equation 6.4 are annotated on the timing paths, logic clusters,
and individual gates visited. For every critical path, its worst negative slack (WNS)
for rising and falling transitions are annotated as the slack of the endpoint of the
path. Also, the total global wire-length along the path is annotated. For every local
cluster of gates along a path, the number of members in the cluster and the global
wire-length along the path up to that cluster are annotated. For every gate, the
number of fanin/fanout connections in its source, destination, and parent partitions

are annotated.

6.2. IMPLEMENTATION 85

6.2.2 Computing PTI

This step computes the PTT of all critical gates using the parameters annotated by
Initial Timing Analysis on critical paths, critical gates and local clusters of critical
paths. For each critical gate, the annotations on each critical path going through
the gate and the annotations on the corresponding local cluster of the gate are used
to compute PTI(P,C) of Equation 6.3. Here, the global wire-length due to a local
cluster is calculated as the global wire-length up to the cluster in its source partition
subtracted from the global wire-length up to the cluster in its destination partition.
NSs p(g), the number of different source and destination partitions along all paths
going through the gate is calculated while looking up the annotations along each path
for the above calculation. Also, the PTI(g, S) of the source and destination partitions
of the gate along each path are calculated. PTIs calculated along individual paths
are added to calculate the total PTI(g) of a gate and the corresponding PTI(g,S) of

each source and destination partition, as shown in Equations 6.4 and 6.5 respectively.

6.2.3 Picking a Relocation

This step sorts all critical gates by their PTI(g) and also sorts all potential new
partitions each gate can be relocated to by their PT1(g,S), as discussed in Section
6.1.2. The gate gg with the maximum PTI(gg) is chosen for relocation to the par-
tition Sk with the maximum PTI(gg,Sg). Next, all local clusters of critical paths
going through gr that have Sp as as the source or destination partition of gp are
accumulated in one relocation cluster Cg. If Cg is larger than a desired maximum
size or contains gates that have already been relocated, the destination Sg is rejected
and the partition with the next highest PT1(gg, S) is chosen for relocation. If none
of the source or destination partitions of gr give an acceptable cluster for relocation,
the gate with the next highest PTI(g) is chosen for relocation. If none of the gates

give an acceptable relocation, the algorithm exits.

86 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

6.2.4 ECO Placement

The ECO placer of LSI Logic’s CMDE tools suit was used to update the existing
placement with the relocation. The ECO placer is constrained to place gates of the
relocation cluster C'g in a bounding box created by locations of Cg’s fanin and fanout
terminals in the new partition Sg. Existing gates within the bounding box are nudged
within a maximum limit to create space for the relocated gates. If this bounding box
is too small for the total gate area in Cf, it is expanded around the center of the

original bounding box until the gates can be placed by the ECO placer.

If the ECO placer can not place a relocated gate within the bounding box, it
places it in the best location it can find close to the gate’s fanout. This decision is
not timing-driven and does not always end up in the desired new partition. After
ECO placement, the CMDE net-length extractor, followed by the delay calculator, are

run to generate new timing in SDF format.

6.2.5 Incremental Timing Analysis

Using the new SDF file, incremental timing analysis accurately measures the impact
of the relocation. Arrival times are updated in the fanout of all edges that have
changed delays. Required times and path slacks are updated in the fanin of all
edges with changed delays. Timing sources that end up with positive slack after
incremental timing analysis are deleted from the list of critical timing sources. All
paths leaving new critical timing sources or critical timing sources with updated
slacks are re-enumerated. The Initial Timing Analysis step is expected to be slow
due to exponential complexity of doing path enumeration on the entire timing graph.
However, Incremental Timing Analysis only works on the incremental timing graph
of vertices affected by the last relocation. As will be seen in the experimental results,
the number of gates relocated at a time is usually very small; hence Incremental

Timing Analysis is expected to be much faster than Initial Timing Analysis.

6.3. EXPERIMENTAL RESULTS 87

6.2.6 Measuring Timing Improvement

Timing improvement is measured in terms of the worst negative slack (WNS) of the
most critical path and the total negative slack (7TNS) of all critical paths. The WNS
reflects the speed of the design. Whereas, the TNS reflects the number and amount
of timing violation of all timing paths, which need to be fixed before the design meets
its timing constraints. A relocation may end up with worse timing if the ECO placer
is unable to find a suitable layout merge without significantly perturbing the existing
layout, resulting in some gates being placed far from their original or desired new
locations.

If a relocation results in worse WNS or the same WNS but worse TNS, it is
rejected. The next best relocation is attempted by going down the list of sorted
PT1(g)s. If a relocation improves the timing, it is accepted and the tool loops back
to recompute new PTIs to account for changes made to the layout. The tool stops

when it has attempted to relocate all critical gates with non-zero PT1I.

6.3 Experimental Results

We experimented with the same three benchmarks designs, described in Section 5.3,
as the earlier experiments with the partitioning scheme. Timing-driven repartitioning
through gate relocation was applied to the final detailed placement generated by the
prototype system, as shown in Figure 4.3. Timing analysis and integration of the

technique as one automated tool were done using Vez.

6.3.1 Incremental Timing Improvements

Figures 6.4, 6.5, and 6.6 show the improvement in timing achieved by each accepted
cluster relocation in the three designs. The x-axis represents the total number of
gates relocated. The y-axis represents the number of critical paths, TNS, and WNS,
which are normalized with respect to their initial values measured after the detailed
placement. Even though the maximum cluster size was set to 25 gates, each relocation

moved a very small cluster in the range of 1 to 11 gates. The first few relocations gave

88

CHAPTER 6. TIMING-DRIVEN REPARTITIONING

Normalized Results

0 2 4 6 8
Numer of Gates Relocated

Figure 6.4: Timing Improvements Through Successive Relocations : 10

Normalized Results

0 10 20 30 40
Numer of Gates Relocated

Figure 6.5: Timing Improvements Through Successive Relocations : IOPI

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 \
0.1 &%“(%}*/%W‘%%W—x—x—x—

0 1 1 1
0 20 40 60 80
Numer of Gates Relocated

Normalized Results

Figure 6.6: Timing Improvements Through Successive Relocations : Magic

6.3. EXPERIMENTAL RESULTS 89

significant improvements in all three timing parameters. Later moves improved the
overall timing quality of the designs by reducing the number of critical paths and the
TNS; however, the WNS did not improve significantly. The last few moves reached a

point of diminishing returns.

6.3.2 Design Speed

Table 6.2: Timing Results After Relocation

%#Delay in Worst Violation
Design # Gates Global Nets (ns) %#Clock-Cycle
Total | Reloc | Init | Reloc | Init | Reloc | Init | Reloc
10 2164 8 24.2 | 16.3 | -0.31|-0.21 | 3.4 2.3
I0PI 7537 38 30.2 | 14.8 | -0.28 | -0.18 | 3.1 2
Magic | 12775 75 30.6 | 156.5 | -0.45 | -0.25 5 2.8

Table 6.2 compares the timing of the initial placement (Init), generated after
the detailed placement stage of the prototype system, with the timing of the final
placement (Reloc), generated after attempting to relocate all gates with non-zero
PTI The first column gives the total number of gates in each design and the total
number relocated, which is less than 1% of total gates in all three designs. The
second column shows the contribution of global nets to the total delay of all critical
paths, which goes down by around 50% after relocation. This delay contribution of
global nets is measured as the cumulative delays of global interconnect edges and of
gates driving global nets. However, the design speed, determined by the worst-case
timing violation shown in the last column in both nanoseconds and % of clock-cycle
time, improves only marginally. This is due to the fact that relocation can only fix
one of the several sources of timing slacks along critical paths i.e. the contribution of
global wire-length. When timing of critical paths is mostly due to the number of logic
stages, it can not be improved further by gate relocation. Logic restructuring would
be more suitable for improving the timing of such paths. Moreover, we found two

other reasons why the relocations failed to give further improvements in the worst-

90 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

case timing violation: several conflicting relocation requirements on critical gates,
and the limited scope of ECO placers to merge relocation clusters into the existing
layout. Ideas for addressing these limitations will be discussed as part of future work

in Section 6.4.

6.3.3 Overall Timing Quality

Paths that violate timing constraints at the end of post-layout timing fixes need to be
fixed through manual intervention. Thus, the quality of a placement can be judged
by the amount of manual intervention which is required due to the number and the
timing violation of its critical paths.

Table 6.3 shows the overall timing quality of the designs before and after relo-
cation. The timing quality is measured in terms of the number of critical paths in
violation of a 9ns clock-cycle time in the first column and the total negative slack
(TNS) of all critical paths in the second column. Even though relocation can not
reduce the worst critical slack beyond a small amount, it prunes out many of the
near-critical paths. The number of critical paths is reduced by an average of 73%.
Due to the combined effect of fewer critical paths and lower global interconnect delay
in critical paths, the TNS drops by 80% on average. The timing improvement is
more significant for the larger designs since those have more partitions, offering more

opportunities for relocation.

Table 6.3: Timing Quality After Relocation

Critical Paths | Total Violation (mns)
Init | Reloc | % Init | Reloc %
I0 76 32 58 -7.8 -2.6 65
I0PI 325 70 78 -26.2 -4.8 81
Magic | 1069 197 82 | -161.4 | -13.6 92

This is further illustrated in Figure 6.7 which compares the quality of placement
of design IOPI before and after relocation. The x-axis represents the timing violation

in ns, and the y-axis represents the number of paths with that violation. While some

6.3. EXPERIMENTAL RESULTS 91

50 T
Initial —+—
Relocated --»---

40

20 -

Number of Paths

/N
X,XX)(

XX
s e XX

-0.3 -0.2 -0.1 0
Timing Violation (ns)

Figure 6.7: Timing Quality: IOPI

long paths remain, the overall number and violation of critical paths is significantly
reduced.
The following experiments explore widening the scope of post-layout timing im-

provements gained here, by applying relocation along with driver-sizing.

6.3.4 Applying Relocation with Driver-Sizing

Since the scope for timing improvement of gate-relocation is limited to global wires,
its timing improvement hits a wall when the critical path is removed from global
wires and is determined by the logic of local clusters. However, if used with other
post-layout timing optimization techniques that can optimize the drive strength and
structure of logic in the local clusters, relocation can be very effective in making
designs more manageable for manual timing fixes. The strength of gate relocation
is that it does not added extra area, gates, or power due to more or larger gates
in the design as opposed the other post-layout optimization techniques. By pruning
out many critical paths from a design, relocation makes the job of other post-layout
techniques or designers doing manual path fixing easier. To study the validity of this,
we ran experiments to compare the relative effectiveness of one of the post-layout
optimization techniques - driver sizing with and without gate relocation.

Figure 6.8 shows the worst negative slack in the three benchmark designs after

three different scenarios:

92 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

0.59

W Placement [Sizing B Relocation+sizing
0.49 -

0.39

0.29

0.19 A

0.09 ~

Worst Negative Slack (ns)

-0.01 -
10 I0PI MagicCtrl
Design

Figure 6.8: Comparison of Worst Negative Slack
1. After detailed placement step of the prototype system.

2. Detailed placement followed by driver sizing run in Synopsys Design Compiler

followed by a layout-merge.

3. Detailed placement followed by gate relocation followed by driver sizing and

layout-merge.

300
[OSizing @ Relocation+Sizing
250 A
200 -

150 4

100 4

Number of Gates Sized

50 q

10 0PI MagicCtrl
Design

Figure 6.9: Comparison of Number of Gates Sized

Figure 6.9 shows the number of gates that needed to be sized in scenarios 2 and 3 in
order to get the corresponding timing improvements of Figure 6.8. For the two smaller
designs IO and IOPI, both scenarios 2 and 3 reduce the WNS to 0. However, the

number of gates sized to achieve the timing is lower with relocation. When relocation

6.4. FUTURE WORK 93

was applied before sizing in the largest design, MagicCtrl, lower WNS was achieved
even though fewer gates needed sizing. Thus, not only does applying relocation first
make the job of driver sizing easier by requiring fewer sizing changes, it gives timing
improves that could not be achieved by sizing alone. Chapter 7 discusses taking this
concept further in the future, with a heuristic that gets the most timing improvements

by combining several different post-layout timing optimizations techniques in one tool.

6.4 Future Work

Experimentation with gate relocations opened up two interesting avenues that would
extend its scope in the future: and getting more out of relocations through logic
duplications, and making more relocations successful after layout merges. These are

covered in the following two subsections.

6.4.1 Extending the Scope of Relocations with Logic Dupli-

cation

Logic duplication on high-fanout gates is used by Lu et al. in [89], as part of post-
placement timing improvement transforms. Their technique duplicates high-fanout
gates that have more than twice the delay on their fanout nets as compared to their
fanin nets. This identifies sufficiently driven gates that are over-loaded. The fanout
is split between the two duplicated instances, if majority of the fanout is critical.
Otherwise, only the critical fanout is driven by one of the instances and the rest of
the fanout is driven by the other instance.

In the context of the timing-driven repartitioning heuristic, the global wire-length
along some paths can not be reduced further if one or more gates have several con-
flicting locations for relocation. Such gates can not be relocated to any one place to
improve the worst-case timing violation, as was the case for gate U710 in the example
of Figure 6.2. Such gates are also candidates for duplication, since each duplicated
instance can be relocated to one of the conflicting new locations. Candidates for

duplications can be identified from Equation 6.4, by separating the summation term

94 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

from number of conflicting source and destination pairs NSsp(g). Gates with a high
potential for timing improvement, given by the summation term, and a high conflict
in relocation, given by the NSsp(g) term, should be duplicated.

However, logic duplication increases the gate loading on the fanin due to the
additional gate, unless the duplicated gates are sized down to keep the total capacitive
loading on the fanin gate the same. When applied along with relocation, it also
increases the wire-load of inputs of the duplicated gate; those nets have to be routed
to two partitions instead of one. Formulation of the heuristic for logic duplication
should take this into account. Gates with stronger drive in the immediate fanin
should be given higher priority for duplication, since they are less likely to adversely
affect the timing. If inputs of a candidate gate have fanout in the new partitions, the
corresponding gate should be given higher priority since no new global routes would
be introduced by relocating its duplicated instances.

The two new instances should be relocated to the top two members of the set of
relocation partitions, which are located on opposite sides of the gate’s parent partition
in the floorplan. Each relocated cluster should contain a duplicated instance, and
gates from its parents partition that share critical paths with the instance and its

new partition.

6.4.2 Extending the Scope of Layout Merges

We found that on average, 2.5% of all gates had non-zero PTI in the three benchmark
designs. However, only 0.5% were successfully relocated due to the inability of ECO
placement to merge relocations into the existing placement. Figure 6.10 shows all
gates with non-zero PTI in design IOPI. The y-axis represents the PTI values of
gates, which are sorted by decreasing PTI on the x-axis. It is evident here that
many gates with high PTTI are not successfully relocated. This problem of merging
relocations into the existing layout gets worse when larger clusters are relocated, since
the ECO placer has to find room for more gates in a given bounding box.

As the relocation heuristic progresses, critical logic is accumulated in fewer par-

titions, making the average size of relocation clusters larger. Our experiments found

6.4. FUTURE WORK 95

Gates Sorted By PTI (Log Scale)

1 10 100 1000
0 O‘ @) @ CO@

5 ®
_10 4
-15 -
-20 -
-25
.30 A
_35 4
-40 5

PTI(gates) O Succesful Relocations

PTI(9)

Figure 6.10: PTI of gates and Successful Relocations

that relocation reduced the average number of partitions per critical path from around
5 to less than 3, by accumulating logic in local clusters that increased in size from 10
gates on average to 16. To further reduce the number of partitions per path, larger
clusters had to be relocated. Since each partition had around 500 gates, relocat-
ing clusters larger than 10-12 gates usually resulted in worse timing. Typical ECO
placers, including the LSI ECO placer, can not merge large relocations into small
bounding boxes without significantly perturbing the existing layout.

If more relocations can be made successful, relocation can be more effective in
improving the timing of designs. This can be done by exchanging critical gates with
non-critical ones between the parent partition and the new partition of the relocation
cluster, essentially creating more layout space that can absorb the relocation. The
non-critical gates should be picked by a parameter opposite to the PTI, i.e. their
Ability to be Relocated without any Timing Disruption, ARTD.

Gates that belong inside or close to the bounding box of the target ECO placement
should have high ARTD, since they would create space in the right place for the
critical gates. If a gate is connected to the incoming relocation cluster, it should not
be exchanged. Gates with high positive slacks should have higher ARTD, since they

are least likely to introduce new timing paths. This is not computationally expensive,

96 CHAPTER 6. TIMING-DRIVEN REPARTITIONING

since it does not require path-enumeration. The ARTD should also depend on how
strongly the gate is connected in the new partition (i.e. parent partition of the
relocation cluster) as opposed to its parent (i.e. the relocation partition).

Beginning with the gate with the maximum ARTD, new gates should be added
to the set of non-critical gates that would be exchanged; until the total area freed
up by non-critical gates is equal to the area of the incoming relocation cluster. The
bounding box for ECO placement of the non-critical gates should be the current

locations of the gates in the relocation cluster.

6.5 Summary

This chapter presented a timing-driven repartitioning heuristic for correcting early
partitioning decisions based on the latest post-layout timing information. The heuris-
tic relocates gates across partition boundaries in order to reduce the contribution of
global nets to the timing of critical paths. This is done using a metric called PTI, the
Potential for Timing Improvement, that evaluates different choices of gates and their
new partitions for relocation. By applying this heuristic after detailed placement in
the prototype system, results show an improvement in the quality of the placement,
by reducing the total number and timing violation of critical paths. Apart from
improving post-layout timing, the heuristic re-groups critical gates within a cluster.
When used in the low-level iterations of the Nebula design flow, this gives later syn-
thesis steps a better chance of optimizing critical logic together. However, the scope
of timing-driven repartitioning is limited since it can only be used if the relocated

gates can be merged into the layout of another partition.

Chapter 7
Conclusions

The conventional methodology for computer-aided design of random-logic blocks con-
sists of iterations between netlist-level optimizations in logic synthesis and layout.
This methodology suffers from a lack of convergence to the final design implemen-
tation, due to two main factors: the inaccuracy of fanout-based statistical wire-load
models used by early synthesis optimizations, and the inability of layout tools to ac-
cept incremental changes during later iterations. This lack of convergence costs a lot
of manual design effort and time before a design is completed, and is expected to get
worse as technology scaling continues to motivate more complex chip designs.

One approach to solving this problem is to create tools that simultaneously per-
form synthesis and layout optimizations on each low-level element of the design netlist,
thus reducing the reliance on wire-load estimates and the uncertainty of incorporat-
ing synthesis changes into the layout. This thesis proposes Nebula, our vision of
a CAD flow targeting timing convergence through simultaneous synthesis and lay-
out. Netlist partitioning is a key step in Nebula, which creates an optimal trade-off
between the conflicting needs for accurate wire-load models and incremental layout
optimizations. We implemented a prototype design system that emulates this design
flow using commercially available synthesis and layout tools; this prototype provided
an experimentation platform to explore implementation challenges in creating a CAD
system targeting timing convergence.

Conventional synthesis and layout tools give sub-optimal results when they are

97

98 CHAPTER 7. CONCLUSIONS

used with partitioned designs, since their optimization space is limited to individual
clusters of the netlist. Furthermore, using rectangular boundaries in a floorplanning
tool fragments the layout area when sizes of individual partitions change after syn-
thesis optimizations. However, partitioning enables the creation of a hybrid wire-load
model that accurately models global nets and approximates local nets to leave room
for future local optimizations. This model leads to a better wire-load correlation
between synthesis models and post-layout measurements in the prototype system.
Compared to the conventional design flow, better wire-load correlation in the proto-
type gives better correlation between post-synthesis and post-layout timing. In spite
of the overheads of partitioning, the narrower gap between synthesis and layout in the
prototype flow leads to a better post-layout timing than the conventional flow. Thus,
accurate wire-load modeling in the prototype makes each iteration more effective,
leading to faster convergence.

As a first step towards softening the view of hard partition boundaries, the heuris-
tic for timing-driven repartitioning reduces the contribution of global wire-loads along
critical paths, by relocating logic across partitions. Data from benchmark designs
reinforces the importance of optimizing several timing paths together, in order to en-
sure convergence in a post-layout timing optimization technique. Since several critical
paths are made up of interconnections of a few critical gates, relocating a very small
fraction of all gates in a design prunes out most of its critical paths. However, reloca-
tion does not give significant improvement in the longest delay of the design since its
scope is limited to reducing global wire-loads in critical paths. The scope of timing
improvements gained by relocation is further limited due to two main reasons: crit-
ical paths containing gates with several conflicting relocation requirements can not
be optimized further; and ECO placers have limited ability to merge changes in the

existing layout.

7.1 Future Work

The findings in this dissertation lead to two major open areas for future research:

expanding the scope of post-layout optimization techniques, and creating the notion

7.1. FUTURE WORK 99

of soft boundaries in synthesis and layout optimizations.

7.1.1 Synergy of Post-Layout Optimization Techniques

Results in Section 6.3 show that applying relocation and driver-sizing on a design
widens the scope of both of these techniques, giving better timing with fewer changes
in the layout. Huang et al. reported similar results for the application of simultaneous
rewiring and buffer insertions, followed by driver sizing [5]. Thus, post-layout timing
optimization can be made more effective if several common transforms are applied
simultaneously. The algorithm should look at all critical paths or gates in a design and
identify the culprit gates and nets, contributing the maximum timing along the most
critical paths. Depending on the cause of the target timing problem, an appropriate
post-layout optimization transform should be applied. Transforms that are easier to
merge in the existing layout, such as relocation and driver-sizing, should be preferred
over more layout-intensive transforms such as buffer insertion and logic duplication.
Logic restructuring should be used as the last resort since it requires the most changes

to an existing layout.

7.1.2 Soft Boundaries in Synthesis and Layout Optimizations

Partitioning overheads limit the advantage of accurate wire-load models in the pro-
totype design system. Future research is required in creating synthesis and layout
algorithms that overcome this overhead, before a CAD system can be built around
the Nebula design flow.

Algorithms for creating irregularly-shaped partition boundaries for floorplanning
have been implemented [9, 10]. These are soft-macro placement algorithms that
determine not only the size and placement of the macros but also determine irregular
shapes for their boundaries. Such boundaries maximize layout area utilization by
removing all fragmentation of area due to misaligned partition boundaries. Using a
soft-macro placer for floorplanning in Nebula would reduce the total area overhead
seen in the prototype system.

Another layout-area overhead comes from lower area-utilization of cell-placement

100 CHAPTER 7. CONCLUSIONS

algorithms when they are applied to individual partitions. This overhead requires
a cell-placement algorithm that allows creation of region constraints on clusters of
logic. The placement engine keeps all cells in a cluster within a certain distance of its
region constraint but allows neighboring regions to overlap at the edges. This allows
the placement engine to optimize the entire design, improving its area-utilization.
Creating region-constraints on gates exists as a user-controlled option in commer-
cial CAD tools such as Cadence [39] and was used for design planning in the past
[90]. However, detailed implementation of such algorithms and their area-utilization,
compared to flat and partitioned placements, have not been published.

There has not been an effort to create synthesis algorithms that regains optimiza-
tion space in a partitioned design by treating partition boundaries as ”soft” bound-
aries. In future, a synthesis algorithm that would optimize logic across partition
boundaries needs to be created. In our view, the timing-aware technology mapping
step in synthesis is the right place to create the notion of soft boundaries. When
synthesis creates trees of logic for technology mapping, it should attempt to keep
most trees local within clusters. However, logic that is structurally close to a cluster’s
boundary should be combined with other logic close to another cluster’s boundary if
the two sets of logic gates share several critical paths. When optimizing the technol-
ogy map of an inter-cluster logic tree, new gates, that do not belong to any cluster in
the current layout, will be created. This will collapse some existing global nets, and
new global nets with unknown wire-loads will form. Basic layout knowhow should be
added to synthesis to determine the best parent cluster for the new gates, in order
to estimate the wire-loads of new global nets. The following layout step should take
hints from synthesis for placing the new gates.

By solving these open challenges, there is a potential to develop a design flow
that creates nebulous clusters of logic as a way to create properties essential for

convergence while not incurring any overheads.

Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

“Timing convergence, iDesign methodology serivces of cadence Design Systems,”

http://www.cadence.com/methodology_services/meth_tc_12_index.html.

K. Sato et al., “Post-layout optimization for deep submicron design,” in Pro-

ceedings of 33rd Design Automation Conference, June 1996, pp. 740-5.

L. N. Kannan, P. R. Sauris, and Hong-Gee Fang, “A methodology and algorithms
for post-placement delay optimization,” in Proceedings of 31st ACM/IEEE De-
sign Automation Conference, June 1994, pp. 327-32.

W. Chuang and I. N. Hajj, “Delay and area optimization for compact place-
ment by gate resizing and relocation,” in Proceedings of IEEE International
Conference on Computer Aided Design, Nov. 1994, pp. 145-8.

R. Huang, Y. Want, and K-T. Cheng, “Libra - a library-independent frame-
work for post-layout performance optimization,” in International Symposium on
Physical Design, 1998, pp. 135-140.

M. Lee et al., “Incremental timing optimization for physical design by interacting
logic restructuring and layout,” in Proceedings of the ACM/IEEFE International
Workshop on Logic Synthesis, May 1998, pp. 508-13.

G. Stenz et al., “Timing driven placement in interaction with netlist transforma-
tions,” in Proceedings of the International Symposium on Physical Design, April
1997, pp. 36-41.

101

102

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

BIBLIOGRAPHY

A. Salek, J. Lou, and M. Pedram, “A DSM design flow: putting floorplanning,

Y

technology mapping and gate placement together,” in Proceedings of 35th Design

Automation Conference, June 1998, pp. 287-90.

H.-P. Su, A.C-H. Wu, and Y.-L. Lin, “Performance-driven soft-macro clustering
and placement by preserving HDL design hierarchy,” in Proceedings of 36th

Design Automation Conference, 1999.
“Monterey Design,” http://www.mondes.com.

W. Gosti et al., “Wireplanning in logic synthesis,” in IEEE/ACM International
Conference on Computer-Aided Design, Nov. 1998, pp. 26-33.

“Magma Design Automation,” http://www.magma-da.com.

J. Kuskin et al., “The Stanford FLASH multiprocessor,” in Proceedings of 21st
International Symposium on Computer Architecture, April 1994, pp. 302-13.

R. Simoni and M. Horowitz, “Dynamic pointer allocation for scalable cache
coherence directories,” in Proceedings of the International Symposium on Shared

Memory Multiprocessing, April 1991, pp. 72-81.

H. Heinlein et al., “Integration of message passing and shared memory in the
stanford flash multiprocessor,” in Proceedings of the 6th International Conference
on Architectural Support for Programming Languages and Operating Systems,
October 1994.

V. Soundararajan et al., “Flexible use of memory for replication/migration in
cache-coherent dsm multiprocessors,” in Proceedings of 25th International Sym-

posium on Computer Architecture, July 1998.
“Pci local bus specification,” http://www.pcisig.com/tech/availspecs.html.

D. Thomas and P. Moorby, The Verilog Hardware Description Language, Kulver
Academic Publishers, 1991.

D. Perry, VHDL, McGraw-Hill, 1991.

BIBLIOGRAPHY 103

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

B. Kerninghan and D. Ritchie, The C Programming Language, Englewood Cliffs,
N.J. : Prentice Hall, 1998.

B. Stroustrup, The C++ Programming Language, Third Edition, Addison Wes-
ley Longman Inc., 1997.

L. Semeria and G. De Micheli, “SpC: Synthesis of pointers in C, application of
pointer analysis to the behavioral synthesis from C,” in Proceedings of IEEE
International Conference on Computer Aided Design, Nov. 1999, pp. 321-6.

“Cynapps,” hitp://www.cynapps.com.

“Coware,” http://www.coware.com.

“C level design inc.,” http://www.cleveldesign.com.
“Synopsys: Systemc,” hittp://www.systemc.com.
“Tera Systems,” hittp://www.terasystems.com.

V. Nagasamy, N. Berry, and C. Dangelo, “Specification, planning, and synthesis
in a VHDL design environment,” IEEFE Design & Test of Computers, vol. 9, no.
2, pp- 5868, June 1992.

D. W. Knapp and A. C. Parker, “The ADAM design planning engine,” [IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
10, no. 7, pp. 829-46, July 1991.

S. V. Venkatesh, “Hierarchical timing-driven floorplanning and place and route
using a timing budgeter,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, May 1995, pp. 469-72.

B. Preas and M. Lorenzetti, Eds., Physical Design Automation of VLSI Systems,
Benjamin Cummings Publishing Company, 1988.

T. Koide and S. Wakabayashi, “A timing-driven global routing algorithm with

pin assignment, block reshaping, and positioning for building block layout,” in

104 BIBLIOGRAPHY

Proceedings of 1998 Asia and South Pacific Design Automation Conference Yoko-
hama, Feb. 1998, pp. 577-83.

[33] E. L. Le-Chin and C. Sechen, “Multi-layer chip-level global routing using an
efficient graph-based steiner tree heuristic,” in Proceedings. Furopean Design
and Test Conference ED € TC, March 1997, pp. 311-18.

[34] D. Gajski, Silicon Compilation, Addison-Wesley, 1988.

[35] G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti, Eds., Design
Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation, Martinus
Nijhoff Publishers, 1986.

[36] R. Senthinathan et al., “A 600MHz IA-32 microprocessor with enhanced data
streaming for graphics and video,” in IEEE International Solid-State Circuits
Conference, Feb. 1999, pp. 98-101.

[37] A. Scherer et al., “An out-of-order three-way superscalar multimedia floating-
point unit,” in IEEE International Solid-State Circuits Conference, Feb. 1999,
pp- 94-5.

[38] “Synopsys Inc.,” hittp://www.synopsys.com.

[39] “Cadence Design Systems,” hitp://www.cadence.com.
[40] “Avanti Corp.,” http://www.avanti.com.

[41] “Lsi Design,” http://www.lsil.com.

[42] “Physical synthesis,” Synopsys Inc., hitp://www.synopsys.com/products/
phy_syn/phy_syn.htmil.

[43] “Single-pass VDSM,” Awanti Corp., hitp://www.avanti.com/Avant!/ Solution-
sProducts/Produts/Item/1,1172,49,00.html.

[44] H. Kapadia and M. Horowitz, “Using partitioning to help convergence in the
standard-cell design automation methodology,” in Proceedings of 36th Design

Automation Conference, 1999.

BIBLIOGRAPHY 105

[45] N. P. Jouppi, “Timing analysis and performance improvement of MOS VLSI
designs,” IEEFE Transactions on Computer-Aided Design, vol. 6, no. 4, pp. 650—
65, July 1987.

[46] R. B. Hitchcock Sr., G. L. Smith, and D. D. Cheng, “Timing analysis of computer
hardware,” IBM Journal of Research and Development, vol. 26, no. 1, pp. 100-16,
Jan 1982.

[47] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
McGraw-Hill, 1993.

[48] N. Deo, Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall, 1989.

[49] H. H.-F. Jyu and S. Malik, “Prediction of interconnect delay in logic synthesis,”
in Proceedings of the European Design and Test Conference EDETC, March
1995, pp. 411-5.

[50] H. Kapadia and H. Vaishnav, “Wire load modeling with structural netlist pa-

rameters,” in Cadence Technical Conference, 1997.

[51] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill,
1991.

[52] R. Rudell, “Tutorial: Design of a logic synthesis system,” in Proceedings of 33rd
Design Automation Conference, June 1996, pp. 191-6.

[53] M. Sarrafzadeh and C. K. Wong, Eds., An Introduction to VLSI Physical Design,
McGraw Hill, 1996.

[54] B. Preas and P. Karger, “Automatic placement: A review of current techniques,”

in Proceedings of 23rd Design Automation Conference, June 1986, pp. 622-8.

[55] N.R. Quinn Jr. and M. A. Breuer, “A forced directed component placement pro-
cedure for printed circuit boards,” IEEE Transaction on Circuits and Systems,
vol. 26, no. 6, pp. 377-87, June 1979.

106

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

BIBLIOGRAPHY

K. M. Hall, “An r-dimensional quadratic placement algorithm,” Management
Science, vol. 17, pp. 219-29, Nov. 1970.

D. G. Schweikert, “A 2-dimensional placement algorithm for the layout of electri-
cal circuits,” in Proceedings of 13th Design Automation Conference, June 1976,
pp- 408-16.

F. K. Hwang, “On steiner minimal trees with rectilinear distance,” SIAM Journal
on Applied Mathematics, vol. 30, no. 1, pp. 104-14, Jan. 1976.

J. Barra et al., “Application of data analysis methods and of simulated an-
nealing for the automatic layout of circuits,” Computer Systems Science and

Engineering, vol. 2, no. 1, pp. 3—15, January 1987.

D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,” in
Proceedings of International Conference on Computer Aided Design, Nov. 1998,
pp- 203-11.

R. Ho et al., “Interconnect scaling implications for CAD,” in International

Conference on Computer-Aided Design, Nov. 19909.

M. Burstein and M. N. Youssef, “Timing influenced layout design,” in Proceed-

ings of 22nd Design Automation Conference, June 1985, pp. 124-30.

W. K. Luk, “A fast physical constraint generator for timing driven layout,” in
Proceedings of 28th ACM/IEEE Design Automation Conference, June 1991, pp.
626-31.

C.-S. Choy, T.-S. Cheung, and K.-K. Wong, “Incremental layout placement
modification algorithms,” IEEFE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 15, no. 5, pp. 437-45, April 1996.

M. H. Cynn and S. M. Kang, “Incremental node extraction algorithms for incre-
mental layout system,” in Proceedings of International Symposium on Circuits
and Systems, April 1995, pp. 1691-4.

BIBLIOGRAPHY 107

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

K. Keutzer, A. R. Newton, and N. Shenoy, “The future of logic synthesis and
physical design in deep-submicron process geometries,” in Proceedings of the

International Symposium on Physical Design, April 1997, pp. 218-24.

R.H.J.M. Otten and R.K. Brayton, “Planning for performance,” in Proceedings
35th Design and Automation Conference, June 1998, pp. 122-7.

W. Gosti et al., “Wireplanning in logic synthesis,” in Proceedings of the
ACM/IEEE International Workshop on Logic Synthesis, May 1998, pp. 520-9.

D. Brand, R. F. Damiano, L.P.P.P. van Ginneken, and A. D. Drumm, “In the
driver’s seat of booledozer,” in Proceedings 1994 IEEE International Conference

on Computer Design: VLSI in Computers and Processors, Oct. 1994, pp. 518-21.

I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits, Morgan Kaufman, 1999.

W. C. Elmore, “The transient response of damped linear networks with particular
regard to wide-band amplifiers,” Journal of Applied Physics, vol. 19, pp. 5563,
1948.

J. Rubinstein, P. Penfield Jr., and M. Horowitz, “Signal delay in RC tree net-
works,” IEEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 2, no. 3, pp. 202-11, July 1983.

Y. C. Ju and R. A. Saleh, “Incremental techniques for identification of statically
sensitizable critical paths,” in Proceedings of 28th ACM/IEEFE Design Automa-
tion Conference, June 1991, pp. 541-6.

Y-M. Jiang, A. Krstic, K-T. Cheng, and M. Marek-Sadowska, “Post-layout
logic restructuring for performance optimization,” in Proceedings of 34th Design
Automation Conference, 1997, pp. 663-5.

B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
graphs,” in Bell System Technical Journal, February 1970, vol. 49, pp. 291-
308.

108

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

BIBLIOGRAPHY

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving
network partitions,” in Proceedings of 19th ACM/IEEE Design Automation
Conference, June 1982, pp. 174-81.

H.-P. Su, A.C-H. Wu, and Y.-L. Lin, “Performance-driven soft-macro cluster-
ing and placement by preserving HDL design hierarchy,” in Proceedings of the
International Symposium on Physical Design, April 1998.

“Vex CAD toolbox,” hittp://www-flash.stanford. edu/~ bergmann/tools.

J. Bergmann and M. Horowitz, “Vex - a CAD toolbox,” in Proceedings of 36th

Design Automation Conference, 1999.

J. Cong and X. Dongmin, “Exploiting signal flow and logic dependency in stan-
dard cell placement,” in Proc. Asia and South Pacific Design Automation Conf.,
Aug. 1995, pp. 399-404.

J. Cong et al., “Large scale circuit partitioning with loose/stable net removal
and signal flow based clustering,” in Proc. IEEE Int’l Conf. on Computer-Aided
Design, Nov. 1997, pp. 441-46.

I. Sutherland and B. Sproull, “The theory of logical effort: designing for speed

on the back on an envelope,” in Advanced Research in VLSI Conference, 1991.

H. B. Bokaglu, Circuits, Interconnections, and Packaging for VLSI, Addison-
Wesley Publishing Company, 1990.

“The national technology roadmap for semiconductors: Interconnect,” Sematech
Corporation: http://www.sematech.org, hitp://www.itrs.net/ntrs/publntrs.nsf,
1997.

M. Horowitz, R. Ho, and K. Mai, “Interconnect technology beyond the roadmap:
The future of wires,” in The SRC/MARCO/SEMATECH Interconnects for Sys-
tems on a Chip - Projected Performance Technology Requirements Workshop :
http://www.src.org/areas/nis/5_22_ws.dgw, May 1999.

BIBLIOGRAPHY 109

[86] W. Mendenhall and T. Sincich, Statistics for engineering and the sciences, En-
glewood Cliffs, N.J. : Prentice-Hall, 1995.

[87] D.H. Du, S. H. Yen, and S. Ghanta, “On the general false path problem in timing
analysis,” in Proceedings of 36th ACM/IEEE Design Automation Conference,
June 1989, pp. 555-60.

[88] J. Benkoski et al., “Timing verification using statically sensitizable paths,” IEEE
Transactions on Computer Aided Design, vol. 9, no. 10, pp. 1073-83, Oct. 1989.

[89] A. Lu et al., “Combining technology mapping with post-placement resynthe-
sis for performance optimization,” in Proceedings International Conference on
Computer Design, Oct. 1998, pp. 616-21.

[90] J.Y. et al. Sayah, “Design planning for high performance asics,” IBM Journal
of Research and Development, vol. 40, no. 4, pp. 431-52, July 1996.

