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Chapter 1

Introdu
tion

It is the thesis of this dissertation that the problem in solving the veri�
ation bottle-

ne
k in hardware design today is not in �nding the few hard bugs, but is in �nding

the many easy bugs. This thesis proposes using symboli
 simulation as a repla
ement

for dire
ted and random testing as the primary method for �nding all easy bugs in

a design. Existing symboli
 simulation algorithms have been optimized for �nding

hard bugs, therefore, this thesis presents methods for optimizing symboli
 simulation

to �nd easy bugs eÆ
iently.

1.1 Problem Statement

1.1.1 The Veri�
ation Bottlene
k

Twenty years ago, very little e�ort went into pre-sili
on veri�
ation; most debug was

done post-sili
on in the lab. Post-sili
on debug times of one to two years were not

un
ommon for large proje
ts. Today's proje
t s
hedules typi
ally 
all for no more

than three months of post-sili
on debug. Consequently, most debug is now done

during pre-sili
on veri�
ation in order to prevent bugs that require time-to-market

killing 
hip spins.

The pressure to 
ontinually redu
e time-to-market even as 
hip 
omplexity in-


reases has led to the belief that fun
tional veri�
ation has be
ome the bottlene
k

1
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in hardware design. Reports from industry have shown veri�
ation 
onsuming up to

80% of the design e�ort in a proje
t [37, 82℄. The fear is that, if this problem is not

addressed, 
hips will be
ome un-designable within a

eptable time frames in the near

future.

Many solutions have been proposed for the veri�
ation bottlene
k, but little e�ort

has been made to try to understand the root 
ause of the problem. One generally held

belief is that simulation based veri�
ation methods 
annot �nd all bugs, espe
ially

hard bugs [26℄. As design sizes grow, the per
eption is that there are more, harder

bugs to be found. Thus, simulation is viewed as be
oming less e�e
tive in the future

as 
omplexity in
reases. However, there has been no attempt to quantify this belief,

and in fa
t it is not even 
lear how to validate assumptions about the e�e
tiveness of

di�erent methods.

1.1.2 Conventional Solutions

In an attempt to 
hara
terize the veri�
ation bottlene
k, Dill [26℄ asserted that a


ommon invariant amongst design proje
ts is that the rate at whi
h bugs are found

over time starts high and then diminishes [46, 60, 76, 81℄. A point is rea
hed at whi
h

the bug rate remains very low for a sustained period before tape-out. Dill 
alls this

period purgatory to emphasize that it is this period that 
hara
terizes the veri�
ation

bottlene
k.

A lower bug rate usually implies that it requires more e�ort to �nd ea
h bug. It

is 
ommonly assumed that hard bugs require more e�ort to �nd. Sin
e the bug rate

gets lower over time, the 
on
lusion generally rea
hed is that bugs get harder over

time. This line of reasoning has led veri�
ation resear
h to fo
us on �nding hard, late

stage bugs in order to redu
e the time spent in purgatory.

The primary method advo
ated for doing this is formal veri�
ation te
hniques

su
h as model 
he
king. Model 
he
king, invented in 1981 by Clarke and Emerson

[30, 18℄, is a method for exhaustively exploring the state spa
e of a design looking for

bugs. Sin
e every state in the design is explored, even the hardest bugs will be found.

Using model 
he
king to 
he
k fundamental assumptions early in the design pro
ess
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has been su

essful [22℄. This is usually done using an abstra
t model of a design

that removes everything ex
ept the 
on
eptually diÆ
ult proto
ol to be veri�ed. This

abstra
tion is ne
essary to make the model small enough su
h that the proto
ol 
an

be 
ompletely veri�ed. However, it has also been found that a veri�ed abstra
t design

does not guarantee that bugs will not be found later on [43℄.

Model 
he
king is fragile due to the phenomenon of state explosion. It takes a

great deal of expertise and time to make model 
he
king work for any given design.

However, sin
e the goal is to �nd late stage bugs, this may be a

eptable, as long

as the expertise is available and there is suÆ
ient time. This has resulted in mostly

large proje
ts, su
h as mi
ropro
essors, designed by large 
ompanies, su
h as Intel,

being able to get useful results from model 
he
king.

Many su

ess stories are reported from large 
ompanies using model 
he
king

[62, 48, 29, 36℄, however, these designs represent only a small fra
tion of the design

starts throughout the industry. Small 
ompanies simply do not have the time or

manpower to devote to 
omplex veri�
ation methods that may or may not yield useful

results. Thus, in the design 
ommunity at large, model 
he
king has had negligible

impa
t in improving the overall veri�
ation pro
ess, despite having been around for

almost 20 years.

In re
ognition of this, Dill proposed using semi-formal veri�
ation. Semi-formal

veri�
ation gives up the ideal of 
omplete state exploration in order to make these

tools easier to use. The primary idea in semi-formal veri�
ation that enables this is

to have the user guide the tool su
h that state explosion is redu
ed, but with the goal

of requiring little expertise in order to do so. Most semi-formal veri�
ation methods

are still based on the assumption that late stage bugs are hard and it is these bugs

that 
ause the veri�
ation bottlene
k. It is too early to tell if semi-formal veri�
ation

tools targeted at �nding hard late stage bugs will �nd wide a

eptan
e. So far, these

tools have made little impa
t on the design 
ommunity at large.
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1.2 Thesis

Despite the introdu
tion of formal and semi-formal methods, simulation-based meth-

ods su
h as dire
ted and random testing still �nd the majority of bugs in today's

designs [53, 76, 81, 5℄. Rather than view simulation-based methods as being ine�e
-

tive, this thesis takes the view that dire
ted and random testing are the most e�e
tive

way of �nding all bugs in a design and will 
ontinue to be for the foreseeable future.

Thus, the dire
tion pursued by this resear
h is to improve upon dire
ted and random

testing while maintaining the 
hara
teristi
s that make them the most e�e
tive veri-

�
ation methods. The 
hara
teristi
s that must be maintained are: predi
tability of


overage and run time, good feedba
k for debugging, and good s
alability as design

sizes in
rease. Together, these 
hara
teristi
s are 
alled reliability.

This thesis investigates the use of symboli
 simulation to extend dire
ted and

random testing. The idea is that symboli
 simulation 
an explore more behavior with

a given amount of e�ort than dire
ted and random testing. The diÆ
ulty in doing

this is in maintaining the desired reliability 
hara
teristi
s of dire
ted and random

simulation Therefore, the primary goal of this thesis is to make symboli
 simulation

as reliable as random and dire
ted testing.

The next two se
tions explore the rationale behind this approa
h in more depth.

The �rst se
tion examines the e�e
tiveness of simulation as a veri�
ation method. The

se
ond shows how symboli
 simulation improves upon dire
ted and random testing.

1.2.1 The E�e
tiveness of Simulation

The 
onventional view that simulation 
annot keep up with veri�
ation needs in the

future is based on the view that as designs get larger, bugs be
ome harder to �nd.

What this usually is interpreted to mean is that there is some measure of inherent

hardness of a bug and that bugs that are inherently hard require more e�ort to �nd.

Conventional analysis is predi
ated on the idea that bug hardness in
reases with time

in a given proje
t and also in
reases as design size in
reases. This drives the belief

that simulation is an in
reasingly ine�e
tive way of �nding bugs.

Bug hardness, in pra
ti
e, is a subje
tive measure. The same bug may be viewed
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as being either easy or hard depending on fa
tors su
h as the veri�
ation methodology

and who is doing the veri�
ation. The Intel Pentium FDIV bug [79℄ is widely quoted

as being a hard bug be
ause the probability of failure is on the order of between one

in a million and one in nine billion [71℄. However, this bug was due to a translation

error, not a design error. If it had been a design error, it is quite likely the bug would

have been easy to �nd sin
e it was a simple table error. Exer
ising all table entries

is a standard veri�
ation pra
ti
e, easily done using dire
ted testing. Thus, from a

veri�
ation standpoint, this bug is not inherently hard to �nd.

At the same time, hard bugs that slip into sili
on are usually easier to work around

than simple bugs. The less often a bug o

urs during normal operation, the more

performan
e loss that 
an be tolerated for the failing fun
tion. This allows software

�xes for hard bugs. Therefore, if bugs are going to slip into sili
on, it is better that

they be hard bugs that are potentially easier to work around.

Without making any assumptions about bug hardness, the only thing that is


ertain as design be
omes larger is that there will be more bugs to �nd. Finding

all easy bugs will 
ontinue to be the primary problem during veri�
ation, requiring

methods as reliable as dire
ted and random testing, sin
e this is the majority of

bugs. Therefore, methods that sear
h only for easy bugs more eÆ
iently may improve

the overall veri�
ation pro
ess. In fa
t, dire
ted and random testing appear to be

extremely eÆ
ient methods for �nding bugs and it will be diÆ
ult to do better than

these methods.

1.2.2 Symboli
 Simulation

Before des
ribing how symboli
 simulation is used to improve upon dire
ted and

random testing, it is ne
essary to give a brief des
ription of what it is. Simulation

is a method of representing a devi
e su
h that the result of applying a stimulus to

the simulation is the same as applying the stimulus to the real devi
e. In hardware

veri�
ation, the devi
e under test (DUT) is a 
ir
uit 
onsisting of basi
 logi
 gates

su
h as AND, OR, NOT gates, and registers. Signal values are binary, whi
h means

they range over the set f0; 1g.
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Binary simulation, whi
h is used in dire
ted and random testing, requires either

a one or zero to be applied to ea
h input value for the simulation. For example, if

a 
ir
uit implements the fun
tion f = A ^ B, we 
ould make the input assignments

A = 1 and B = 1 and simulate the fun
tion to get the result f = 1. To 
ompletely

verify this 
ir
uit would require simulating four di�erent 
ombinations of values for

the inputs A and B.

In symboli
 simulation, instead of applying a one or a zero to a given input, a

symbol is applied. The symbol represents both one and zero at the same time. Values


omputed at ea
h node in the 
ir
uit are represented as expressions over the input

symbols. Thus, in the example above, we 
ould make the input assignments A = x

1

and B = x

2

, where x

i

is a symboli
 variable. Simulating the 
ir
uit results in the

the symboli
 value f = x

1

^ x

2

being 
omputed. This symboli
 value represents all

possible 
ombinations of binary values on inputs A and B. Thus, symboli
 simulation

requires simulating only one pattern to 
over all 
ombinations 
ompared to the four

required for binary simulation. In several existing systems, BDDs [13, 16℄ are used

to represent symboli
 values.

This thesis proposes using symboli
 simulation to extend standard dire
ted and

random tests. The basi
 idea is to write tests in essentially the same way as standard

dire
ted and random tests, but to repla
e some of the values inje
ted into the 
ir
uit

with symboli
 values.

To understand how this improves the dete
tion of easy bugs, 
onsider how a test

plan is designed. A test plan basi
ally divides the entire spa
e of possible behavior

into a set of equivalen
e 
lasses. For example, 
onsider the 
reation of the test plan

for a simple memory system. First, the set of all tests 
ould be divided into two

basi
 test types: read tests and write tests. Next, ea
h of these 
lasses 
ould be

divided into 
a
heable and un
a
heable 
lasses. Next ea
h of these sub
lasses 
ould be

divided into di�erent sub
lasses based on memory alignment. Ea
h of these sub
lasses


ould further be subdivided based on whether the next sequential request was a

request to the same address or not. This se
ond request 
ould be further divided by


a
heable/un
a
heable, memory alignment, and so forth.

Thus, a test plan 
an be represented as a tree in whi
h ea
h bran
h of the tree
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represents a subdivision of the possible set of behaviors. Theoreti
ally, this tree 
ould

be in�nitely deep, however, the veri�
ation engineer de
ides how deep is ne
essary

in order to 
over all possible bug 
ases. Dire
ted testing then 
onsists of sampling

ea
h leaf of this tree. Usually there are far more leaves than 
an be 
overed using

dire
ted testing. Thus, the veri�
ation engineer must 
hose whi
h subset of the 
ases

to write tests for. Random testing is often used to sample those 
ases whi
h were not

expli
itly 
hosen for dire
ted testing.

There are two ways that bugs may be missed using the above strategy. The �rst

is that there are simply too many leaf nodes and that a bug exists only in a leaf node

that was not tested. The se
ond way bugs 
an be missed is when a bug exists only

under 
ertain 
onditions in a leaf node that was tested and the dire
ted test that

sampled this leaf node did not exer
ise those 
onditions.

To in
rease the likelihood of �nding the �rst type of bug requires 
overing more


ases with the same amount of e�ort by speeding up simulation. It is also often the


ase that the bug �nding rate is limited by how fast tests 
an be written. Thus,

in
reasing the likelihood of �nding the �rst type of bug also requires more eÆ
ient

test writing.

Symboli
 simulation 
an be used to provide both of these speedups. First, ea
h

leaf node in the test tree 
an be labelled with a unique identifying number. Symboli


simulation 
an simulate the entire set of tests in one symboli
 simulation run by

en
oding the test identi�er using symboli
 values. Also, writing a single symboli


test requires less time than writing many individual tests, although the symboli
 test

is more 
omplex than any given single test. Thus, symboli
 simulation 
an potentially


over more leaf nodes with a given amount of e�ort 
ompared to dire
ted and random

testing.

Symboli
 simulation 
an also improve the likelihood of �nding the se
ond type

of bug. The goal of 
reating a test plan is to 
reate equivalen
e 
lasses su
h that if

a test within that equivalen
e 
lass fails, all tests within that equivalen
e 
lass fail.

Thus, sampling a single member of the 
lass is suÆ
ient to dete
t any bug within the


lass of tests. If this is not the 
ase, then there must be some input that distinguishes

between those test 
ases that fail and those that do not. A bug is missed if the test
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ase sampling a parti
ular equivalen
e 
lass happens to set this input to the wrong

value.

Inputs that should not a�e
t the 
orre
tness of a parti
ular test 
ase are 
alled

don't 
are inputs. If a bug o

urs within an equivalen
e 
lass only if some don't 
are

input is set to a parti
ular value, then that input is a distinguishing input. Putting

symboli
 values on a don't 
are input allows the simulator to explore both values of

that input. Thus, bugs due to don't 
are inputs will be dete
ted by the symboli


simulator. Consequently, symboli
 simulation in
reases the likelihood of �nding bugs

due to don't 
are inputs by exploring all possible values of don't 
are inputs.

Be
ause there are a �nite number of equivalen
e 
lasses in the test plan out of

a possible in�nite set, there may be an in�nite number of don't 
are inputs within

any given equivalen
e 
lass. Conventional symboli
 simulation runs into problems

in dealing with these types of inputs be
ause the number of BDD variables needed

to improve 
overage of these 
ases generally ex
eeds the 
apa
ity of standard BDD

algorithms. In addition, if there is, in fa
t, no bug in the equivalen
e 
lass, then the

work 
omputing symboli
 values for don't 
are nodes in the 
ir
uit 
an a
tually slow

down the simulation 
ompared to dire
ted and random testing. Thus, 
onventional

symboli
 simulation does not work well for �nding bugs due to don't 
are inputs.

1.2.3 Symboli
 Simulation with Approximate Values

If we make the assumption that bugs are easy, then it is likely that only a few don't


are inputs a
tually 
ause a bug. Thus, to dete
t this type of bug, it is not ne
essary

to verify all 
ombinations of values over all don't 
are inputs. It is usually suÆ
ient

to 
he
k that some distinguishing don't 
are input 
an 
ause an in
orre
t value to

propagate to an output in order to dete
t a bug. To do this does not require 
omputing

exa
t values for every don't 
are node in the 
ir
uit during simulation. This thesis

proposes using approximate values on don't 
are nodes to minimize 
omputation

e�ort. Approximate values are values whi
h range over the binary values plus a value

X, whi
h represents an unknown value; values that are not approximated are 
alled

exa
t. Approximate values are 
hosen su
h that a suÆ
ient amount of information is
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maintained to allow easy don't 
are bugs to be qui
kly dete
ted.

The algorithms des
ribed in this thesis allow a small representation to be used

for values on don't 
are nodes, whi
h minimizes the simulation time for these nodes.

However, this is a 
onservative approximation, whi
h means that the simulator may

dete
t a failure in 
ases that no failure would be dete
ted if exa
t values were used.

This thesis des
ribes methods to automati
ally resolve this 
onservativeness su
h that

an exa
t answer is produ
ed while minimizing memory usage and simulation time.

Approximate values have been used in 
onventional symboli
 simulation [74℄. In

these methods, the user de
ides on whi
h input nodes unknown values will be used.

The simulator has no 
hoi
e in how to approximate internal 
ir
uit node values and

so 
annot redu
e 
omputation e�ort on don't 
are nodes.

This thesis des
ribes methods to allow a simulator to vary dynami
ally the amount

of approximation of a value on a node-by-node and simulation run by simulation run

basis. The simulator 
an determine automati
ally whi
h internal 
ir
uit nodes are

don't 
are nodes and whi
h are not and then in
rease the level of approximation on

don't 
are nodes while keeping 
are nodes exa
t. This allows symboli
 simulation to

maintain its speedup over 
onventional dire
ted and random simulation even in the

presen
e of many symboli
 don't 
are input values.

Consequently, symboli
 simulation with approximate values 
an improve upon

dire
ted and random testing both in �nding bugs due to insuÆ
ient leaf 
overage and

in �nding bugs within a leaf that o

ur only when distinguishing inputs are set to

a parti
ular value. Be
ause of these features, automati
ally abstra
ing internal node

values during simulation gives symboli
 simulation the potential to be a primary

veri�
ation method for �nding the majority of bugs in a design.

1.3 Overview of the Thesis

1.3.1 Contributions

A primary 
ontribution of this thesis is approa
hing the veri�
ation problem from a

di�erent angle than most resear
hers using symboli
 methods. Spe
i�
ally, arguing
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that improving upon dire
ted and random testing as primary veri�
ation methods is

the best approa
h to address the veri�
ation bottlene
k may be the most important


ontribution of this thesis.

This thesis has 
hosen symboli
 simulation as a way of approa
hing this problem.

In relation to this, the 
ontributions of this thesis are as follows.

� Symboli
 simulation with approximate internal values. The simulator 
an ap-

proximate values on a node-by-node and 
y
le-by-
y
le basis. This allows the

simulator to use smaller symboli
 representations for don't 
are nodes.

� Variable 
lassi�
ation-based approximation. Symboli
 variables are 
lassi�ed as

either 
ontrol, data, or don't 
are. Variable 
lassi�
ation is shown to be a good

heuristi
 for determining the appropriate level of approximation for ea
h value

the simulator 
omputes.

� Automati
 approximation improvement. If the initial variable 
lassi�
ation is

in
orre
t, the simulator automati
ally re-
lassi�es variables and re-runs the test

in order to generate the 
orre
t approximation for ea
h node value. This pro
ess

adds little overhead to the simulation pro
ess.

� Quasi-symboli
 simulation. SAT-based 
ase splitting is used to perform ap-

proximation improvement with no additional memory required. This provides

reliability 
omparable to random and dire
ted testing. In addition, it is shown

to be have good performan
e on test 
ases in whi
h bugs are present.

� Reliable symboli
 simulation. Combining SAT-based and BDD-based approxi-

mation improvement methods allows the bene�ts of BDDs to be used in speeding

up simulation while mitigating memory blowup.

� The e�e
tiveness of these te
hniques is demonstrated on two realisti
 industrial

designs.
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1.3.2 Outline of the Thesis

Chapter 1 provides an introdu
tion to the problem and gives arguments for using a

di�erent set of assumptions in pursuing a solution for the veri�
ation bottlene
k.

Chapter 2 is a detailed introdu
tion to symboli
 simulation, in
luding ba
kground

material. After reading this 
hapter, the reader should be able to write a basi


symboli
 simulator.

Chapter 3 introdu
es approximations and gives algorithms for manipulating values

that in
lude approximations. Variable 
lassi�
ation is introdu
ed as a heuristi
 for

the simulator to use in 
reating approximate values.

Chapter 4 dis
usses methods to improve the approximation. The algorithms in

Chapter 3 assume a stati
 variable 
lassi�
ation that may be wrong. This 
hapter

shows how the 
lassi�
ation 
an be improved automati
ally with little overhead.

Chapter 5 shows that symboli
 simulation 
an be 
ast as a satis�ability (SAT)

problem. SAT solving using partial assignments is shown to be an instan
e of symboli


simulation with approximate values and approximation improvement. A method of

performing symboli
 simulation using SAT-based methods only is presented with the

advantage of requiring no additional memory to manipulate symboli
 values. SAT-

based and BDD-based methods are 
ombined to allow available additional memory to

be used for BDDs without sa
ri�
ing the reliability of SAT-based symboli
 simulation.

Chapter 6 
on
ludes with results and future work.



Chapter 2

Symboli
 Simulation

This 
hapter des
ribes the basi
 algorithms and data stru
tures related to symboli


simulation. Cir
uits are de�ned and event driven simulation is des
ribed. Basi


Boolean algebra is introdu
ed and BDDs whi
h are used to represent symboli
 values

are des
ribed. A detailed des
ription of the Apply algorithm, whi
h is one of the

primary algorithms used in this thesis, is given. Following that is a formal de�nition

of symboli
 simulation and proofs of the 
orre
tness of symboli
 simulation.

2.1 Simulation

The input to the simulation pro
ess 
onsists of a 
ir
uit and a set of input/output

patterns whi
h spe
ify how to test some fun
tionality that needs to be veri�ed. The

simulation pro
ess itself 
onsists of 
omputing values for ea
h node in the 
ir
uit for

ea
h step of simulated time.

2.1.1 Cir
uits

There are many possible 
ir
uit abstra
tions that 
an be used depending on the type

of veri�
ation being performed. Proto
ols and high-level algorithms often are given

in terms of operations on states, thus a Mealy or Moore FSM model is appropriate.

12
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Equivalen
e 
he
king is often done between the gate and transistor level representa-

tions of a design.

Sin
e we are interested in fun
tional veri�
ation of the design as entered by the

logi
 designer, the most relevant 
ir
uit des
ription is what the designer enters. In

most 
ases, this is a register transfer level (RTL) des
ription, written using a hardware

des
ription language (HDL) su
h as Verilog or VHDL.

RTL represents a design as a set of unabstra
ted registers and a behavioral-level

des
ription of the 
ombinational logi
. The syntax and semanti
s of RTL are 
omplex

to de�ne. Therefore this thesis will assume a gate level des
ription of the design is

used. Sin
e synthesis from RTL to the gate level is straightforward, any 
on
lusions

that are derived for the algorithms presented in this thesis on gate level representations

are also 
laimed to hold for RTL representations.

A gate level 
ir
uit 
onsists of a network of nodes 
onne
ted using wires. Ea
h

node in the 
ir
uit implements a Boolean fun
tion. All Boolean 
ombinational fun
-

tions 
an be implemented using only two-input AND gates and NOT gates. Therefore,

without loss of generality, nodes are assumed to be either two-input AND, NOT, pri-

mary input (PI,) or primary output (PO) nodes. Ea
h 
ir
uit node has an asso
iated

Boolean value whi
h is a fun
tion of the operation the node performs and the input

values to the node. Primary input values 
hange as a fun
tion of time as 
ontrolled

by the test 
ase; 
onsequently, node values 
hange as a fun
tion of time. Figure 2.1

shows an example of a simple 
ir
uit 
onsisting of three two-input AND gates, three

NOT gates, three primary inputs and one primary output.

This de�nition of a 
ir
uit mentions nothing about state holding elements su
h

as lat
hes or registers. However, it does allow 
y
li
 
onne
tions in the 
ir
uit net-

work. Consequently, state holding elements 
an be implemented by 
reating gate

level representations of lat
hes and registers. Thus, this 
ir
uit de�nition allows both

sequential and 
ombinational 
ir
uits to be represented.

1

1

It also allows asyn
hronous 
ir
uits to be represented. Although simulation of asyn
hronous


ir
uits is not pre
luded by the algorithms presented in this thesis, this is not an expli
it goal of this

thesis.
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Figure 2.1: An example of a simple 
ir
uit

2.1.2 Test Environment

The test environment is the interfa
e between the user and the 
ir
uit. The goal of

the test environment is to allow the user to 
ontrol the value of ea
h input or output

at ea
h time during the simulation. The test environment spe
i�es a value for ea
h

primary input at ea
h time step of the simulation. It also spe
i�es whi
h outputs

are 
he
ked for 
orre
tness at ea
h time step and the 
orre
t values for ea
h 
he
ked

output.

Most input and output values 
an be generated algorithmi
ally based on the

proto
ols that the 
ir
uit understands. Normally, these proto
ols are written using

behavioral 
ode, generally at a higher level of abstra
tion than RTL. This behavioral


ode relieves the user from having to spe
ify every value of every input on every


y
le, whi
h 
an be quite a tedious task. Symboli
 simulation 
reates some problems

when simulating test environments written using behavioral 
ode. These issues will

generally be ignored in this thesis unless they a�e
t a relevant algorithm.

We 
an assume that there is some me
hanism for applying values to inputs and

for 
he
king outputs. A simple way to think about this is to assume that there is a

table of values that for every time step lists the value of every input and the value of

every output and whether it is 
he
ked. The user 
reates the table and the simulator

steps through the table applying values, simulating the 
ir
uit and then 
he
king the

output values.
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Algorithm 1 Basi
 simulation loop

1: t 0; ft is the 
urrent time stepg

2: stop  0;

3: Initialize all node values();

4: while :stop ^ :fail do

5: fstop; failg  Simulate(t);

6: t Next time step(t);

7: end while

There are two spe
ial outputs that are generated by the test ben
h that the

simulator understands to have a spe
ial meaning. These are the stop and fail outputs.

The stop output indi
ates that the test is �nished and the simulator should stop

simulation. The fail output indi
ates that an output mis
ompare was dete
ted by

the test ben
h. It is assumed that the simulator stops if the fail output is ever

asserted. A test passes if stop is asserted without fail being asserted.

There are two basi
 types of tests: time-bounded and rea
tive. Time-bounded tests

run for a �xed amount of simulation time. If MAX TIME represents the amount of

time we want the simulation to run, then stop is the fun
tion t � MAX TIME .

Rea
tive tests run until the 
ir
uit generates some 
ondition. For example, the test

ben
h may inje
t a response and then wait for a response from the 
ir
uit. The stop


ondition would then be a fun
tion of the 
ir
uit's response. The spe
i�
ation may

not spe
ify a maximum time for the 
ir
uit to respond. Therefore, the test ben
h must

allow an unbounded amount of time. Thus, rea
tive tests are also 
alled unbounded

tests. To a
hieve the goals of this thesis, supporting rea
tive tests is a requirement.

Therefore, issues in dealing with rea
tive tests will be dis
ussed when relevant in this

thesis.

2.1.3 Simulation Algorithm

Simulation 
onsists of applying inputs to a 
ir
uit, 
omputing the value of ea
h node

in the 
ir
uit for ea
h time step of the simulation, and 
he
king outputs. The basi


algorithm for simulating a 
ir
uit is given in Algorithm 1.

This algorithm starts the simulation at time 0 and simulates ea
h time step until
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ompletion. The Initialize all node values() fun
tion generates an initial value for

all nodes in the 
ir
uit.

The most time 
onsuming part of simulation usually is in 
omputing the values

of ea
h node in the 
ir
uit. As 
ir
uit sizes have grown, mu
h work has been done

trying to improve the performan
e of binary simulators. Consequently, there are many

di�erent algorithms that 
an be used to 
ompute values during simulation. Most of

these algorithms 
an be 
lassi�ed into two basi
 methods: event driven simulation

and 
ompiled 
ode simulation.

Event driven simulation and 
ompiled 
ode simulation 
ompare di�erently for

symboli
 simulation than for binary simulation. The di�eren
e between these meth-

ods lies in the number of node evaluations that must be performed and the overhead

of handling a node event. The performan
e di�eren
e is a fun
tion of the a
tivity

fa
tor, whi
h is the per
entage of nodes that have input value 
hanges during a given

time step. Symboli
 simulation has mu
h higher a
tivity fa
tors than binary simula-

tion whi
h potentially makes 
ompiled 
ode simulation more attra
tive for symboli


simulation. However, node value 
omputation time dominates over event pro
essing

time in symboli
 simulation. This means that neither method has a parti
ular advan-

tage for symboli
 simulation. Therefore, the experiments in this thesis use an event

driven simulation algorithm sin
e this is simpler to implement.

Algorithm 2 lists the event driven simulation algorithm. In this algorithm, the

value of a node is 
omputed only if one of its input values 
hanges. At the beginning

of ea
h time step, the test ben
h applies values to ea
h primary input (line 1). The

fanout of a node is the set of nodes whi
h are driven by this node. If a primary input

value is di�erent from its previous value, all of the fanouts of this primary input will

be added to the pending event list.

The outer loop (lines 2{13) simulates for one time step. At the beginning of this

loop, the set of pending events be
omes the set of a
tive events. The inner loop (lines

5{12) 
omputes the value of ea
h node on the a
tive event list, 
he
ks to see if the

node value 
hanges and, if so, puts the set of fanouts for this node on the pending

list.
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Algorithm 2 Simulate event driven(t)

1: pending event list  get testben
h inputs(t);

2: while :is empty(pending event list) do

3: a
tive event list  pending event list ;

4: pending event list  ;;

5: while :is empty(a
tive event list) do

6: node  Pop(a
tive event list);

7: val  Compute value of (node);

8: if val 6= node:val then

9: Push(fanout of (node); pending event list);

10: node:val  val ;

11: end if

12: end while

13: end while

14: fail  testben
h 
he
k outputs(t);

15: stop  testben
h stop(t);

16: return fstop; failg;

This loop 
ontinues until both the a
tive and pending lists are empty. This in-

di
ates that all nodes have 
orre
t values for the 
urrent time step. Next, the test

ben
h 
he
ks any primary outputs that need to be 
he
ked and 
omputes the stop

and fail indi
ations whi
h are returned to the main simulator loop (lines 14{16).

2.2 Values and Their Representation

The simulation algorithms given in the previous se
tion are independent of the values

a simulator supports. Cir
uits use a Boolean domain. Binary simulators use binary

values that represent a Boolean domain. This se
tion des
ribes basi
 Boolean algebra.

Symboli
 simulators use symboli
 values. The major data stru
ture used in this

thesis to represent symboli
 values is the Binary De
ision Diagram (BDD). This

se
tion also des
ribes BDDs and the algorithms used to manipulate them.
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2.2.1 Boolean Algebra

The lowest level of value abstra
tion that is used for fun
tional veri�
ation is the

binary domain f0; 1g. Values are 
omputed based on Boolean algebra, thus, 0 is

interpreted to mean FALSE and 1 is interpreted to mean TRUE .

A Boolean formula is an expression over an alphabet 
onsisting of the 
onstants 0

and 1, variables x

0

; x

1

; x

2

; : : :, the 
onne
tives ^;:, and parentheses (; ). All Boolean

fun
tions over a set of variables 
an be represented by a Boolean formula requiring

only the 
onne
tives ^ and :. However, it useful to abbreviate parti
ular fun
tions

for 
onvenien
e. Some examples are shown in Table 2.1.

Fun
tion Symbol Expression

In
lusive-or (OR) f _ g :(:f ^ :g)

Ex
lusive-or (XOR) f � g (f ^ :g) _ (:f ^ g)

Ex
lusive-nor (XNOR) f � g (:f ^ :g) _ (f ^ g)

Table 2.1: Boolean Fun
tion De�nitions

An example of a Boolean formula is

(x

0

^ :x

1

) _ (:x

0

^ x

2

)

2.2.2 Binary De
ision Diagrams

BDDs [14℄ are a data stru
ture used to represent Boolean fun
tions. BDDs are widely

used in formal veri�
ation, synthesis, and other CAD appli
ations to manipulate

symboli
 values represented as Boolean fun
tions. There are many variants of BDDs.

The most widely used variant is the Redu
ed Ordered BDD (ROBDD). In fa
t, the

term BDD generally is interpreted to mean a ROBDD.

ROBDDs have the feature that Boolean fun
tions 
an have a signi�
antly more


ompa
t representations for many fun
tions than representations su
h as truth tables

or sum-of-produ
ts. Given a �xed variable order, ROBDDs are 
anoni
al, meaning

that if two fun
tions are the same they will have the same ROBDD representation

and if they are di�erent, they will have di�erent representations.
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x

1

x

2

x

2

x

2

x

2

x

1

x

0

x

2

x

0

x

1

Figure 2.2: An example of an OBDD and ROBDD

The 
ompa
t representation ROBDDs a
hieve is the sour
e of the speedup of

symboli
 simulation over binary simulation. Also, sin
e veri�
ation of a 
ir
uit usu-

ally involves 
omparing the value 
omputed by the 
ir
uit to some referen
e value,


anoni
ity allows these 
omparisons to be 
arried out eÆ
iently. Thus, ROBDDs are

an attra
tive representation for veri�
ation, in general, and symboli
 simulation in

parti
ular.

The data stru
ture of a BDD is a rooted, dire
ted a
y
li
 graph. There are two

types of nodes in the graph: terminal nodes and non-terminal nodes. A terminal node

is labelled with either the 
onstant 0 or the 
onstant 1 and has no outgoing edges.

Ea
h non-terminal node v is labelled with a variable var(v) and has two outgoing

edges, ea
h 
onne
ted to a di�erent 
hild node. There is a single root node of the

graph that has only outgoing edges.

Let f(x

0

; x

1

; : : : ; x

n

) be a Boolean fun
tion. This fun
tion is equivalent to its

Shannon expansion: (�x ^ f(0; x

1

; : : : ; x

n

)) _ (x ^ f(1; x

1

; : : : ; x

n

)). The root node of

BDD f represents f(x

0

; x

1

; : : : ; x

n

) and has var(f) = x

0

. One of its outgoing edges,


alled if (f) points to the BDD node representing f(1; x

1

; : : : ; x

n

) and the other edge,

labelled else(f) points to the BDD node representing f(0; x

1

; : : : ; x

n

). The if and

else nodes are re
ursively de
omposed this way until only the terminal fun
tions 0

and 1 are left.
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An Ordered Binary De
ision Diagram (OBDD) is a BDD in whi
h all paths start-

ing from the root node and traversing the graph to a terminal node have the variables

appear in the same order. Sin
e it is possible for a path from root to terminal node

to traverse all variables, there is a total ordering of variables that must be maintained

in order to enfor
e this property. The level of a variable is its order of appearan
e in

this total order with the root node being at level one and the order in
reasing as the

graph is traversed toward the terminal nodes. Figure 2.2a illustrates the OBDD for

a simple fun
tion.

A ROBDD is an OBDD in whi
h there are no dupli
ate nodes. A dupli
ate

terminal node is one that is labelled with the same 
onstant as another. Two non-

terminal nodes u and v are dupli
ates if var(u) = var(v) and if (u) = if (v) and

else(u) = else(v).

It is possible to 
reate an ROBDD from an OBDD by re
ursively applying the

following two rules starting from the terminal nodes and working up the graph.

� Remove dupli
ate nodes. For ea
h set of equivalent nodes, 
hoose one of

them to remain and remove all others. All in
oming edges to this set of nodes

should be 
hanged to point to the remaining node.

� Remove redundant nodes. The removal of equivalent nodes 
an result in

nodes having if (v) = else(v). These nodes are redundant and 
an be removed

and all in
oming edges 
an be re-dire
ted to point to if (v).

Figure 2.2b shows the ROBDD generated from Figure 2.2a as a result of applying

these rules. Normally it is not pra
ti
al to 
reate a OBDD and then redu
e it. Instead

a ROBDD is built dire
tly from two existing ROBDDs. Apply is a general algorithm

that takes two BDDs and an algebrai
 operation as arguments and produ
es the result

of applying the operation to the two BDDs.

2.2.3 The Apply Algorithm

This thesis will present modi�
ations to the basi
 Apply algorithm in the next 
hap-

ters in order to support the 
reation of approximate values. Therefore, it is useful to
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Algorithm 3 simple Apply(f,g,hopi)

1: if terminal 
ase(f; g; hopi) then

2: return handle terminal 
asef; g; hopi);

3: end if

4: top var  min(var(f); var(g));

5: f

if

; f

else

 
ofa
tor(f; top var);

6: g

if

; g

else

 
ofa
tor(g; top var);

7: t

if

 simple Apply(f

if

; g

if

; hopi);

8: t

else

 simple Apply(f

else

; g

else

; hopi);

9: if t

if

= t

else

then

10: result  t

if

;

11: else

12: result  
reate node(top var ; t

if

; t

else

);

13: end if

14: return result ;

understand the basi
 Apply algorithm in some detail. Algorithm 3 presents an unop-

timized version of Apply that is easier to understand than the 
omplete, optimized

version. This simple algorithm will be presented �rst followed by the full algorithm

with optimizations.

Lines 1{3 handle terminal 
ases, in whi
h the result of the operation applied to

the two input BDDs 
an be dire
tly determined by examining the two input BDDs.

For example, if the operation is AND and one of the input BDDs is the terminal

node 0, the result is the terminal node 0. The fun
tion terminal 
ase() dete
ts this

and handle terminal 
ase() 
omputes the 
orre
t result.

2

The 
omplete set of 
ases

handled as terminal fun
tions is given in the following table (note that symmetri



ases are not shown).

f g terminal value for ^

0 g 0

1 g g

f f f

f :f 0

2

These fun
tions are usually performed by the same subroutine in a BDD pa
kage.
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If the result is not going to be a terminal node, then the 
omputation is de
om-

posed by splitting it into two 
ases. This is done by sele
ting the root variable in f

or g that has the lowest order and then performing a Shannon expansion over this

variable on both BDDs.

The 
ofa
tor() fun
tion (lines 5{6) returns the if and else bran
hes of BDD f if

var(f) is equal to top var . If var(f) is greater than top var , then f is not a fun
tion

of top var and so 
ofa
tor() simply returns the BDD that was passed to it for both


ofa
tors.

The simple Apply algorithm is 
alled re
ursively (lines 7{8) on the if and else


ofa
tors separately. These two 
alls will return BDD nodes representing the if

and else fun
tions for the 
omputed fun
tion. Elimination of redundant nodes is

done by dete
ting that the if and else nodes are equal (lines 9{10). If the node is

not redundant, the BDD node representing the result of applying hopi on f and g


an be 
omputed by 
reating a node, labelling it with top var and pointing the if

and else bran
hes to the appropriate BDD nodes returned by the re
ursive 
alls to

simple Apply (line 12).

simple Apply 
omputes an ordered BDD, but not an ROBDD. The if , else nodes

and top var value 
omputed for some 
all to simple Apply may be equivalent to

those of some other 
all. Sin
e a new node will be 
reated in both 
ases, one of the

nodes is a dupli
ate of the other.

The optimized Apply algorithm �xes this problem by keeping a list of all 
reated

nodes in a hash table 
alled the unique table. This table is looked up after the if and

else bran
hes are 
omputed to see if this node was previously 
reated. A hash tag

is 
reated 
onsisting of the if and else nodes and top var . If the node exists in the

unique table, it is returned as the result of this Apply. If not, a new node is 
reated

as in the simple Apply algorithm and inserted in the unique table.

Apply 
an be 
alled with the same set of arguments multiple times. The �rst 
all

with this set of arguments will 
reate the node and all subsequent 
alls with the same

set of arguments will return a node from the unique table. However, this will only

be dete
ted after re
ursively 
omputing the entire if and else sub-trees, ea
h node of

whi
h will also be returned from the unique table.
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Algorithm 4 Apply(f,g,hopi)

1: if terminal 
ase(f; g; hopi) then

2: return handle terminal 
asef; g; hopi);

3: end if

4: if 
a
he hit(ff; g; hopi)g then

5: return 
a
he lookup(ff; g; hopig);

6: end if

7: top var  min(var(f); var(g));

8: f

if

; f

else

 
ofa
tor(f; top var);

9: g

if

; g

else

 
ofa
tor(g; top var);

10: t

if

 Apply(f

if

; g

if

; hopi);

11: t

else

 Apply(f

else

; g

else

; hopi);

12: if t

if

= t

else

then

13: result  t

if

;

14: else if unique hit(top var ; t

if

; t

else

) then

15: result  unique lookup(ftop var ; t

if

; t

else

g);

16: else

17: result  
reate node(top var ; t

if

; t

else

);

18: unique insert(ftop var ; t

if

; t

else

g; result);

19: end if

20: 
a
he insert(ff; g; hopi)g; result);

21: return result ;

This 
omputation 
an be eliminated using another hash table, this time tagged

by the in
oming arguments f , g, and hopi. This hash table is 
he
ked before any

re
ursive 
omputation is done and the result immediately returned if the value exists

in this hash table.

Note that this hash table is not ne
essary for 
orre
tness, thus, entries 
an be

deleted from this table with only a (potentially exponential) performan
e penalty.

This hash table is often 
alled the node 
a
he to emphasize this aspe
t. BDD node


a
hing almost always signi�
antly redu
es BDD 
omputation time.

Algorithm 4 is the optimized Apply algorithm in
luding both types of hash table.

Lines 4{6 
he
k the 
a
he to see if this fun
tion has been 
omputed before and return

the 
omputed value if so. If this fun
tion was not already 
omputed, then after the

node has been 
reated, the new node is inserted into the 
a
he at line 20.

Lines 14{15 perform the unique table lookup on the 
omputed node and return
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the node from the table if it exists. Line 17 
reates a new node and line 18 inserts

the 
reated node value into the unique table.

Now that the basi
 algorithms for ROBDD 
reation have been presented, the term

BDD will refer to a ROBDD from here on in this thesis unless otherwise stated.

2.2.4 BDD Variable Ordering for Symboli
 Simulation

An equally important aspe
t in 
reating BDDs is determining a good BDD variable

order. The 
hosen order 
an have a dramati
 e�e
t on the size of the BDD. For

most fun
tions, there exists variable orders su
h that the BDD size is exponential

in the number of BDD variables. For many fun
tions, most variable orders result

in exponential sized BDDs and there are few orders that result in polynomial sized

BDDs. Finding a good BDD variable order is an NP-
omplete problem, thus resear
h

has been done on �nding heuristi
s that work well in most 
ases [59℄.

It is not an obje
tive of this thesis to study BDD variable ordering for symboli


simulation. However, �nding good variable orders is an important part in making

symboli
 simulation pra
ti
al. It is a goal of this thesis to make symboli
 simulation

eÆ
ient in verifying 
ontrol dominated 
ir
uits. In e�e
t, this is done by exploring as

many 
ombinations of 
ontrol variables as possible mixed with some data values that

are used to 
he
k the 
orre
tness of the results. The following two simple heuristi
s

have been found to be e�e
tive in produ
ing good variable orders in this 
ase.

� Order 
ontrol variables before data. Di�erent settings of 
ontrol variables

often have the e�e
t of 
ausing di�erent data to be 
he
ked at the output

of the 
ir
uit. If timing is abstra
ted away and the e�e
ts of other inputs

are abstra
ted, then the 
ir
uit is redu
ed to a multiplexor with the 
ontrol

variables sele
ting di�erent data inputs. Multiplexors have well known BDD

variable ordering 
hara
teristi
s. Basi
ally, ordering the sele
t variables ahead

of the data variables results in a minimum sized BDD. Thus, ordering 
ontrol

variables before data variables will, in general, minimize BDD sizes.

� Interleave variables representing values that are summed. This heuris-

ti
 generally is applied to data variables. When verifying an adder, interleaving
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the variables for the two operand inputs minimizes BDD size. This heuristi


also works for 
omparators and equality dete
tors, elements whi
h o

ur quite

frequently in 
ir
uits.

Another subtle use of this heuristi
 is to apply it to 
ontrol variables. For exam-

ple, veri�
ation of data transfer proto
ols su
h as bus 
ontrollers 
an done by

inje
ting a number of requests and then 
he
king that ea
h request transferred

data properly. Sin
e it is 
overing all timing 
ases that is diÆ
ult in these pro-

to
ols, it is desirable to test as many timing 
ombinations between requests as

possible.

One way to do this is to have a delay value asso
iated with ea
h request. Let

d be the delay before inje
ting the �rst request and e be the delay after the

�rst request before inje
ting the se
ond request. The 
y
le at whi
h the se
ond

request is inje
ted is equal to the sum of the two delays, d + e. At any given


y
le, the request valid signal that indi
ates a request is to be inje
ted is a

fun
tion of d and e. For the se
ond request, if T is a 
onstant representing the


urrent 
y
le, then the symboli
 value on the request valid signal represents the

relation d+ e = T . Thus, the best ordering for the variables representing d and

e is to interleave the Boolean variables en
oding the integers d and e.

Dynami
 variable ordering [73℄ is a te
hnique that automati
ally varies the vari-

able order while BDDs are being built in order to �nd a variable order that minimizes

BDD size. Dynami
 variable ordering is a very time 
onsuming te
hnique, but is ef-

fe
tive in 
ertain 
ir
umstan
es. It is usually the 
ase that on
e a good order is found,

this order works well on future runs even if the BDDs being generated 
hange due to

design 
hanges. Thus, a standard pra
ti
e is to perform dynami
 variable ordering

on
e to �nd a good order and then use this order for subsequent runs.

The 
hara
teristi
s of BDDs 
reated during symboli
 simulation are di�erent than

those 
reated by other appli
ations su
h as model 
he
king. In parti
ular, model


he
king tends to 
reate a relatively small number of very large BDDs while symboli


simulation 
reates a very large number of small BDDs. Be
ause of the large number

of BDDs 
reated by symboli
 simulation, it is highly likely that most of them will
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be exponential in size, albeit over a small number of variables. It is unlikely that

dynami
 variable ordering will be able to signi�
antly redu
e the BDD size in this


ase. Consequently, this thesis does not explore the use of dynami
 variable ordering

during symboli
 simulation.

2.3 Symboli
 Simulation

2.3.1 History and Related Work

In the broadest sense, symboli
 simulation en
ompasses any simulation method that

uses values other than from the Boolean domain. The �rst su
h instan
e was the

in
orporation of the X value to represent physi
ally indeterminate values during

simulation by IBM in the 1960s [28℄. The X value was found to be useful for dete
ting

hazards in logi
. A few years later the use of X for in
reasing test ve
tor 
overage

was explored [49℄. This work pointed out the e�e
tiveness of using X values to verify

all possible reset 
onditions of memories.

An early paper by Breuer [9℄ explored the use of multiple X values, ea
h with a

unique identity. It was 
on
luded that the use of su
h values would result in expression

blow-up and therefore did not look promising.

The term \symboli
 simulation" was 
oined by resear
hers at IBM in the late

1970s who were exploring the appli
ation of symboli
 software veri�
ation te
hniques

to hardware veri�
ation [24, 19℄. This work also su�ered from a la
k of good symboli


representation and did not advan
e beyond this initial exploration[14℄.

BDD-based symboli
 simulation appeared soon after the introdu
tion of OBDDs.

MOSSYM [12℄ was the �rst BDD-based symboli
 simulator and was designed to

verify swit
h level representations of 
ir
uits. For this 
lass of problem, modeling

indeterminate values is very important. Therefore, from the very beginning, BDD-

based symboli
 simulation has always supported the ternary base domain. This line

of resear
h evolved into the COSMOS swit
h-level symboli
 simulation [10℄ and STE

[11℄.

The work in this thesis is a dire
t des
endent of the the MOSSYM/COSMOS/STE
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line of symboli
 simulation. The primary di�eren
e between this thesis and these other

methods is the introdu
tion of automati
 approximation methods in the simulator.

Another symboli
 simulation methodology uses a two-step property veri�
ation

approa
h. In this methodology, symboli
 simulation is used to extra
t a formula whi
h

is fed to a validity 
he
ker. This allows the symboli
 expressions in the simulator to

be non-
anoni
al and is typi
ally used with high-level data types su
h as integers,

reals, and arrays. A primary appli
ation of this is the veri�
ation of pipelined mi-


ropro
essor implementations [17℄. A su

essful appli
ation of this approa
h uses the

Stanford Validity Che
ker (SVC) whi
h supports quanti�er-free �rst order logi
 [50℄.

Another appli
ation used ACL2 [64℄ as the validity 
he
ker for verifying pro
essor

mi
ro
ode [39℄.

As the basi
 symboli
 simulation algorithms have in
reased in power, more atten-

tion has been paid to appli
ations and the methodology of using symboli
 simulation.

Parametri
 representations [45, 1℄ are a methodology that allows symboli
 simulation

to be more robust for verifying data path elements, su
h as 
oating point adders, that

do not allow a polynomial-sized BDD representation. Self-
onsisten
y 
he
king [52℄

is another te
hnique that redu
es the e�ort required in writing referen
e models for

veri�
ation. Spe
ifying a symboli
 address for a RAM e�e
tively requires a

essing

all lo
ations in the RAM simultaneously during symboli
 simulation. To alleviate

the work in a

essing many physi
al lo
ations, an EÆ
ient Memory Model (EMM)

was developed for use in symboli
 simulation [77℄. The basi
 idea of this model is to

store the state of the entire RAM using a single BDD whi
h is updated as writes are

performed.

3

One of the initial appli
ations of ternary simulation was the swit
h-level veri-

�
ation of RAM 
ir
uits [15℄. This led to one of the �rst su

essful 
ommer
ial

appli
ations of BDD-based symboli
 simulation on PowerPC memory arrays [67℄. A


ompany, Innologi
, whose main produ
t is a BDD-based symboli
 simulator was

founded. The most 
ommon appli
ation of their symboli
 simulator has been in

verifying memory arrays.

3

An EMM is implemented in the program qsym whi
h embodies the algorithms in this thesis and

was used for some of the experiments in this thesis.
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Symboli
 simulation has also been applied to the veri�
ation of blo
ks within


ommer
ial mi
ropro
essors. Several blo
ks within re
ent Intel mi
ropro
essors have

been su

essfully tested using symboli
 simulation [51℄.

2.3.2 Theory

Symboli
 simulation was informally introdu
ed in Chapter 1 as a method in whi
h

symboli
 variables repla
ed some of the binary values in a dire
ted or random test.

It was 
laimed that ea
h symboli
 variable applied to an input 
overed the 
ase of

that input being set to both a 0 and 1. However, this informal des
ription does not

have 
learly de�ned semanti
s. This se
tion will formalize the 
on
epts of symboli


simulation and tie together the pie
es of this 
hapter that we have seen so far.

Our informal de�nition of symboli
 simulation is impre
ise be
ause we have not

been given a formal de�nition of what the symbols mean. It is tempting to think of

symbols as values unto themselves, however, a more useful interpretation is to think

of symboli
 values as fun
tions that map the value of sets of Boolean variables onto

a �nite domain.

The �nite domain is 
alled the base domain. The base domain is the set of

s
alar values that the simulator supports. For binary simulation, the base domain

is the Boolean, or binary, domain B = f0; 1g. In Chapter 3, the ternary domain

T = f0; 1; Xg will be used. Thus, we 
an refer to symboli
 simulation using ea
h

of these base domains as binary symboli
 simulation and ternary symboli
 simulation

respe
tively.

Let V be the set of all the symboli
 variables in a test. A literal is a variable or

its 
omplement. An assignment to V is a fun
tion �:V ! f0; 1g that maps variables

to Boolean values. Let � be the set of all possible assignments. The value of a node

in the 
ir
uit is a fun
tion f : � ! f0; 1; Xg that maps ea
h assignment in � to a

ternary value. This fun
tion is 
alled the value fun
tion of the node, whi
h is not to

be 
onfused with the operation fun
tion (AND, OR, NOT) for that node. Ea
h node

in the 
ir
uit has its own value and 
onsequently, its own value fun
tion.

We pre-de�ne some value fun
tions that will be useful later. For ea
h variable
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a 2 V, let â be the value fun
tion de�ned su
h that â(�) = �(a). Let

^

0,

^

1, and

^

X be those value fun
tions that return the values 0, 1, and X respe
tively for all

assignments.

Symboli
 simulation 
onsists of 
omputing an output value fun
tion for ea
h node

given value fun
tions for the input nodes. The 
omputation is done point wise:

(f hopi g)(�) = f(�) hopi g(�) (2.1)

where f and g are the input values and hopi is the de�ned Boolean operation for this

node.

We will not 
onsider the ternary domain until the next 
hapter, therefore, the

remainder of this 
hapter will assume that symboli
 values are over a Boolean base

domain. It is straightforward to represent symboli
 values as de�ned above using

BDDs. The 
omputation of values at nodes is done using the Apply algorithm.

As an example, we 
an formalize the simple example of an AND gate introdu
ed

in Chapter 1. Let V = fx

1

; x

2

g and the test 
ase P be the input assignments fX =

x

1

; Y = x

2

g. Let � = f�

0

; �

1

; �

2

; �

3

g be the set of assignments to V as spe
i�ed in

the following table.

Assignment �

i

(x

1

) �

i

(x

2

) (X ^ Y )(�

i

)

�

0

0 0 0

�

1

0 1 0

�

2

1 0 0

�

3

1 1 1

The value fun
tion for (X^Y ) is 
omputed using Equation 2.1. The value fun
tion

is the symboli
 value x

1

^ x

2

.

A simulation loop similar to algorithm 1 is used in performing symboli
 simulation.

Again, we assume a very basi
 test ben
h environment in whi
h the user 
reates table

entries for all inputs and outputs over all time steps. For symboli
 simulation, table

values 
an 
ontain symboli
 values over a set of symboli
 variables that the user


reates for the test.
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input values

v

1

; v

0

in

3

in

2

in

1

in

0

0; 0 0 0 1 0

0; 1 1 1 0 1

1; 0 0 1 0 1

1; 1 1 1 1 0

v

1

; v

0

(v

0

) (v

1

_ v

0

) (v

1

� v

0

) (v

1

� v

0

)

Table 2.2: Example of 
reating symboli
 input fun
tions

Symboli
 input ve
tors 
an be generated by en
oding sets of binary input ve
tors

using a parametri
 representation [45, 1℄. A set of parametri
 variables is introdu
ed

and a symboli
 input ve
tor is 
reated as a fun
tion of these variables representing

all the Boolean input ve
tors. Table 2.2 shows an example of en
oding four Boolean

ve
tors over four inputs using two parametri
 variables v

0

and v

1

. The symboli


representation of this set of ve
tors is given in the last line of the table.

Symboli
 values are 
omputed at ea
h node over all time steps using Equation 2.1

to do the evaluation of ea
h node value. A symboli
 simulation run produ
es symboli


values for the fail and stop outputs. A test 
ase failure is indi
ated when the value

fun
tion for the fail output is 1 for at least one variable assignment. A test 
ase passes

if the fail output is 0 for all variable assignments and stop is 1 for all assignments.

The fa
t that the stop output 
an be symboli
 
reates an interesting problem for

the simulator. It is possible that, for some time step, the value of stop is 0 for some

variable assignments and 1 for others. Sin
e a value of 1 means the simulator should

stop and 0 means it should 
ontinue to the next time step, the simulator is fa
ed with

dilemma of whether to stop at the 
urrent time step or 
ontinue exe
uting.

This is resolved by having the simulator 
ontinue, but having it keep tra
k of

for whi
h assignments the simulation has stopped. Any fail 
onditions for variable

assignments that were stopped in previous time steps are ignored. Thus, the basi


simulation loop is modi�ed as shown in Algorithm 5 to handle symboli
 stop values.

The symboli
 simulation loop is augmented with a variable gstop whi
h re
ords for

whi
h assignments the simulation has stopped for all time steps up until the previous
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Algorithm 5 Symboli
 simulation loop

1: t 0; ft is the 
urrent time stepg

2: stop  

^

0;

3: gstop  

^

0;

4: Initialize all node values();

5: while gstop 6=

^

1 ^ fail =

^

0 do

6: fstop; failg  Simulate(t);

7: fail  fail ^ :gstop;

8: gstop  gstop _ stop;

9: t Next time step(t);

10: end while

time step. The fail 
ondition is only 
he
ked for those assignments in whi
h gstop is

false.

We are now at a point where we 
an state and prove the fundamental theorems

of symboli
 simulation. We want to prove that symboli
 simulation is both sound

and 
omplete. Soundness means that proving a property to be valid implies that the

property is true. When applied to simulation, soundness means that if a test 
ase

passes in simulation, it will pass on the real design. Completeness means that any

property of the design is provable in simulation.

Symboli
 simulation 
an only be as sound and 
omplete as binary simulation.

Binary simulation is sound only if applied to ideal gates, that is, if we ignore timing,

noise margin, and other ele
tri
al e�e
ts. What we want to prove, therefore, is that

symboli
 simulation is sound and 
omplete when the underlying binary simulation is

sound and 
omplete. This is proved in the following two theorems.

Theorem 2.1 (Symboli
 Simulation is Sound). Let � be the set of all assign-

ments over a set of variables V. Let P be a symboli
 test 
onsisting of a set of

symboli
 input ve
tors over all time steps, a set of expe
ted symboli
 output ve
tors

and a symboli
 indi
ation of whether ea
h output should be 
he
ked at ea
h time step.

Then symboli
ally simulating P with the result that fail =

^

0 implies that for all as-

signments � 2 �, simulating P(�) will result in fail = 0, where P(�) is the binary

test resulting from substituting symboli
 variables with their binary assignments in �.
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Proof. The proof of soundness is straightforward from the de�nition of symboli
 sim-

ulation. Equation 2.1 de�nes the evaluation of symboli
 values as a point wise eval-

uation over the set of binary values. Symboli
 input and output values are en
oded

point wise over the set of binary input ve
tors. Thus, if the result of the symboli


simulation results in no failures, then none of the point wise binary simulations must

have any failures.

Completeness means that a pass/fail indi
ation will be determined in all 
ases. For

binary simulation, 
ompleteness is guaranteed if the simulation stops. Thus, binary

simulation is in
omplete only if the simulation never stops. The symboli
 equivalent

is stated by the next theorem.

Theorem 2.2 (Symboli
 Simulation is Complete). Let �, V, and P be de�ned

as in Theorem 2.1. If for all � 2 �, binary simulation of P(�) stops, then symboli


simulation of P stops.

Proof. To prove this, we must analyze Algorithm 5. Sin
e we assume that all binary

simulations must stop, there must be some time step for whi
h ea
h binary simulation


orresponding to some variable assignment stops.

The value of gstop in Algorithm 5 is simply the OR of the value of stop over all

time steps. Sin
e ea
h binary simulation must stop in a unique 
y
le, the assignments

for whi
h stop is 1 for ea
h time step are unique between all time steps. Therefore,

ea
h assignment for whi
h stop is asserted that is ORed into gstop at ea
h time step

adds one assignment for whi
h gstop is asserted. Thus, when all time steps have been

evaluated, the number of assignments for whi
h gstop is asserted will be the sum of all

assignments for whi
h stop was asserted during the simulation run. Sin
e we assumed

that all binary simulations must stop, then for all possible assignments, gstop will be

1. This is equal to the 
onstant fun
tion

^

1. Sin
e one of the the exit 
onditions for

the while loop in Algorithm 5 is gstop =

^

1, the symboli
 simulation run terminates.
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2.4 Summary

This 
hapter has presented ba
kground material on symboli
 simulation. This in-


ludes an overview of BDDs and algorithms used to manipulate them and the basi



on
epts of simulation. These are then 
ombined to produ
e symboli
 simulation. A

theory of symboli
 simulation was presented that showed that symboli
 simulation is

as sound and 
omplete as binary simulation.



Chapter 3

Approximate Values

The use of BDDs in symboli
 simulation 
reates the possibility of memory blow-up

whi
h prevents the simulation from 
ompleting. This is the primary problem that

must be over
ome in order for symboli
 simulation to be
ome a primary veri�
ation

method. This 
hapter introdu
es approximate values as a useful abstra
tion me
h-

anism in symboli
 simulation. Informally, a value is approximated by repla
ing it

with the value X indi
ating that the value is either unknown or does not matter.

Approximation of values results in fewer BDD nodes being 
reated during simulation

thereby lessening the probability of memory over
ow.

This 
hapter presents algorithms for 
reating and manipulating approximate val-

ues. It then goes on to show how the simulator 
an 
reate approximate values dy-

nami
ally based on variable 
lassi�
ation. Symboli
 variables in a test are 
lassi�ed

as either 
are or don't 
are. Fun
tions of 
are variables are not approximated while

fun
tions of don't 
ares variables are approximated.

3.1 Abstra
tion

Abstra
tion, when applied to veri�
ation, refers to the suppression of detail that is

irrelevant in proving a desired property [63℄. There are two potentially useful types of

abstra
tion in symboli
 simulation: 
ir
uit abstra
tion and value abstra
tion. Cir
uit

abstra
tion removes irrelevant parts of the 
ir
uit while value abstra
tion keeps the

34
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irrelevant logi
, but abstra
ts values on 
ir
uit nodes that are not relevant.

The e�e
tiveness of the di�erent types of abstra
tion depends on the type of

veri�
ation is being done. There are two basi
 types of veri�
ation: full and partial.

Full methods attempt to verify all fun
tionality in one shot; partial methods verify

fun
tionality a pie
e at a time. Model 
he
king and theorem proving are full methods

while simulation, in
luding symboli
 simulation, is a partial method.

Cir
uit abstra
tion is a 
ommon, and in fa
t, generally ne
essary, strategy used in

model 
he
king to redu
e state spa
e. Value abstra
tion is useful in simulation sin
e

ea
h test 
ase veri�es only a small pie
e of the fun
tionality. Sin
e the same 
ir
uit is

used for all test 
ases, it is useful to abstra
t away values on those parts of the 
ir
uit

that are not relevant to a given test 
ase.

Cir
uit abstra
tion is generally more powerful than value abstra
tion. Value ab-

stra
tion requires values to be 
omputed for irrelevant nodes; 
ir
uit abstra
tion does

not be
ause the nodes have been abstra
ted away. However, 
ir
uit abstra
tion gen-

erally requires more e�ort than value abstra
tion. In fa
t, the large amount of exper-

tise required in �nding good 
ir
uit abstra
tions is one of the primary impediments

in making model 
he
king pra
ti
al.

Symboli
 simulation 
an bene�t from value abstra
tion. Sin
e ea
h symboli
 ve
-

tor veri�es only a portion of the fun
tionality, limiting the size of BDDs used to

represent values on irrelevant nodes 
an speed up the simulation. An additional ben-

e�t in doing this is that a larger number of symboli
 variables 
an be used in a test,

allowing more 
overage with the same e�ort as symboli
 simulation without value

abstra
tion.

3.2 Approximation

In this thesis, value abstra
tion is done through approximation. Informally, approx-

imation is the pro
ess of repla
ing 1s and 0s in the truth table of a value fun
tion

with Xs. In order to formalize this 
on
ept, it is ne
essary to provide a framework

for relating approximate values to their exa
t values. This is done through a partially

ordered state spa
e.
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3.2.1 Partially Ordered State Spa
es

Let A;B; : : :, denote sets of values in a domain. A poset is a pair hS;vi in whi
h v

represents a partial order over the set S.

If A � S then a 2 S is an upper bound of A if and only if b v a for all b 2 S. The

value a is a least upper bound (lub) if a v b for all upper bounds, b, of A. A lower

bound is de�ned similarly as a value a su
h that a v b for all b 2 A. The greatest

lower bound (glb) is also de�ned similarly as a su
h that b v a for all lower bounds,

b, of A.

An upper semi-latti
e is de�ned as a poset in whi
h a least upper bound exists for

all pairs of elements. Similarly, a lower semi-latti
e is de�ned as a poset in whi
h a

greatest lower bound exists for all pairs of elements. A latti
e is a de�ned as a poset

that is both an upper and lower semi-latti
e. a 
omplete latti
e is one for whi
h a lub

and glb exist for all pairs of the poset. All �nite latti
es are 
omplete.

Let hS

i

;v

i

i be a 
omplete latti
e. The poset hS;�i = S

0

� S

1

: : :S

n

is a latti
e

if the orderings v

i

are extended point-wise. The ordering v is de�ned su
h that for

all a; b 2 S, a v b if and only if for all i, a

i

v

i

b

i

. The state of a 
ir
uit is the set of

values on all nodes. If node values form a latti
e, then, by point wise extension, the

state of a 
ir
uit forms a latti
e.

3.2.2 Approximate Values

A value fun
tion f

0

is an approximation of f , written as f v f

0

, if and only if

8�:f(�) v f

0

(�) where � is a variable assignment. Given two approximations, f

0

and

f

00

of f , f

00

is said to be more approximate than f

0

if f

0

v f

00

. Di�erent approximations

of a given value fun
tion are not ne
essarily 
omparable.

An exa
t value is de�ned as a value fun
tion whi
h ranges over the Boolean do-

main. The exa
t value of a node is the value fun
tion 
omputed for that node using

the Boolean operation de�ned for that node given that both input value fun
tions

are exa
t. An approximate value of a node is any value fun
tion whi
h is an approx-

imation of the exa
t value. By point wise extension, a 
ir
uit state is approximate if

any of its node values are approximate.
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Let the symboli
 extension of an operation be an operation applied point-wise over

all possible symboli
 variable assignments to a value fun
tion. An approximate value

for a 
ir
uit node 
an be generated by applying the symboli
 extension of the node's

operation to the two approximate input values to produ
e an approximate output

value. The 
orre
tness of this method is 
aptured in the following formula:

f v f

0

^ g v g

0

) (f hopi g) v (f

0

hopi g

0

) (3.1)

where hopi is the Boolean operation de�ned for the node, f

0

and g

0

are the input value

fun
tions, and f and g are the exa
t values for the input nodes. This formula holds

if the symboli
 extension of the Boolean operator hopi is de�ned to be monotoni
. A

fun
tion f is monotoni
 if it obeys the following relationship.

x v y ) f(x) v f(y) (3.2)

3.3 The Ternary Domain

Ternary valued simulation is an example of simulation using approximate values.

Ternary values 
an also be used as the base domain for symboli
 simulation.

3.3.1 Ternary Valued Simulation

Let T = f0; 1; Xg be the ternary domain of values that 
an appear on nodes in the


ir
uit. The value X denotes the fa
t that the a
tual value 
ould be 0, 1, or some


ombination of 0 and 1 as a fun
tion of symboli
 variables, but that the simulator

does not know or does not 
are about the a
tual value.

We form the upper semi-latti
e hT ;vi de�ned as 1 v X, 0 v X, and a v a for

all a 2 T .

1

This ordering re
e
ts the semanti
s of state ve
tors as representing sets

1

The work in this thesis is 
losely related to Symboli
 Traje
tory Evaluation (STE) [74℄ and

invites 
omparisons between the two. One of the major theoreti
al di�eren
es is the ordering of the

latti
e (X above 0 and 1 instead of below). This has only a minor e�e
t on the theory and has no

pra
ti
al signi�
an
e.



CHAPTER 3. APPROXIMATE VALUES 38

X

0 1

:

0 1

1 0

X X

^ 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

Figure 3.1: Hasse diagram and table for NOT, AND for ternary upper semi-latti
e

of binary ve
tors. Higher elements in the semi-latti
e represent more possible sets of

binary ve
tors than elements lower in the semi-latti
e.

The fun
tions AND, OR, and NOT are de�ned over this semi-latti
e. Ternary

simulation is performed by evaluating ea
h node in the 
ir
uit using the ternary

extension of the Boolean operation de�ned for ea
h node over the input values at

that node. Figure 3.1 shows a monotoni
 implementation of the AND and NOT

fun
tions over the ternary domain.

3.3.2 Ternary Symboli
 Simulation

Using a partially ordered ternary domain as the base domain for symboli
 simulation

is one way of using approximate values in symboli
 simulation. Beatty and Bryant

[4℄ showed that using ternary ve
tors instead of binary ve
tors to exhaustively verify

fun
tionality 
an redu
e the number of ve
tors required. This, in turn, redu
es the

number of variables required to symboli
ally en
ode a set of ve
tors, thereby redu
ing

BDD sizes and 
omputation time during symboli
 simulation.

Symboli
 Traje
tory Evaluation (STE) [74℄ is a symboli
 simulation method that

uses a ternary base domain. STE represents symboli
 approximate values using a pair

of BDDs to en
ode the three possible ternary values. An example of this en
oding

is shown in Figure 3.2 with the en
odings [1; 0℄ representing 0, [0; 1℄ representing 1,

and [1; 1℄ representing X.

In STE, the user must determine the best set of ternary values that minimizes BDD

size and 
omputation time. This works well for verifying 
ir
uits that modify data

be
ause partitioning the set of ve
tors is very regular and 
an be done algorithmi
ally
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index input values

de
imal v

1

; v

0

y y:H y:L

0 0; 0 0 1 0

1 0; 1 1 0 1

2 1; 0 1 0 1

3 1; 1 X 1 1

y:H(v

1

; v

0

) = v

1

� v

0

y:L(v

1

; v

0

) = v

1

_ v

0

Figure 3.2: Symboli
 indexing of ternary ve
tors

[45℄.

Thus, STE and other symboli
 simulators based on ternary symboli
 simulation

have primarily been used in verifying datapath 
omponents su
h as RAMs [67℄, arith-

meti
 units [51℄ and instru
tion de
oders [1℄.

We are interested in in
reasing the eÆ
ien
y of veri�
ation for 
ontrol 
ir
uits.

For these 
ases, it is not obvious to the user how to partition a symboli
 ve
tor into

a set of ternary ve
tors. Instead, the user wants to 
reate sets of binary ve
tors

that represent things su
h as 
ommand types, numbers of requests, and delay values

between di�erent transa
tions. We want the simulator to take these binary symboli


values and approximate them where possible to redu
e BDD size and 
omputation

time.

3.3.3 Simulator Changes Required to Support Approximate

Values

The stop and fail 
onditions may need to be handled di�erently due to the presen
e

of X values on these outputs. STE assumes that any X appearing on the fail output

indi
ates a bug. It is up to the user to 
orre
t this even if this is due simply to an

input ve
tor being too 
onservative.

STE does not allow rea
tive tests as de�ned in Se
tion 2.1.2. Therefore, stop

is always exa
t in STE. Approximate stop values in rea
tive tests 
ause problems

that 
annot be handled with the Symboli
 simulation loop algorithm given in
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Chapter 2. We will deal with this problem in Chapter 5.

3.4 BDD-based Approximate Values

The STE method of en
oding ternary symboli
 values as two BDDs works well for

the ternary domain, but does not extend easily to arbitrary �nite base domains. This

se
tion des
ribes a general method for representing and manipulating approximate

values represented as BDDs over arbitrary base domains. The basis of this te
hnique

uses a modi�ed BDD 
alled a Multi-Terminal BDD (MTBDD).

3.4.1 Multi-Terminal BDDs

A MTBDD [32℄ is a BDD whi
h allows terminal nodes other than 0 and 1. MTBDDs

were originally developed to represent algebrai
 values. In this appli
ation, it is

useful to think of terminals as pointers to base domain values. Thus, MTBDDs 
an

represent arbitrary approximate base domains. In all 
ases, however, approximate

base domains will 
ontain values for TRUE and FALSE . These will always be the

distinguished values 1 and 0 respe
tively.

There are minor di�eren
es in the algorithms for manipulating MTBDDs 
om-

pared to BDDs. However, the basi
 Apply algorithm works without modi�
ation.

Most of the di�eren
es are taken 
are of by the fun
tions that 
he
k and manipulate

terminal values. A requirement on the base domain is that the approximate values

be 
anoni
al. This is ne
essary in order to maintain the 
anoni
ity of BDDs with

approximate values.

3.4.2 Ternary BDDs

Ternary BDDs (TBDDs) are MTBDDs having terminal nodes from the ternary base

domain. They are 
reated and manipulated in the same way as BDDs over the

Boolean domain ex
ept that the terminal fun
tions implement ternary operations.
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returned stored

if else return if else

X U U U U

X C C U U

U X U U U

U U U U U

U C U U C

C X C U U

C U C U C

C C C U U

Table 3.1: BDD Transformations for Complemented Edges

Ternary values 
reate a 
ompli
ation in dealing with 
omplemented edges. Com-

plemented edges are an optimization of standard BDDs that allow a smaller repre-

sentation than BDDs without 
omplemented edges. BDDs with 
omplemented edges

have a 
omplement 
ag for both the if and else bran
hes of ea
h node. The 
om-

plement 
ag indi
ates that the sub-fun
tion for that bran
h is 
omplemented for this

node.

There are four di�erent 
ombinations of values of the 
omplement 
ags for the if

and else bran
hes. This allows the same fun
tion to be represented in two di�erent

ways, thereby breaking the 
anoni
ity of the BDD. The standard way of resolving this

is by sele
ting one of the representations as the 
anoni
al one and transforming the

non-
anoni
al one to its 
anoni
al representation by 
omplementing the node [58℄.

When 
omplementation is applied to terminal nodes, the node is required to be


omplemented. If the terminal node is the X value, its 
omplemented value is also

X. This 
reates another sour
e of non-
anoni
ity when 
ombined with 
omplemented

edges. If either the if or else sub-fun
tions return the value X, then additional rules

must be used to ensure 
anoni
ity. These rules are des
ribed in Table 3.1. The

left \if" and \else" 
olumns represent the value of the 
omplement 
ag returned by

the 
omputation of these sub-fun
tions. The \return" 
olumn indi
ates whether this

node should be returned as 
omplemented or un
omplemented, and the last 
olumns

indi
ate the setting of the 
omplement 
ags when 
reating this node. \U" and \C"
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indi
ate 
omplemented and un
omplemented edges respe
tively and \X" indi
ates a

value of X was returned by the sub-fun
tion 
omputation.

3.4.3 Approximate Apply Algorithm

The representation of approximate values using MTBDDs allows the user to 
reate

approximate values. But, so far, the algorithms we have seen do not allow the sim-

ulator any 
hoi
e in determining the level of approximation in 
reating values. We

need an algorithm that allows the simulator to in
rease the amount of approximation

on values as they are 
reated. We also need methods to remove this approximation

when ne
essary. This is the subje
t of the next 
hapter. For now, a general algorithm

for allowing the simulator to approximate values on a 
ase by 
ase basis is presented.

The algorithm used to 
reate approximate algorithms is a modi�
ation of the basi


Apply algorithm. The algorithm is modi�ed to allow the 
reation of either an exa
t

value or an approximate value on a node by node basis while 
omputing the BDD.

This algorithm, 
alled approx Apply, is shown in Algorithm 6.

The di�eren
e between approx Apply and Apply is the addition of lines 14{

15. The fun
tion want approximate() implements a set of rules, 
alled approximation

rules that determine whether a value should be approximated or not. If so, the

approximate() fun
tion 
omputes and returns the 
orre
t approximate value. In the-

ory, approximate() 
ould return any value that is an approximation of the a
tual

value. However, in pra
ti
e, normally the terminal value X is returned sin
e ap-

proximation is applied to values that are 
onsidered to be \don't 
are" values that

should not a�e
t the property being veri�ed. The value X is the least expensive

value to return for this 
ase in terms of both time and memory. If no approximation

is needed, then the node is returned from the unique table or 
reated and inserted

into the unique table as usual.

Figure 3.3 illustrates the operation of approx Apply in 
omputing the AND of

two BDDs. Assume that the approximation rule is that a node is approximated by

returning X if both the if and else fun
tions are non-terminal nodes.

The exe
ution sequen
e illustrates the series of 
alls to approx Apply with the



CHAPTER 3. APPROXIMATE VALUES 43

Algorithm 6 approx Apply(f,g,hopi)

1: if terminal 
ase(f; g; hopi) then

2: return handle terminal 
asef; g; hopi);

3: end if

4: if 
a
he hit(ff; g; hopi)g then

5: return 
a
he lookup(ff; g; hopig);

6: end if

7: top var  min(var(f); var(g));

8: f

if

; f

else

 
ofa
tor(f; top var);

9: g

if

; g

else

 
ofa
tor(g; top var);

10: t

if

 approx Apply(f

if

; g

if

; hopi);

11: t

else

 approx Apply(f

else

; g

else

; hopi);

12: if t

if

= t

else

then

13: result  t

if

;

14: else if want approximate(top var ; t

if

; t

else

) then

15: result  approximate(top var ; t

if

; t

else

);

16: else if unique hit(top var ; t

if

; t

else

) then

17: result  unique lookup(ftop var ; t

if

; t

else

g);

18: else

19: result  
reate node(top var ; t

if

; t

else

);

20: unique insert(ftop var ; t

if

; t

else

g; result);

21: end if

22: 
a
he insert(ff; g; hopi)g; result);

23: return result ;

arguments passed in 
omputing the if and else bran
hes. The value in parentheses

following the pair of operands is the BDD node that is returned by this 
all. The

initial 
all is with nodes A

1

and B

1

. Sin
e both of these nodes have the same top

variable, the else bran
h is 
omputed by passing the else bran
hes of ea
h of these

nodes, A

2

and B

4

.

The 
omputation of the sub-fun
tions for the A

2

; B

4

node are terminal 
ases be-


ause one of the operands is 1 in both 
ases. Therefore, the BDDs that are returned

in these 
ases are A

3

and B

3

for the if and else bran
hes respe
tively. Sin
e neither of

these nodes is a terminal, the value of this node is approximated by the approximation

rule and X is returned.

The 
omputation of the if bran
h of the A

1

; B

1

node is a terminal 
ase and
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Figure 3.3: An example of approximate apply

returns the node B

2

. Sin
e the else bran
h 
omputation returned the terminal value

X, no approximation is done and a new node F

1

is 
reated with if (F

1

) = B

2

and

else(F

1

) = X. For this 
ase, approximation has redu
ed the size of the BDD by two

nodes (A new node for A

2

; B

4

and A

3

) 
ompared to the exa
t BDD for F .
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3.5 Approximation Based on Variable Classi�
a-

tion

We want the simulator to identify nodes irrelevant to proving the property being

veri�ed. Nodes may or may not be relevant as a fun
tion of the 
urrent simulation time

step and setting of symboli
 variables. For those time steps and variable assignments

that are irrelevant, approximate values suÆ
e in order to redu
e memory 
onsumption

and simulation time. This se
tion presents heuristi
s that allow the simulator to

dis
riminate relevant from irrelevant nodes.

There is a wide range of possibilities in 
hoosing approximation rules for sym-

boli
 simulation. This thesis studies heuristi
s based on variable 
lassi�
ation. To

understand the motivation for using these heuristi
s, a generi
 example is given. This

example illustrates the use of symboli
 simulation in verifying large systems. This

methodology is 
alled symboli
 system simulation to distinguish it from other sym-

boli
 simulation methodologies.

These heuristi
s are not 100% a

urate in identifying when it is appropriate to

approximate values and when it is not. There must be some way of dealing with this

ina

ura
y. This issue will be deferred until the next 
hapter. The remainder of this


hapter will present the motivation for the variable 
lassi�
ation heuristi
, how it is

implemented, and then demonstrate its e�e
tiveness on an industrial design.

3.5.1 Symboli
 System Simulation

Figure 3.4 depi
ts an example of a 
ir
uit (labelled DUT) surrounded by stru
tures

implementing an environment that 
onstrain the values that 
an be applied to the


ir
uit. The 
ir
uit re
eives a request that in
ludes data, an address, and a request

type that spe
i�es an operation to be performed. Assume there are only four valid

request types. The multiplexor 
onstrains the request inputs to only valid types. The

multiplexor input sele
ts one of the valid types.

The 
ir
uit stores data in a pipeline before being transmitted on the data output.

Assume that the DUT transmits data on the output a �xed number of 
y
les after



CHAPTER 3. APPROXIMATE VALUES 46

=

=0

DUT

down-
ounter

\Probe"

\Int"

\Write"

\Read"

Data out

fail

Req vld

Request


nt

load

Address

Data in

Interrupt

1

hx

2

; x

3

i

hx

4

; x

5

; x

6

; x

7

i

hx

8

; x

9

; x

10

; x

11

i

Clo
k

hx

0

; x

1

i

0

Figure 3.4: Symboli
 System Simulation Example

the request arrives. Che
king the 
orre
tness of the output data requires pipelining

the data the same number of 
y
les as the 
ir
uit should. This is done by the registers

pla
ed above the DUT in the �gure. A 
omparator at the output determines whether

the data mat
hes the expe
ted value and generates the fail output.

Sin
e this is a sequential 
ir
uit, we want to be able to vary the delay of inje
t-

ing the request into the 
ir
uit in order to explore potential pipeline forwarding in

the DUT. This is a

omplished by having a programmable down-
ounter in the en-

vironment. A value is loaded into this 
ounter and the 
ounter 
ounts down until it

rea
hes zero, signalled by the output labelled \= 0" in the �gure. This output drives

the request valid input of the 
ir
uit, thus allowing a variable delay for inje
ting a

request into the 
ir
uit.

In a dire
ted or random test, we would simply put various binary values on the

inputs, issue some 
lo
ks, and 
he
k the outputs. In symboli
 simulation, we would

repla
e some of these s
alar values with symboli
 values. In the �gure, symboli
 values

are used to sele
t the request type (variables x

0

and x

1

) and the request inje
tion delay
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(x

2

and x

3

). The data is made symboli
 (variables x

4

{x

7

) as is the address (variables

x

8

{x

11

). The rest of the variables are left as binary values. Note that the �gure shows

the state of the test for a single 
y
le only. In pra
ti
e, the 
lo
k input would os
illate

every 
y
le and the load input to the 
ounter would be asserted a
tive only on the

�rst 
y
le and deasserted for the remainder of the test.

Also, the symboli
 values shown would only be asserted on the 
y
le in whi
h the

request is valid. On other 
y
les, the request, data, and address inputs are don't 
are

inputs, whi
h means values on these inputs should not a�e
t the fun
tionality of the


ir
uit for this test. In binary simulation, it is normal to set these inputs to a benign

value, su
h as all zeroes, on
e the request has been inje
ted.

Using symboli
 simulation, we 
an do better. After the request is inje
ted, we


an put symboli
 variables on the don't 
are inputs sin
e this should not a�e
t the


orre
tness of the test. There are 13 inputs that are don't 
ares after request inje
tion.

Basi
ally, this is all inputs ex
ept the load input to the 
ounter. Assume that after

the request is inje
ted, symboli
 variables x

12

{x

24

are inje
ted on the 13 don't 
are

inputs.

If we 
onsider all 25 variables, then this symboli
 test represents 2

25

� 32 million

binary tests. However, the don't 
are variables do not ne
essarily in
rease the amount

of 
ontrol state 
overed by the test. Also, the data variables that are 
he
ked at the

end don't ne
essarily in
rease 
ontrol state 
overage either. Be
ause of the data

independen
e property [80℄, a single symboli
 data variable is suÆ
ient to distinguish


orre
t from in
orre
t data. Thus, the set of symboli
 variables that sear
h the


ontrol spa
e of the design are those that sele
t the request and delay value, x

0

{x

3

.

The address inputs are also don't 
are inputs sin
e the 
orre
t output value does not

depend on them. Thus, this test represents 16 signi�
antly di�erent binary tests.

3.5.2 Variable Classi�
ation

Based on the above example, we 
an 
lassify symboli
 variables into three types:

� Control Variables. These are the variables that signi�
antly di�erentiate

the binary tests represented by a symboli
 test. These variables 
ontrol the
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operation of the DUT and the timing of events. They are the variables that

sear
h the 
ontrol state spa
e of the DUT. In the example above, x

0

{x

3

are the


ontrol variables.

� Data Variables. These are values that are inje
ted and 
he
ked by the test.

For many 
ases, data variables are simply transferred through the DUT unal-

tered. If they are modi�ed, by an ALU for example, then data variables may

rightly be 
alled 
ontrol variables sin
e one set of data variables 
an be viewed

as steering the other set through the 
ir
uit in order to produ
e an output value.

Therefore, we only 
onsider variables transferred unmodi�ed as data variables.

Variables x

4

-x

7

are the data variables in the above example.

� Don't Care Variables. These are values that do not a�e
t the 
orre
tness

of the test. If there is a bug in either the environment or DUT, don't 
ares

from the simulator's point of view may a
tually be 
are variables. Thus, there

are two types of don't 
are variables: user don't 
ares whi
h are what the user

intends to be don't 
ares, and simulator don't 
ares whi
h are true don't 
ares.

Variables x

8

{x

24

are the user don't 
are variables in the above example.

We only 
onsider 
ontrol variables to index the set of binary tests en
oded by

a symboli
 test sin
e only these variables 
ause di�erent 
ontrol state spa
e to be

sear
hed. A single test from the set of indexed tests will have all its 
ontrol variables

assigned to 
onstants, but 
an have symboli
 variables on data and don't 
are inputs.

Sin
e these symboli
 variables do not in
rease 
overage of 
ontrol state in the DUT,

it is fair to ask what the value is of using symboli
 data and don't 
are variables,

espe
ially if they 
ause a signi�
ant in
rease in simulation time due to large BDDs

being 
reated on don't 
are nodes.

The value of these symboli
 variables is two-fold. First, symboli
 don't 
ares

may 
at
h bugs by exer
ising inputs that were thought not to be relevant. This is

usually only a minor sour
e of bugs. Finding these bugs at the expense of slowing

down the simulation so mu
h that other bugs may not be found is unprodu
tive.

Se
ond, if no bugs are found, the fa
t that don't 
are inputs are symboli
 gives

the user more information about what has been 
overed by the test. Don't 
are
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inputs that were 
overed by symboli
 variables eliminate the need to perform random

simulation to 
over di�erent 
ombinations of these inputs. But, again, this advantage

is not worthwhile if the 
ost is too high. Thus, having symboli
 variables on don't


are inputs has value, but only if the 
ost of doing so is low. Using approximate

values minimizes the 
ost of 
omputing don't 
are values and makes it feasible to put

symboli
 variables on all don't 
are inputs during simulation.

3.5.3 Approximation Based on Variable Classi�
ation

A node being evaluated by the simulator may be a 
are node or a don't 
are node. A


are node is one whi
h a�e
ts a 
he
ked output value. That is, an in
orre
t value on

a 
are node 
auses an in
orre
t value on a 
he
ked output value. A don't 
are node is

one that does not a�e
t a 
he
ked output. Nodes may be 
are or don't 
are nodes at

di�erent time steps during simulation. In a symboli
 test, a node may also be either

a 
are or don't 
are node as a fun
tion of the 
ontrol variable assignments.

A 
are value is a value fun
tion that if in
orre
t 
auses an in
orre
t value fun
tion

to appear at a 
he
ked output. A don't 
are value is a value fun
tion that does not

a�e
t a 
he
ked value.

Assume that 
ontrol and data variables are ordered ahead of don't 
are variables

in BDDs. If for some variable assignment a node is a 
are node, then all variables

on the path from the root of the BDD to a terminal node for this assignment will


ontain only 
ontrol and data variables. For all assignments for whi
h the node is a

don't 
are node, 
ontrol, data, and don't 
are variables may appear on the path from

the BDD root to a terminal node.

Thus, BDD subtrees in whi
h don't 
are variables appear 
an be approximated

sin
e they represent don't 
are nodes. However, we do not want the entire subtree

approximated sin
e some bran
hes may represent 
are assignments and others don't


are assignments. If a node is labelled with a don't 
are variable, then the entire

subtree rooted by this node must be don't 
are assignments only. This node 
an

be approximated by the value X. Any subtree that points to this value will also

be approximate with some bran
hes pointing to exa
t values and others pointing to



CHAPTER 3. APPROXIMATE VALUES 50

approximate values.

Thus, don't 
are values 
an be identi�ed by 
lassifying the variables in the BDDs

being 
reated for a parti
ular node. We 
an exploit this 
lassi�
ation using the

following approximation rule.

Approximation Rule 1 (Simple Variable Categorization Rule). if top var is

a don't 
are variable, then return X as an approximation of this BDD node value.

This is implemented by having want approximate() return TRUE if the variable

passed to it (top var) is a don't 
are variable. This means that the simulator must

keep a table 
lassifying ea
h variable as either a 
are or don't 
are variable. It is

not obvious how su
h a table is 
reated. The problem of 
lassifying variables will be

addressed in the next 
hapter. Assume for now that ea
h variable has already been


lassi�ed.

Approximation Rule 1 implies several things. First, variables need only be 
las-

si�ed as 
are or don't 
are variables. Se
ond, this 
lassi�
ation is based on the

simulator's view of things, not the users. Third, 
ontrol variables are 
lassi�ed as


are variables, don't 
are variables are 
lassi�ed as don't 
ares, and data variables

may be 
lassi�ed as either.

It may not be obvious why data variables do not need to be 
lassi�ed as 
are

variables. Normally, if data variables are simply passed through the 
ir
uit as a

fun
tion of the 
ontrol variables and 
ontrol variables are ordered ahead of data

variables in BDDs, then 
omputed data variable nodes in the BDD are handled by

the terminal value fun
tions. In these 
ases, either a 
onstant is returned or one of the

original BDDs. In either 
ase, no new node will need to be 
reated. Approximation

only o

urs if it is possible to 
reate a new node. Therefore, no approximation is done

for these 
ases.

By treating data variables as don't 
ares, they will remain exa
t if they are simply

passed through the 
ir
uit and will be approximated if they are manipulated in any

way. If data variables are manipulated and this manipulation is being veri�ed, then

it is appropriate to use exa
t values for these values. Thus, data variables that are

manipulated are 
onsidered to be 
are variables.
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Figure 3.5: Syntheti
 
ir
uit with don't 
are logi


3.5.4 Analysis of the Simple Variable Categorization Rule

We would like to understand Approximation Rule 1. Figure 3.5 is an example of a


ir
uit with don't 
are logi
. The primary 
omponent in this 
ir
uit is an adder. The

data paths into and out of the adder go to other pla
es in the 
ir
uit and other inputs

may be multiplexed with the output of the adder. A CPU, for example, may have

an ALU. Its inputs may be 
onne
ted to other fun
tional units whi
h are sele
ted by

the op
ode. Its outputs may be multiplexed with the outputs of other units, again

depending on the op
ode or other 
ontrol signals. Thus, this 
ir
uit is representative

of the type of systems we are interested in verifying.

Suppose we are only interested in testing the paths from inputs w, x, and y to

output z. In this 
ase paths leading to other outputs are don't 
are paths. Don't 
are

logi
 is represented by the blo
ks labelled \HWB" (hidden weighted bit). In general,

we must 
onsider that don't 
are logi
 may have any fun
tion. Sin
e random fun
tions


reate exponential sized BDDs in general, the HWB blo
k, whi
h has exponential

BDD size for any variable order [7℄, represents worst 
ase don't 
are logi
.

There are two types of don't 
are logi
: input and output. Input don't 
are logi


is driven by don't 
are inputs. Output don't 
are logi
 is driven by 
are inputs, but

drives don't 
are outputs. The e�e
t of approximation on these two types of don't


are logi
 is di�erent sin
e approximation is based on the input variable 
lassi�
ation

and ea
h type re
eives di�erent 
lasses of variable. The two HWB blo
ks in the
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example represent these two types of don't 
are logi
.

If the goal was to verify the adder 
ompletely, then variables on the x and y

inputs would all be 
are variables. In this 
ase, all node values would be exa
t and

there would be no bene�t in using approximate values over exa
t symboli
 simulation.

However, in symboli
 system simulation, we are usually interesting in verifying the

behavior of the system after verifying the individual 
omponents. Thus, if we assume

the adder has already been veri�ed at the 
omponent level, we only need to verify

that it is 
orre
tly 
onne
ted in the system. The only 
ontrol variable that needs

to be exer
ised in this example is the multiplexor sele
t input s. To verify that this


ontrol signal works 
orre
tly, it is only ne
essary to pass data through the adder.

Thus, a simple system level test would be to put a set of symboli
 data variables

on x inputs, zeroes on y inputs, and a di�erent set of symboli
 data variables on

the w inputs. If we put a symboli
 
ontrol variable on the s input, we need only


he
k that the 
orre
t symboli
 variables passed through the 
ir
uit as a fun
tion of

the symboli
 
ontrol variable. We 
an repeat this test with the inputs on x and y

swapped to 
he
k all paths through the 
ir
uit. The following table lists the results

of running these two tests using both approximate and exa
t symboli
 simulation.

2

approximate exa
t

BDD nodes BDD nodes

test 
ase time peak �nal time peak �nal

add d
2 0.03s 196 99 256s 7:7� 10

6

48,477

add d
3 0.03s 196 99 258s 7:7� 10

6

48,477

Approximation has radi
ally redu
ed simulation time on the don't 
are portion

of the logi
 
ompared to exa
t symboli
 simulation. The �nal BDD size shows a

large improvement also, but a more realisti
 measure of improvement is the di�er-

en
e between peak BDD node usage whi
h more a

urately re
e
ts the amount of


omputation done during ea
h simulation run.

It may not be apparent why this dramati
 improvement is possible. Although the


ir
uit state is highly approximate, the pass/fail indi
ation for the property being

2

Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.



CHAPTER 3. APPROXIMATE VALUES 53

veri�ed is not. But this is only a ne
essary 
ondition sin
e the test 
ase passed. If

there was a bug and the test 
ase failed, it is quite likely that the pass/fail output

would be approximate. Sin
e approximate values are 
onservative, additional work

may need to be done in order to produ
e an exa
t result that indi
ates that bug

really exists. In fa
t, it may require more work than using exa
t symboli
 simulation.

In pra
ti
e, bugs are triggered easily and produ
ing an exa
t enough value for these


ases is generally a small amount of overhead.

The variable 
lassi�
ation that was used for these tests marked the sele
t input as

a 
are variable and all data variables as don't 
are variables. Be
ause the data was

simply passed through the 
ir
uit, all BDD manipulation involving data variables on

the 
are path through the 
ir
uit was done by the handle terminal 
ase() fun
tion.

As soon as the data variables entered the HWB blo
ks whi
h tried to manipulate

them, these values were immediately approximated.

This 
ase is a worst 
ase for exa
t symboli
 simulation. The worst 
ase for ap-

proximate symboli
 simulation o

urs when both inputs to the adder are symboli


and the output value of the adder is 
he
ked. In this 
ase, these data values would

have to be made 
are values. Consequently, exa
t values would be generated in the

HWB blo
ks and approximate symboli
 simulation would have the same performan
e

as exa
t symboli
 simulation.

This leaves open the question of what the behavior might be on a realisti
 example

whi
h has a mixture of symboli
 
are and don't 
are variables. The next se
tion

presents results of applying symboli
 simulation with approximate values on a realisti


example.

3.5.5 Symboli
 Simulation with Approximate Values on an

Industrial Example

This se
tion examines the behavior of symboli
 simulation with approximate values on

a real industrial design. The design, 
alled the NI, is a blo
k in a traÆ
 management


hip whi
h is part of a large networking system. The primary fun
tion of this 
hip is

bu�ering pa
kets into and out of the system.
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Simulator Implementation

The implementation of the algorithms in this thesis is embodied in a program 
alled

qsym. This program a

epts hierar
hi
al gate level Verilog input. It is 
ompatible

with the gate level format generated by Synopsys' Design Compiler. The test 
ir
uit

is in Verilog RTL format. Code is synthesized with no 
onstraints and low 
ompile

e�ort to generate a gate level netlist qui
kly.

The simulator supports a 
ustom behavioral test language whi
h is bit-level, but

allows behavioral 
onstru
ts in
luding assign, thread, guard (if-else,) wait, symboli


variable 
reation, data 
he
k, and stop. This language allows most of the fun
tions

available in behavioral Verilog. A 
ustom language was 
hosen be
ause Verilog does

not support some of the 
onstru
ts ne
essary for symboli
 simulation (namely, sym-

boli
 variable 
reation) and for ease of implementation.

The simulator uses David Long's BDD pa
kage 
mubdd [57℄. This pa
kage was

extended to support the Approx apply algorithm in addition to being heavily mod-

i�ed

3

to improve the performan
e of the pa
kage in this appli
ation. It was found that

symboli
 simulation with approximate values tends to produ
e many small BDDs.

Pro�ling of the simulator revealed that up to 80% of the exe
ution time of the sim-

ulator was spent in the BDD routines performing error 
he
king. These routines

were optimized by stripping out all error 
he
king. This gave a �ve-fold improvement

in BDD pa
kage performan
e and a two to three times improvement in simulator

performan
e when there are less than 10 symboli
 
ontrol variables.

Cir
uit Des
ription

One of the main fun
tions of networking 
ir
uits is to bu�er data. To maximize

the utilization of bu�ering RAM, pa
kets are stored in �xed sized 
ells in memory.

Therefore, there needs to be a 
ir
uit that breaks in
oming pa
kets into �xed sized


ells. The NI blo
k performs this fun
tion. The basi
 fun
tions of the blo
k are listed

below.

� Add an eight byte header to the in
oming pa
ket.

3

read:ha
ked
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� Break the resulting pa
ket into 112 byte 
ells.

� Create 
ell headers identifying whi
h pa
ket the 
ell belongs to.

� Handle pa
ket lengths between 64 and 16K bytes.

� Pad out end-of-pa
ket 
ells to the 
orre
t length.

� Convert a 128 bit wide pa
ket interfa
e to a 160 bit wide 
ell interfa
e.

� Che
k for errors and mark 
ells as bad if any word within the 
ell is in error.

Stru
turally, the blo
k 
onsists of three main 
omponents: an in
oming 128-bit

word FIFO whi
h feeds a re-alignment bu�er to 
onvert the 128-bit interfa
e to 160-

bits. The re-alignment bu�er also breaks pa
kets into 
ells and performs the ne
essary

padding and insertion. The output of the re-alignment bu�er is a 
ell FIFO whi
h

drives the output of the blo
k. The blo
k implementation requires approximately

100K gates and 3500 state holding elements. The main diÆ
ulty in implementing

this unit is in handling the various boundary 
onditions in pa
king 128-bit words into

a 160-bit interfa
e and padding 
ells to the 
orre
t length at the end of the pa
ket.

The NI 
onsists mostly of data path elements. The 
ontrol state 
onsists of the

depth of the in
oming word queue, the depth of the 
ell FIFO, and the state of the

re-alignment bu�er.

The Test 
ase

The strategy for verifying this unit using symboli
 simulation is to inje
t a stream of

pa
kets and then 
he
k that ea
h is properly 
onverted to 
ells. The test 
ase takes

advantage of pa
ket symmetry by 
he
king only a single pa
ket within the stream.

Symboli
 variables are used to sele
t the target pa
ket within the stream. The role

of the symmetri
 pa
kets within the stream is to rea
h all the possible initial states

that the target pa
ket may en
ounter. If all possible target pa
kets are exer
ised,

then all possible states are tested. Symmetry redu
es the number of 
he
ked data

variables and in
reases the number of don't 
are variables allowing more opportunity
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for approximation. Symmetry does not redu
e the number of 
ontrol variables that

are 
are variables.

In order to explore the entire rea
hable state, the following parameters are 
on-

trolled by symboli
 variables in the test 
ase: target pa
ket length, symmetri
 pa
ket

length, inter-pa
ket delay for ea
h pa
ket, and intra-pa
ket delay (one delay \bubble"

is inserted within ea
h pa
ket, with the pla
e within the pa
ket sele
ted by symboli


variables) for both the target pa
ket and symmetri
 pa
kets.

The test 
ase has 66 
ontrol variables, 32 data variables, and up to 565 don't 
are

variables. The test simulates between 56 and 76 ma
hine 
y
les, depending on the

the 
ontrol variable assignments.

This test was run on the NI shortly after the blo
k was designed. The designer

had done extensive, but not 
omplete, veri�
ation of the blo
k using dire
ted tests.

At the time this symboli
 test was run on the blo
k, many bugs had already been

found and �xed in the design.

The symboli
 test found two bugs, one trivial and the other simple. The �rst bug

was that two pa
ket header bits were not being passed through to the 
ell headers.

This was due to an ambiguity in the spe
i�
ation and so would easily have been


aught by dire
ted testing if the designer had interpreted the spe
i�
ation di�erently.

The se
ond bug was that one parti
ular data word was not transferred properly

when the pa
ket length was between 76 and 79 bytes. This was dis
overed easily

by the symboli
 simulator sin
e it spe
i�es the pa
ket length using a symboli
 value.

The bug was easy to diagnose sin
e the symptom was a don't 
are data variable on a

di�erent word in the previous pa
ket being propagated through instead of the 
orre
t

word. This bug 
ould have been found by dire
ted testing without too mu
h e�ort.

This is exa
tly the type of bug that is targeted by this resear
h.

Results

Figure 3.6 plots the exe
ution time and memory usage of both exa
t symboli
 simu-

lation and symboli
 simulation with approximate values for the NI.

4

4

Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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Figure 3.6: Comparison of approximate and exa
t symboli
 simulation

The test 
ase 
ode identi�es 
ontrol variables and allows the user to individually

spe
ify whether ea
h 
ontrol variable is symboli
 or is either the 
onstant 0 or 1. The

�gure plots exe
ution time and the maximum number of BDD nodes used during the

test as a fun
tion of the number of symboli
 
ontrol variables. A number of runs were

performed in whi
h the number of 
ontrol variables made symboli
 is varied from zero

to 21. Control variables that are not symboli
 are set to either 1 or 0.

The plot shows that both exa
t and approximate symboli
 simulation s
ale expo-

nentially with the number of symboli
 
ontrol variables. In both 
ases, in
reasing the

number of symboli
 
ontrol variables by one in
reases the number of BDD nodes by

approximately 25%. Run time in both 
ases is proportional to the number of BDD

nodes 
reated, indi
ating that run time is dominated by BDD 
reation time.

Exa
t symboli
 simulation 
reates more than ten times the number of nodes than
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approximate symboli
 simulation with 
ommensurately slower exe
ution time. There-

fore, for this example, symboli
 simulation with approximate values improves sim-

ulation eÆ
ien
y 
ompared to exa
t symboli
 simulation. However, be
ause both

methods s
ale exponentially at the same rate, this advantage only allows approxi-

mate symboli
 simulation to handle a �xed number of additional symboli
 
ontrol

variables before memory runs out. For this example, approximate symboli
 simula-

tion allows tests with 11 more 
ontrol variables to be used with the same BDD node

limit.

3.6 Summary

This 
hapter introdu
ed approximation and presented algorithms for 
reating approxi-

mate values on a 
ase-by-
ase basis. A strategy for de
iding how mu
h to approximate

values based on variable 
lassi�
ation was des
ribed. An experiment on a realisti


test 
ase showed that approximate values based on variable 
lassi�
ation improve the

performan
e of symboli
 simulation by redu
ing the BDD sizes.



Chapter 4

Improving the Approximation

The previous 
hapter presented algorithms for approximating values and for using

variable 
lassi�
ation to dire
t the 
reation of approximate values. The result was a

redu
tion of BDD 
omputation time 
ompared to performing exa
t symboli
 simula-

tion.

There is a pri
e that is paid for this: the user must manually 
lassify variables

as either 
ontrol, data, or don't 
are variables. This has two problems. First, there

is the additional, though generally small, e�ort in doing this. Se
ond, the user may

in
orre
tly 
lassify variables leading to 
onservative answers if too few variables are


lassi�ed as 
are variables or ex
essive simulation time if too many are 
lassi�ed as


are variables.

This 
hapter addresses these problems by introdu
ing methods to automati
ally


lassify variables. The simulator starts with an optimisti
 
lassi�
ation whi
h may


ause the simulator to in
orre
tly approximate values. This may 
ause the �nal

simulation result to be approximate. The simulator then re-
lassi�es variables to

\improve" the approximation and re-simulates the design using the improved vari-

able 
lassi�
ation. Multiple iterations of re-
lassi�
ation and simulation may be per-

formed until an exa
t result is produ
ed by the simulator. The goal is to improve the

approximation just enough to 
reate an exa
t result and no more in order to minimize

simulation time and memory usage.

59
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4.1 Adaptive Variable Classi�
ation

There are three steps in performing automati
 variable 
lassi�
ation. First, an initial


lassi�
ation for ea
h variable is 
hosen. Next, simulation is performed, and �nally,

variables are re-
lassi�ed based on the result of the simulation run. The last two steps

are repeated until an exa
t result is produ
ed. The initial 
lassi�
ation may either

be spe
i�ed by the user or be some default 
lassi�
ation.

During simulation with a parti
ular 
lassi�
ation, every node value will have its

own unique approximate value fun
tion that is dependent on the node, simulation

time, and 
urrent variable 
lassi�
ation. If re-simulation is required due to an overly


onservative result, then there is a set of node values that must be made more exa
t

to produ
e an exa
t �nal result. This 
ould be done either by expli
itly identifying

those node values and making only these values more exa
t or by identifying the

variables that those node values depend on and re-
lassifying these as 
are variables.

Identifying the set of nodes that needs improvement entails storing information

about how all 
omputed node values were approximated. The amount of information

required to be stored 
an be prohibitive, limiting design and test s
alability. Sin
e

our goal is to repla
e random and dire
ted tests, it is ne
essary to be able to s
ale

design and test sizes as well as they do. Node-by-node approximation improvement

does not allow that, 
onsequently this thesis 
onsiders improvements using variable

re-
lassi�
ation only.

Iteratively simulating and then re-
lassifying variables until an exa
t �nal result is

produ
ed 
an be done using a single extra word of storage per node in the 
ir
uit (see

Se
tion 4.2). Sin
e a given variable may fan-in to many nodes over many simulation


y
les, variable re-
lassi�
ation may 
ause more values than is ne
essary to be made

exa
t. Thus, variable re-
lassi�
ation-based improvement is s
alable, but at the 
ost

of node values potentially being more exa
t than is ne
essary.

4.1.1 Related Work

Approximation improvement by re-
lassifying variables is an instan
e of automati


abstra
tion re�nement. As far as is known, the work des
ribed in this thesis is the only
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work des
ribing the use of automati
 abstra
tion re�nement on symboli
 simulation.

Automati
 abstra
tion re�nement has been studied in the 
ontext of model 
he
k-

ing [69, 68, 56℄. Although the goals and algorithms are quite di�erent between ab-

stra
tion applied to model 
he
king and symboli
 simulation, at a high-level, there

is some 
ommonality. The approximation improvements in this thesis are iterative.

Several methods proposed for re�ning model 
he
king abstra
tions iteratively have

been proposed [2, 21, 38, 54, 3, 47℄. The general methodology is to partition the

state spa
e, abstra
t ea
h partition, and then in
rementally improve one partition at

a time.

Some of these methods sele
t a partition to re�ne based on the abstra
t 
oun-

terexample generated [21, 38, 54, 3, 2℄. A 
ounterexample in model 
he
king is a

sequen
e of states, while in symboli
 simulation it is a variable assignment. Thus,

the algorithms for extra
ting the ne
essary information from the 
ounterexample are

di�erent from the methods used in this thesis.

Of the methods using 
ounterexample guided re�nement, some base the re�nement

on variable analysis [54, 3, 21℄. These methods generally use more sophisti
ated

analysis te
hniques than the simple variable sele
tion heuristi
 used in this thesis.

4.1.2 Example of Approximation Improvement

Consider the 
ir
uit shown in Figure 4.1. This 
ir
uit has three inputs: a, b, and 
.

We want to show that the output f is 0 for all possible input values. To prove this,

we apply symboli
 variables x

1

, x

2

, and x

3

to ea
h of these inputs respe
tively. Let

the variable order be x

1

< x

2

< x

3

.

Analyzing the 
ir
uit, we de
ide that x

1

is a 
are variable and x

2

and x

3

are

don't 
ares. Therefore, we set the approximation rule to return X when a BDD with

variables x

2

or x

3

is being 
reated, and an exa
t value when x

1

is the BDD variable.

The �rst line of Table 4.1 shows the 
omputed values for ea
h node.

The result that is produ
ed, x

1

^X, is 
onservative. To improve this result, the

simulator re-
lassi�es one of the variables from don't 
are to 
are. For now, assume

that the simulator arbitrarily 
hooses from amongst the don't 
are variables. We will
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d

e

f

b = x

2


 = x

3

a = x

1

Figure 4.1: Example 
ir
uit for approximation improvement

x

1

x

2

x

3

d e f

C D D X X x

1

^X

C D C X ^ x

3

0 0

Values for variables x

i

indi
ate whether the variable is a 
are (C) or don't 
are (D)

in the approximation rule.

Table 4.1: Node Values for Approximation Improvement Example

see better algorithms for doing this shortly.

In this 
ase, let x

3

be the variable that is 
hosen to be promoted from don't 
are

to 
are status. The se
ond line in Table 4.1 shows the values 
omputed for ea
h node

using this new 
lassi�
ation. The result is the exa
t value 0 on the output.

4.2 Re-Classi�
ation Variable Sele
tion

In the test 
ases we are studying, it is 
ommon to have hundreds or even thousands of

symboli
 variables inje
ted into the test. Most of these variables are don't 
are vari-

ables that we want the simulator to keep as approximate as possible. Consequently,

re-
lassifying don't 
are variables by random sele
tion is very ineÆ
ient. Instead, we

want the simulator to intelligently sele
t variables to be re-
lassi�ed.

To do this, a set of variables that are potential re-
lassi�
ation 
andidates are

asso
iated with ea
h node value 
omputed during simulation. This set is 
reated

dynami
ally for ea
h node when a new value is 
omputed for that node. Similarly

to how the a
tual node value is 
omputed, the set of re-
lassi�
ation 
andidates is
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reated from the re-
lassi�
ation 
andidate sets for the input values to this node. The

re-
lassi�
ation 
andidate set for the �nal output of the simulation spe
i�es whi
h

variables are to be re-
lassi�ed for the next simulation run.

There are di�erent strategies in 
omputing these sets that have impli
ations on

memory usage and the number of simulation runs required to 
lassify all variables


orre
tly. Possibilities range from 
omputing the largest possible set of variables to

re-
lassify to the minimum number of one variable to re-
lassify per run. Computing

the largest set means that only one re-simulation run is required, but it is possible

that many more variables than ne
essary are re-
lassi�ed.

In order to avoid memory explosion 
aused by re-
lassifying too many variables,

this thesis only studies methods that re-
lassify a single variable per run. This requires

only a single extra word of storage per 
ir
uit node. The tradeo� is that a large

number of runs may need to be performed in order to re-
lassify a suÆ
ient number

of variables.

However, the additional runs do not add as mu
h overhead as might be apparent.

Assume that all variables are initially 
lassi�ed as don't 
are variables. This will 
ause

all 
omputed node variables to be ternary values. Simulation time, therefore, will be

short. As variables are re-
lassi�ed to be exa
t, more simulation time is required

as more exa
t node values are generated. When all variables are 
lassi�ed 
orre
tly,

simulation time is mu
h longer than the initial re-
lassi�
ation runs. Thus, the total

fra
tion of time the simulator spends re-
lassifying variables is less than the total

number of runs indi
ates.

To minimize the number of re-
lassi�
ation runs required, a good heuristi
 is

needed to 
hoose a 
andidate variable at ea
h node. The goal of the heuristi
 is

to sele
t a variable that is a potential fan-in of the node value; as a requirement, it

should not sele
t variables that it 
an determine are not fan-in variables. Algorithm 7

illustrates a simple heuristi
 that always sele
ts a don't 
are variable that the output

value is sensitive to. This algorithm assumes a node value data stru
ture whi
h has

two 
omponents: val whi
h 
ontains the value, and var whi
h 
ontains the identi�er

for the re-
lassi�
ation 
andidate. The values f and g are inputs and node is the

output value. The output node value fun
tion is assumed to have already been
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Algorithm 7 Simple Var Sele
t(f,g,node)

1: if is non 
ontrolling(g:val) then

2: node:var  f :var ;

3: else if is non 
ontrolling(f:val) then

4: node:var  g :var ;

5: else if is 
ontrolling(f:val) then

6: node:var  f :var ;

7: else if is 
ontrolling(g:val) then

8: node:var  g :var ;

9: else if g:var = fg then

10: node:var  f :var ;

11: else if f:var = fg then

12: node:var  g :var ;

13: else if :is 
are(g:var) ^ is 
are(f:var) then

14: node:var  g :var ;

15: else if :is 
are(g:var) ^ g:var < f:var) then

16: node:var  g :var ;

17: else

18: node:var  f :var ;

19: end if

20: return node;


omputed. Initial re-
lassi�
ation 
andidate sets for values inje
ted by the test 
ase

are sele
ted a

ording to Table 4.2.

Lines 1{8 sele
t a 
andidate variable for those 
ases in whi
h at least one of the

inputs is a 
onstant. The fun
tion is non 
ontrolling() returns true if the value is a

non-
ontrolling 
onstant for the Boolean fun
tion of this node. For the AND fun
tion,

1 is a non-
ontrolling value. Similarly, is 
ontrolling() returns true if its argument is

a 
ontrolling 
onstant value with 0 being 
ontrolling for the AND fun
tion.

If one input is non-
ontrolling, the relevant re-
lassi�
ation 
andidate is the re-


lassi�
ation 
andidate value on the other input. If one of the inputs is 
ontrolling,

then the other input 
annot a�e
t this output value. Thus, the 
andidate value from

the 
ontrolling input is sele
ted. Note, that the output value will be a binary 
onstant

in this 
ase, whi
h means that this re-
lassi�
ation 
andidate is really a don't 
are.

However, for debugging purposes, it is useful to propagate the variable from the
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value re-
lassi�
ation 
andidate set

0 fg

1 fg

X fg


are variable x

i

fg

don't 
are variable x

i

fx

i

g

Table 4.2: Re-
lassi�
ation Candidate Set Creation Rules

run 
lass. node valuesfre-
lassi�
ation 
andidateg

x

1

x

2

x

3

a b 
 d e f

1 D D D x

1

fx

1

g x

2

fx

2

g x

3

fx

3

g Xfx

2

g Xfx

2

g Xfx

1

g

2 C D D x

1

fg x

2

fx

2

g x

3

fx

3

g Xfx

2

g Xfx

2

g x

1

^Xfx

2

g

3 C C D x

1

fg x

2

fg x

3

fx

3

g x

2

^Xfx

3

g Xfx

3

g x

1

^Xfx

3

g

4 C C C x

1

fg x

2

fg x

3

fg x

2

^ x

3

fg 0fg 0fg

Values for variables x

i

indi
ate whether the variable is a 
are (C) or don't 
are (D)

in the approximation rule.

Table 4.3: Node Values for Re-
lassi�
ation Example


ontrolling input.

Lines 9{12 
at
h those 
ases in whi
h the value X was applied as an input value.

The fun
tion is 
are() returns true if the variable passed to it has been marked as a


are variable. Lines 13{14 
ause a don't 
are variable to be sele
ted if either of the

input 
andidates is a don't 
are variable.

Lines 15{16 sele
t a don't 
are variable when both input 
andidates are don't 
are

variables. There are a lot of possible heuristi
s that 
ould apply in this 
ase. However,

using only lo
al information, it is impossible to guarantee that the best variable will

be sele
ted in all 
ases. The simple heuristi
 of sele
ting the lowest ordered variable

allows the user to 
ontrol re-
lassi�
ation 
andidate sele
tion when there is a 
hoi
e.

This heuristi
 works well in most 
ir
umstan
es.

To illustrate this algorithm, we 
an apply this to the example shown in Figure 4.1.

Assume that the initial 
lassi�
ation of all variables is as don't 
are variables. Ta-

ble 4.3 lists the values of ea
h node and the re-
lassi�
ation 
andidate set for ea
h

node. After ea
h run, the re-
lassi�
ation 
andidate at output f is marked as a
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are variable and the simulation re-run. The table lists ea
h run performed by the

simulator after re-
lassi�
ation until an exa
t value is produ
ed.

In this example, the simulator had to 
lassify all variables as 
are variables in

order to get an exa
t result at the output. Contrast this with the re-
lassi�
ation

done in Table 4.1. In this 
ase, only one re-
lassi�
ation was required to produ
e an

exa
t result. However, in order to determine the 
orre
t variable to re-
lassify in this


ase, it is ne
essary for the simulator to know about the re
onvergen
e of x

2

. This

requires non-lo
al knowledge of the 
ir
uit when 
omputing the value of node d. In

the worst 
ase, the e�ort required to determine this is the same as simply making all

variables exa
t. Thus, we must a

ept some amount of ineÆ
ien
y in �nding variables

to re-
lassify. This 
an be a problem in realisti
 
ases. Se
tion 4.5 will address this

problem in more detail and propose some solutions.

4.3 The Sear
h and simulate Algorithm

The simple algorithm suggested in the previous se
tion su�ers from signi�
ant over-

head in performing re-
lassi�
ation runs before a �nal result is produ
ed. This se
tion

des
ribes an algorithm that improves the eÆ
ien
y of sear
hing for re-
lassi�
ation


andidates. The basi
 idea of this algorithm is to have two simulation modes, one

for sear
hing for variables to re-
lassify and the other to simulate with a parti
ular

variable 
lassi�
ation.

It is not ne
essary to mark variables as 
are variables and 
reate BDDs in order

to dis
over whi
h variables are 
are variables using our variable sele
tion heuristi
.

Instead, the simulator 
an operate in a mode in whi
h it is \sear
hing" for 
are

variables. Ea
h time it dis
overs a variable, the simulator sets it to a 
onstant for the

next run to remove it from 
onsideration and reruns the test. It 
ontinues doing this

until the output value is a 
onstant.

When the �nal output is 
onstant during sear
h mode, the simulator 
an assume

that it has dis
overed all 
are variables. It 
an then re-run the simulation with all

variables symboli
 and 
are variables marked as su
h so that exa
t values are gener-

ated where needed. This is 
alled \simulate" mode to emphasis that the simulator
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expe
ts that the test 
ase will be 
ompletely simulated.

An added bonus of the sear
h and simulate method is that setting symboli
 vari-

ables to 
onstants 
an very qui
kly �nd simple bugs. This is espe
ially important

when debugging test 
ases in whi
h the test may fail due to in
orre
t errors on non-

symboli
 inputs. Simulating with all variables marked as don't 
ares will �nd these

basi
 errors mu
h qui
ker than even approximate symboli
 simulation with all 
are

variables 
lassi�ed 
orre
tly. Experien
e has shown that on
e the simulator produ
es

a passing exa
t value while sear
hing, the test usually will pass 
ompletely. Thus, at

this point it makes sense to restore all symboli
 variables to their original state and

re-simulate using the 
orre
t 
lassi�
ation to make values exa
t where ne
essary.

1

Algorithm 8 lists the Sear
h and simulate algorithm. The simulation starts

by applying an initial 
lassi�
ation to all symboli
 variables. This 
ould either be

supplied by the user or be a default 
lassi�
ation of don't 
are for all variables.

The variable mode in the algorithm determines whether the algorithm is sear
hing

or simulating. In simulate mode, it assumes that the 
urrent 
lassi�
ation is 
orre
t.

The outer while loop performs iterations of sear
hing and simulating. Initially, the

loop assumes that the 
urrent 
lassi�
ation is 
orre
t and so it sets the mode to

simulate (line 3). The inner while loop �rst simulates the test 
ase (line 5) and a

symboli
 value for fail is returned. A symboli
 value is said to be satis�able if there

exists some variable assignment for whi
h the value true. If the fail value returned

is satis�able, then a bug has been dis
overed and the algorithm immediately returns

a FAIL indi
ation (lines 6{7).

If a symboli
 value is 0 for all assignments, it is said to be unsatis�able. If the

value of fail is unsatis�able, then an exa
t value has been produ
ed. In simulate mode

this means the test 
ompleted with no errors. Therefore, the algorithm returns with

a PASS indi
ation (lines 8{10). If not in simulate mode, then the simulator must

have set some variables to 
onstants. Therefore, at this point, the simulator breaks

out of the inner while loop (line 12) in order to restore the dis
overed variables to

symboli
 values.

If the fail output was neither satis�able nor unsatis�able, then it is approximate

1

In fa
t, it is this observation that inspired the sear
h and simulate method in the �rst pla
e.
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Algorithm 8 Sear
h and Simulate(f,g)

1: apply initial 
lassi�
ation();

2: while (1) do

3: mode  SIMULATE;

4: while (1) do

5: fail  simulation loop();

6: if is satis�able(fail)) then

7: return FAIL;

8: else if fail = 0 then

9: if mode = SIMULATE then

10: return OK;

11: end if

12: break;

13: end if

14: mode  SEARCH;

15: var id  get sele
ted var(fail);

16: var [var id ℄ f0; 1g;

17: pushvar id ;

18: x satisfy(fail);

19: end while

20: while sta
k not empty do

21: var pop();

22: make symboli
 
are variable(var);

23: end while

24: end while

(assignments are either to 0 or X). The simulator, therefore, swit
hes to sear
h mode

(line 14) gets the variable id returned by the sele
tion heuristi
 for the fail output,

and randomly sets this variable to one of the 
onstants, 0 or 1 (lines 15{16). Ea
h

variable that is dis
overed in this way is pushed onto a sta
k to allow restoration to

symboli
 values later on (line 17).

The last while loop (lines 20{23) restores those variables that were set to 
on-

stants ba
k to being symboli
 values. At this point, the simulator potentially has all

variables 
orre
tly 
lassi�ed. Sin
e the outer loop sets the mode to simulate, if they

are 
lassi�ed 
orre
tly, simulation will produ
e an exa
t value. If not, the simulator

reverts to sear
h mode and 
ontinues sear
hing for more variables.
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if bran
h

Figure 4.2: Example BDD for sear
h and simulate algorithm

This algorithm does not obviously terminate. The issue is: what is to prevent the

simulator from re-dis
overing the same set of 
are variables from one simulate/sear
h

iteration to another? For example, suppose the output of exa
t simulation was the

BDD depi
ted in Figure 4.2a. Assume the Sear
h and simulate algorithm dis-


overs variable u in the �rst iteration and sets this variable to 1. In the next iteration

it �nds v and sets this variable to 0. The third iteration will produ
e the exa
t value

0 sin
e this path in the BDD leads to the terminal node 0.

The Sear
h and simulate algorithm will then swit
h to simulate mode and

mark u and v as 
are variables and re-simulate. The result of this simulation will

be the BDD in Figure 4.2b. However, if it starts sear
hing again, the algorithm may

follow the same path as before and never dis
over variable w, whi
h is ne
essary in

order to produ
e an exa
t result.

To solve this problem, whenever an approximate fail value is returned, the algo-

rithm 
alls the x satisfy() fun
tion (line 18) whi
h tra
es a path from the X terminal

node ba
k to the root node. For ea
h variable en
ountered along this path, it pushes

that variable onto the sta
k and sets the variable to the 
onstant value required to

traverse the edge from that node to the terminal X. In this way, the algorithm is

for
ed to dis
over at least one new variable that 
aused an approximate result to be
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produ
ed during ea
h sear
h.

This guarantees that Sear
h and simulate will always be 
omplete assum-

ing that the set of underlying binary tests is 
omplete. The is true be
ause 
alling

x satisfy() always for
es the simulator to improve the approximation at least some

amount on ea
h run.

4.4 Analysis of the Sear
h and simulate Algorithm

The overhead introdu
ed by automati
 approximation improvement is the runs spent

sear
hing and simulating before the last run. Overhead, therefore, is measured as the

time spent simulating all runs before the �nal one. This se
tion analyzes the amount

of overhead on an example of using symboli
 simulation to verify a simple adder.

In the best 
ase, the overhead of the Sear
h and simulate algorithm is only the

s
alar runs that must be performed; one for ea
h variable that must be re-
lassi�ed

as a 
are variable. In the worst 
ase, there is a symboli
 run for ea
h re-
lassi�ed

variable in addition to the s
alar re-
lassi�
ation runs. The varian
e in overhead is

unpredi
table in general: the number of variables requiring re-
lassi�
ation is un-

known and the number of simulate mode runs is unknown. In this se
tion, we will

analyze a 32-bit adder. For this 
ase, the number of s
alar re-
lassi�
ation runs is

predi
table in advan
e, but the number of simulate mode runs is not.

The adder is a simple ripple-
arry adder with 64 inputs and ea
h one must be

marked as a 
are variable in order to 
ompletely verify the fun
tionality of the adder.

This experiment uses the Sear
h and simulate algorithm with all variables ini-

tially 
lassi�ed as don't 
are variables.

The test 
ase uses a method 
alled self 
onsisten
y 
he
king [52℄ to verify the

fun
tionality of the adder. Self 
onsisten
y 
he
king uses the 
ir
uit itself as its

spe
i�
ation. The laws of addition given below 
an be used to verify the fun
tionality

of the adder without having to model a separate referen
e adder.

Identity X + 0 = X.

Su

essor X + 1 = su

(X).
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runs time BDD nodes

approx. rule sear
h sim sear
h sim peak �nal

simple 63 3 0.8s 17.5s 569K 159K

exa
t - 1 - 7.1s 312K 82K

Table 4.4: Results from self 
onsisten
y test of a 32-bit adder

Commutativity X + Y = Y +X.

Asso
iativity X + (Y + Z) = (X + Y ) + Z.

All of these ex
ept the Su

essor property 
an be veri�ed without having to per-

form any 
omplex operations. Let

~

f and ~g be ve
tors of symboli
 variables. Com-

mutativity 
an be veri�ed by applying

~

f and ~g to inputs X and Y of the adder

respe
tively, simulating, and saving the symboli
 output of the adder away. Then

~

f

and ~g 
an be applied to the opposite inputs, Y and X respe
tively, and simulating to

produ
e a new symboli
 output. If this value is equal to the previous value, then the


ommutativity property holds.

Verifying all of these properties does not guarantee that the adder has no bugs.

However, it does provide better 
overage than thorough dire
ted and random testing


an provide.

Table 4.4 shows the result of running a single test that veri�es the Identity, Su
-


essor, and Commutativity properties on a 32-bit adder.

2

The variable order used for

this test was X

0

< :::X

7

< Y

0

: : : Y

7

< X

8

< : : :X

15

< Y

8

: : : Y

15

: : :. This is neither a

best 
ase nor worst 
ase order.

Although 63 runs in sear
h mode were required, the total time taken by all of

these runs is a small fra
tion of the total simulation time. However, three runs in

simulate mode were required before all variables were 
lassi�ed 
orre
tly The �rst run

is always in simulate mode, but its run time is equivalent to a sear
h mode run sin
e

all variables are initially 
lassi�ed as don't 
are variables. The �rst set of iterations

found all variables ex
ept for one. Be
ause all variables but one were 
lassi�ed as 
are

variables, the se
ond simulate mode run had a run time roughly equal to the �nal

2

Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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run using exa
t simulation. A single subsequent sear
h mode run was required after

the se
ond simulate mode run in order to �nd the remaining 
are variable. Thus,

the simulate time is the sum of two runs with most or all variables 
lassi�ed as 
are

variables.

One thing to note is that the BDD node usage is higher using approximate val-

ues than exa
t values. The �nal run using approximate values is identi
al to the

exa
t symboli
 simulation and the BDD node usage for this run is identi
al to exa
t

simulation. The large BDD node usage o

urs in the se
ond simulate mode run. Ap-

proximation has in
reased the size of BDDs rather than de
reased them. This is due

to BDD node sharing being destroyed by approximation.

In 
on
lusion, performing approximation improvement in
urs some overhead. This

se
tion has shown that this overhead is not as large as may appear on the surfa
e.

However, there is potentially a large amount of varian
e in the amount of overhead

indu
ed by automati
 approximation improvement. The next se
tion analyzes this in

more depth and explores some optimizations to redu
e overhead.

4.5 Di�erent Approximation Rules

This se
tion shows that re
onvergent paths in the 
ir
uit and test 
ase are the primary


ause of the large varian
e in approximation improvement overhead. Weakening the

approximation rule is explored as a way of dealing with this problem.

In symboli
 system simulation, di�erent settings of 
are variables 
an 
ause dif-

ferent data variables to be propagated to 
he
ked outputs. The value fun
tion of

a 
he
ked data output is usually represented as a multiplexor fun
tion in this 
ase.

Suppose the 
ir
uit we wanted to verify was exa
tly a multiplexor. Figure 4.3a illus-

trates a multiplexor being 
ompared to a referen
e multiplexor as a test 
ase. The

test 
ase has a single 
ontrol variable 
 and two data variables x

1

and x

2

. Assume

we used the Sear
h and simulate algorithm starting with all variables 
lassi�ed

as don't 
ares on to verify this 
ir
uit. Table 4.5 lists the values 
omputed for ea
h

run of the Sear
h and simulate algorithm.

The simulation starts in simulate with all variables 
lassi�ed as don't 
ares. The
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(a) (b)
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=

x
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0

Figure 4.3: Multiplexor 
ir
uit and multiplexor 
ir
uit with re
onvergent inputs

mode 
 x

1

x

2

fail valuefre-
lass. 
andidateg

simulate D D D Xf
g

sear
h 0 D D 0fx

1

g

simulate C D D 0fx

1

g

Values for variables indi
ate whether the variable is a 
are (C), or don't 
are (D) if

symboli
, 
onstants otherwise

Table 4.5: Node values for multiplexor veri�
ation example

resulting simulation is 
onservative with variable 
 as the re-
lassi�
ation 
andidate.

A simulation in sear
h mode with 
 set to 0 
auses an exa
t value to be generated

sin
e only the single data variable x

1

is passed through the 
ir
uit. Approximation

is not done in this 
ase be
ause all BDD operations are handled by the terminal

handling fun
tion. The last run in simulate mode has the 
ontrol variable 
lassi�ed

as a 
are variable. This will 
ause exa
t BDDs to be generated sin
e operations on

data variables on all bran
hes of the BDD will be handled as terminal fun
tions.

Now assume that the 
ir
uit we were verifying was a multiplexor, but with ea
h

data input having a re
onvergent don't 
are path su
h as is shown in Figure 4.3b.

The outputs of the re
onvergent data inputs are always 0. Therefore, this test 
ase

veri�es that the output of the multiplexor is 0 for all variable assignments. Table 4.6
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mode 
 x

1

x

2

y

1

y

2

fail valuefre-
lass. 
andidateg

simulate D D D D D Xf
g

sear
h 0 D D D D Xfx

1

g

sear
h 0 0 D D D 0fy

1

g

simulate C C D D D (
 ^X)fx

2

g

sear
h 1 D 0 D D 0fy

2

g

simulate C C C D D 0fx

2

g

Values for variables indi
ate whether the variable is a 
are (C), or don't 
are (D) if

symboli
, 
onstants otherwise

Table 4.6: Node values for multiplexor with re
onvergen
e veri�
ation example

lists the runs performed by the Sear
h and simulate algorithm on this test 
ase.

Three iterations of simulating then sear
hing are required. The �rst simulate mode

run dis
overs the 
are variable 
 plus the �rst data variable x

1

whi
h must be made

a 
are variable be
ause of the logi
 in front of the data input. The se
ond simulate

mode run produ
es an approximate result be
ause x

2

has not been dis
overed as a


are variable yet. The subsequent sear
h �nds the se
ond data variable and the �nal

simulate run produ
es an exa
t result.

The pattern here is that ea
h simulate-then-sear
h iteration dis
overs a single data

variable only. If we extended the size of the multiplexor, there would be one of these

iterations per data variable. Sin
e the number of data variables is exponential in the

number of 
ontrol variables for a mux, there 
an be an exponential blowup of sear
h

and simulate runs 
ompared to the multiplexor example without fan-in logi
 on the

data inputs.

The Simple Approximation Rule (Approximation Rule 1) always approximates

values whenever it is invoked. The fan-in logi
 
auses the rule always to be invoked

resulting in the need to mark data variables as 
are variables. Di�erent approximation

rules that are less 
onservative may redu
e the need to mark data variables as 
are

variables. This se
tion explores two di�erent possibilities for approximation rules and

analyzes their performan
e on the NI example (see Se
tion 3.5.5 on page 53 for details

on this example).
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if (v) else(v) BDD size total nodes

terminal terminal 1 N

terminal non-terminal N 2

N

non-terminal terminal N 2

N

non-terminal non-terminal 2

N

2

2

N

N is the number of variables below this node

Table 4.7: BDD Sizes for di�erent 
ases of returned if and else bran
h values

4.5.1 The Data and Linear Approximation Rules

The Simple Approximation Rule approximates a node value solely on the basis of

whether top var is a 
are variable or not. Suppose that the if and else nodes returned

were the terminals 1 and 0 respe
tively. In this 
ase, the BDD rooted at this node

is just this single node. No BDD blow up is possible for these 
ases. Thus, if we

relax the approximation rule to allow an exa
t value to be returned if the if and else

bran
hes are both terminals, then Apply 
an return exa
t values in some 
ases that

the Simple Approximation Rule 
annot. BDD node usage may in
rease somewhat,

but the amount should be small.

This 
an be generalized by 
onsidering all 
ombinations of the if and else bran
hes

returning either a terminal or non-terminal BDD. There 
ould be either zero, one,

or two terminal values returned. For ea
h of these 
ases, it is possible to determine

the maximum size of the BDD rooted by the node being 
reated and the maximum

number of nodes 
reated in the unique table for this variable. This is summarized in

Table 4.7.

It obviously doesn't make sense to return an exa
t value if the if and else bran
hes

are both non-terminals if top var is a don't 
are variable. However, sin
e for all other


ases, the BDD size that 
an be 
reated is quite restri
ted, we 
an 
onsider two new

approximation rules.

Approximation Rule 2 (Data Approximation Rule). If top var is a don't 
are

variable and either the if or else bran
hes is a non-terminal value, then return X as

an approximation of this BDD node value.
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Approximation Rule

Fun
tion Label Fun
tion Simple Data Linear

multiplexor (
 ^ x

1

) _ (:
 ^ x

2

) exa
t exa
t exa
t

data x

1

^ (:x

1

^ x

2

) X x

1

^X exa
t

linear (x

1

^ x

2

) _ (x

1

^ x

2

) X X exa
t

non-linear (x

1

� x

2

) _ (x

1

� x

2

) X X X


 is a marked 
are variable, x

1

, x

2

are don't 
are variables.

Table 4.8: Computed values for di�erent approximation rules

Approximation Rule 3 (Linear Approximation Rule). If top var is a don't


are variable, then if both the if and else bran
hes are non-terminal values, then

return X as an approximation of this BDD node value.

The e�e
t of these rules is apparent only when there is re
onvergen
e present

in the 
ir
uit. Table 4.8 shows the values 
omputed for these two approximation

rules and the Simple Approximation Rule for four fun
tions with di�erent types of

re
onvergen
e.

The di�eren
es between the fun
tions in the table are the 
omplexity of the re-


onvergen
e. The multiplexor fun
tion has no re
onvergen
e. Consequently, the data

variables are only ANDed with 
onstants and, thus, are not approximated. If data

variables re
onverge as in the data 
ase, then the approximation rule will be invoked

when 
omputing the outer AND. Sin
e the Simple Approximation Rule always re-

turns an approximate value, it will approximate this 
ase to X. However, the other

approximation rules will produ
e more exa
t values sin
e the if and else bran
hes

are 
onstants in this 
ase.

The linear 
ase will be approximated by the Data Approximation Rule during the


omputation of x

1

^ x

2

sin
e a non-
onstant node will be returned for the if bran
h

for the root node of this BDD. Thus, this value will be approximated and the re
on-

vergent value will also be approximated. The Linear Approximation Rule will not

approximate x

1

^ x

2

sin
e one bran
h is always 
onstant for simple produ
t terms.

When 
omputing the re
onvergent fun
tion, sin
e both the if and else bran
hes are

equal, Approx apply will return the if bran
h before getting to the approximation
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runs time BDD nodes

approx. rule sear
h sim sear
h sim peak �nal

exa
t - 1 - 197s 738K 61K

simple 22 2 148s 20s 8.7K 2.5K

data 22 2 196s 75s 122K 28K

linear 6 2 41s 65s 153K 24K

Table 4.9: Results from di�erent approximation rules on the NI test 
ase

rule and, thus, an exa
t result is returned. For the non-linear 
ase, the XOR fun
-

tion is approximated even for the Linear Approximation Rule and so it returns an

approximated value for this fun
tion.

4.5.2 Analysis of Di�erent Approximation Rules on the NI

Test Case

Table 4.9 lists the results of running Sear
h and simulate with di�erent approx-

imation rules on the NI test 
ase.

3

For this test, six 
ontrol variables were made

symboli
 and all other symboli
 variables were set to 
onstant values. All data and

don't 
are variables are symboli
. The initial variable 
lassi�
ation was to mark all

variables as don't 
are variables.

The minimum number of sear
h mode runs we would expe
t is six, whi
h is the

number of symboli
 
ontrol variables. The Simple and Data Approximation Rules

require 16 additional variables to be marked as 
are variables. In both 
ases these are

data variables. The fa
t that these must be made 
are variables indi
ates that these

fun
tions are not simple multiplexor fun
tions. However, the test 
ase is simply pass-

ing data through the 
ir
uit and 
he
king it. Thus, it must be the 
ase that the data

paths are a�e
ted by re
onvergent don't 
are logi
. Determining the re
onvergen
e

present by analyzing the 
ir
uit is diÆ
ult be
ause the large design size means there

are many paths feeding a single data output. Also, the re
onvergen
e takes pla
e

over many 
y
les be
ause the test 
ase inje
ts data at the beginning of the test and

3

Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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then 
he
ks at the end after many 
y
les have been simulated. The fa
t that only the

Linear Approximation Rule need 
lassify only the six 
ontrol variables indi
ates that

the don't 
are re
onvergen
e is at least as 
omplex as the linear 
onvergen
e fun
tion

given in Table 4.8.

The total exe
ution time (sear
h time plus simulate time) for the Simple and

Linear Approximation Rules is less than the exe
ution time for exa
t symboli
 sim-

ulation despite the number of simulation runs required. The �nal run with properly


lassi�ed variables requires substantially less exe
ution time than the exa
t symboli


simulation time. The Data Approximation Rule requires more exe
ution time than

exa
t symboli
 simulation be
ause it needs 22 sear
h mode runs and the exe
ution

time per run is longer than using the Simple Approximation Rule due to the more

exa
t BDD values being 
reated.

Comparing BDD node usage, we see that the Simple Approximation Rule gener-

ates 
onsiderably fewer nodes than any other method. This is to be expe
ted be
ause

the more relaxed rules allow more exa
t values to o

ur on don't 
are nodes, while

the Simple Rule almost always approximates all don't 
are values to X. The only

reason that the Linear Rule requires less simulation time is be
ause it requires fewer

sear
h mode runs. Thus, these two approximation rules have a time/memory trade-

o�. Neither one is better in any sense. The Data Rule has no advantage for this

test 
ase, however, for other test 
ases, it may represent a point that is between the

Simple and Linear Rules. Based on this, a good strategy to follow might be to use the

Linear Approximation Rule initially and swit
h to the Data Rule if memory 
apa
ity

be
omes a problem.

4.6 Summary

The problem introdu
ed by using variable 
lassi�
ation to identify values that 
an be

approximated is that it requires additional work by the user to 
lassify variables. This


hapter addressed this problem by presenting methods to improve a default and/or

in
orre
t 
lassi�
ation su
h that an exa
t result 
an be produ
ed while maintaining

the maximum amount of approximation.
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The primary problem in doing this is in sele
ting variables to re-
lassify. A re-


lassi�
ation 
andidate sele
tion algorithm was presented that �nds a single variable

per run to be re-
lassi�ed. It may require many runs to re-
lassify suÆ
ient variables

using this heuristi
. Therefore, the Sear
h and simulate algorithm was presented

whi
h 
an eÆ
iently �nd variables with a minimum of overhead.

In the worst 
ase, it was shown that the Sear
h and simulate algorithm 
ould

in
rease simulation time beyond that of exa
t symboli
 simulation. To alleviate this

problem, di�erent approximation rules were explored that allowed trading o� the

number of runs for memory 
onsumption.

In 
on
lusion, it is probably best to treat approximation improvement analogously

to dynami
 variable ordering in BDD pa
kages. Dynami
 variable ordering requires

a lot of 
omputational e�ort and while it is being performed, forward progress on

the task at hand stops. Approximation improvement has the same 
avor in that

it is time 
onsuming and no forward progress is being made on simulation while

it is being done. Therefore, it is probably best to use approximation improvement

similarly to how dynami
 variable ordering is used: typi
ally, �nd a good variable

order by dynami
ally ordering, then re-use it on subsequent runs of the appli
ation,

sin
e normally only minor 
hanges are made between runs that do not a�e
t the

variable order.

Symboli
 simulation with approximate values 
an be done the same way. Start

with a default 
lassi�
ation, perform approximation improvement, and then save the

resulting 
lassi�
ation for re-use in subsequent runs. Even if Sear
h and simulate

is always applied from the saved 
lassi�
ation, usually the 
lassi�
ation is 
orre
t so

a single run suÆ
es to return an exa
t value.



Chapter 5

Reliable Symboli
 Simulation

The previous two 
hapters presented methods for improving the performan
e of sym-

boli
 simulation on system level tests. Automati
 approximation of node values using

variable 
lassi�
ation to guide the amount of approximation redu
es both exe
ution

time and memory usage 
ompared to using exa
t symboli
 simulation without auto-

mati
 approximation. However, these gains are still insuÆ
ient to ful�ll our original

goal of using symboli
 simulation as a primary veri�
ation method. In order to do

this, symboli
 simulation must be made as easy to use as other primary methods su
h

as dire
ted and random testing.

Whether or not it is the most eÆ
ient veri�
ation method in terms of bugs found

for the e�ort spent, dire
ted testing is generally held to be the easiest to use. This

makes it the most widely used veri�
ation method, so naturally it �nds the majority

of bugs in most designs. The following fa
tors 
ontribute to making dire
ted testing

easy to use.

� Dire
ted tests 
an be written qui
kly.

� Dire
ted tests have predi
table run times.

� Dire
ted tests provide good feedba
k if an error is dete
ted.

� Ea
h test 
ase adds some 
overage whi
h grows predi
tably with time.

� There is no memory blow up.

80
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� Run time s
alability is linear in the size of the design.

The main themes in this list are predi
tability, feedba
k, and s
alability. As a

whole, we 
all these 
hara
teristi
s reliability. It is not ne
essary to 
ompletely repla
e

dire
ted testing, however, so it is not ne
essary to meet all the reliability requirements

of dire
ted testing. Random simulation, for example, has lower predi
tability, la
ks

good feedba
k, and requires more up front work than dire
ted testing, but is still


onsidered suÆ
iently reliable to be a primary veri�
ation method.

Model 
he
king fails to meet our reliability requirements be
ause of its poor design

size s
aling, unpredi
table memory blowup and la
k of feedba
k about the sour
e of

the blowup. Exa
t symboli
 simulation is more reliable than model 
he
king be
ause

it allows the user to 
ontrol the number of variables in a test. This allows design sizes

to be s
alable given a �xed number of symboli
 variables. Symboli
 simulation with

approximate values improves upon this by allowing the number of symboli
 variables

to be s
alable if they are don't 
are variables. So far, however, we have seen no

way to s
ale the number of 
ontrol variables without unpredi
table memory blowup

o

urring.

As long as BDDs are being used to represent values, memory blowup 
annot be

eliminated. It is suÆ
ient, however, for the simulator either to 
ontinue in a degraded

mode after blowup o

urs or blowup in su
h a way that some 
overage proportional

to exe
ution time is generated. This behavior is 
alled gra
eful degradation. Gra
eful

degradation of 
ontrol variable s
aling is a suÆ
ient 
ondition to meet the reliability

requirements we are looking for.

This thesis addresses this problem using satis�ability (SAT) solving te
hniques.

Instead of 
reating BDD variables, ea
h dis
overed 
are variable will be 
ase split

su
h that two runs are performed, one for ea
h setting of the dis
overed 
are variable

to the 
onstants 0 and 1. The 
ase splitting is a

omplished using the Davis-Putnam

(DP) algorithm, a well known SAT solving algorithm. The DP algorithm 
an prove

a test to be satis�able or unsatis�able using only a small, �xed amount of memory,

the trade-o� being a run time that is potentially exponential in the number of split

variables. However, this method provides 
overage proportional to run time if the user

terminates the run before 
ompletion and thus has the desired property of gra
eful
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degradation.

After presenting ba
kground material on SAT and the DP algorithm, this 
hapter

will show that symboli
 simulation 
an be 
ast as a SAT problem. It will then

show that the DP algorithm is equivalent to performing symboli
 simulation with

approximate values using automati
 approximation improvement. Quasi-symboli


simulation, a method for performing symboli
 simulation based purely on this idea

is presented. Finally, it will be shown that BDD-based symboli
 simulation 
an be

made reliable by using DP to handle memory over
ow.

5.1 Symboli
 Simulation as a SAT problem

An instan
e of the satis�ability problem 
onsists of a Boolean formula, normally in


onjun
tive normal form (CNF). A CNF formula 
onsists of a set of 
lauses, ea
h of

whi
h is a disjun
tion of literals. The problem is to �nd an assignment to all variables

in the formula su
h that the formula is true. SAT is NP-
omplete and thus, for the

best known algorithms, it may require time exponential in the size of the formula to

�nd a satisfying assignment.

It is straightforward to 
onvert a CNF formula to a 
ir
uit. Ea
h variable is a

primary input to the 
ir
uit. Ea
h 
lause 
orresponds to an OR gate with ea
h input

being driven by either a primary input or its 
omplement. All OR gate outputs

are ANDed together to form a single primary output. Evaluation of the formula is

done by applying di�erent symboli
 variables to ea
h primary input and symboli
ally

simulating. If the result is satis�able, then the formula is satis�able.

It is also possible to 
onvert an instan
e of symboli
 simulation to a SAT problem.

Consider a 
ombinational 
ir
uit and test. The 
ir
uit 
onsists of 
ombinational gates.

The test spe
i�es a value, whi
h 
an be either a 
onstant or a symboli
 variable, for

ea
h primary input. The test also spe
i�es some relation to be 
he
ked over the

outputs that produ
es either a PASS or FAIL indi
ation. This 
he
k also 
an be

implemented in gates. The goal of symboli
 simulation of this test is to �nd a variable

assignment for whi
h FAIL is asserted. This is a satis�ability problem if we interpret

FAIL to mean satis�able. Sin
e it is possible to 
onvert one to the other and vi
e
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cycle 0 cycle 1

(a) Sequential Circuit (b) Unrolled Combinational Circuit
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Figure 5.1: Unrolled sequential 
ir
uit example

versa, then symboli
 simulation of a test 
ase and SAT are equivalent problems.

1

A sequential 
ir
uit with a test 
ase that requires multiple 
y
les is also an instan
e

of a SAT problem. This is demonstrated by treating a sequential 
ir
uit simulated for

N time steps as a 
ombinational 
ir
uit that has been repli
ated N times. For ea
h

primary input and output of the sequential 
ir
uit, there are N primary inputs and

outputs in the unrolled 
ir
uit, one for ea
h time step. State holding elements, su
h

as registers, are eliminated by 
onne
ting the input to the register in one 
y
le to the

output of the register in the next 
y
le. Figure 5.1 illustrates a sequential 
ir
uit and

the equivalent 
ombinational 
ir
uit unrolled for two time steps. Note that the initial

state of the register is assumed to be X.

Most resear
h in SAT solving algorithms fo
uses on CNF formulas. Algorithms

that work with CNF formulas are 
alled 
lausal SAT solvers. Symboli
 simulation

formulated as a SAT problem is not in 
lausal form. To apply 
lausal SAT solving

algorithms to symboli
 simulation, it is ne
essary to 
onvert the symboli
 simulation

problem to a 
lausal form. There are two ways to do this. First, the 
ir
uit 
an be


attened to a two level representation dire
tly. However, this 
an 
ause an exponential

blowup in the number of gates in the 
ir
uit. For large 
ir
uits, this is usually too


ostly.

1

This does not imply that all uses of symboli
 simulation are instan
es of SAT problems. Image


omputation is one example of an appli
ation of symboli
 simulation whi
h is not a SAT problem.
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In the se
ond method, a new variable is 
reated for ea
h signal in the 
ir
uit [55℄.

Given that ea
h gate is 
onne
ted only to a set of input signals and an output signal,

a set of 
lauses 
an be generated that 
onstrains the input and output signals to be

legal values. For example, for the gate Z = X^Y in the 
ir
uit, we 
ould 
reate sym-

boli
 variables x, y, and z and the set of 
lauses f(:x;:y; z); (x;:z); (y;:z)g whi
h


onstrain the inputs and output to legal 
ombinations of values. The 
onjun
tion of

the set of 
lauses for all gates and the test 
ase results in a 
lause database that is

satis�able if and only if the 
ir
uit and test 
ase are satis�able.

The number of variables and 
lauses in this database is proportional to the number

of gates in the 
ir
uit. For large 
ir
uits, this 
an lead to thousands of variables

in the database. A 
lausal SAT solver has the freedom to set these variables any

way it 
hooses. Sin
e most 
ombinations of variables are illegal, this 
an lead to a

lot of wasted time sear
hing invalid state spa
e. For 
ir
uit properties that 
an be

proved unsatis�able by setting some internal signal to a parti
ular value, 
lausal SAT

solvers tuned parti
ularly for 
ir
uit-like stru
tures 
an be very e�e
tive [61℄. We are

interested in veri�
ation methods that s
ale to design sizes of millions of gates and

tests of hundreds of 
y
les. Unrolling a 
ir
uit this large may lead to a database that

does not �t in available memory, meaning that 
lausal SAT solving methods do not

meet our s
alability requirements.

Symboli
 simulation 
an be viewed as a type of non-
lausal SAT solving. Non-


lausal SAT solving algorithms have been studied, with a variety of te
hniques being

proposed [66, 35℄. Non-
lausal SAT solving has some similarities and di�eren
es

with 
lausal SAT solving. In both 
ases, 
ase splitting is the primary method of

sear
hing the state spa
e. The di�eren
e is in how formulas are evaluated as a result

of the variable settings de
ided upon by the sear
h algorithm. The most widely used


omplete sear
h algorithm for SAT solving is a variant of the Davis-Putnam (DP)

algorithm. Before dis
ussing how SAT solving is used in symboli
 simulation, the DP

algorithm will be presented.
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Algorithm 9 DPLL(S)

1: S

0

 unit propagate(S)

2: truth  evaluate(S

0

);

3: if truth = TRUE then

4: return TRUE ;

5: else if truth = FALSE then

6: return FALSE ;

7: else

8: l  sele
t split var(S

0

);

9: struth  DPLL(S

0

[l  TRUE℄);

10: if struth = FALSE then

11: struth  DPLL(S

0

[l  FALSE℄);

12: end if

13: return struth;

14: end if

5.1.1 The Davis-Putnam Algorithm

The DP algorithm is a 
omplete algorithm based on sear
hing in the spa
e of partial

assignments. The most widely used variant of this algorithm is due to Davis, Putnam,

Logemann, and Loveland [25℄ and is 
alled DPLL. A partial assignment allows a

variable to be assigned to TRUE, FALSE, or to be unassigned. The sear
h uses 
ase

splitting and ba
ktra
king to sear
h the entire spa
e of assignments. Algorithm 9

lists the DPLL algorithm in
luding some heuristi
s designed to speed up the sear
h.

DPLL is passed the set of 
urrent variable assignments S whi
h spe
i�es for

ea
h variable, whether it is TRUE, FALSE, or unassigned; the initial assignment has

all variables unassigned. The evaluate() fun
tion evaluates the formula for a given

variable assignment. If evaluate() returns TRUE or FALSE, then DPLL immediately

returns the truth value (lines 2{6).

If the truth value using the 
urrent variable assignment set is unknown, the vari-

able assignment is re�ned by splitting it into two 
ases. A variable is 
hosen to split

on using heuristi
s that try to minimize the number of 
ase splits. The fun
tion

sele
t split var() (line 8) sele
ts this variable. DPLL is re
ursively 
alled with the

variable assignment modi�ed to set the sele
ted variable to FALSE. This re
ursive


all must return either TRUE or FALSE. If TRUE is returned, a satisfying partial
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assignment has been found and the fun
tion 
an return at this point (lines 9 { 10).

If FALSE, then the other variable assignment is re
ursively 
he
ked (line 11). If both


ases yield a FALSE result, then this subtree of the sear
h is unsatis�able and FALSE

is returned, otherwise TRUE will be returned (line 13).

A standard optimization is a pro
edure 
alled unit propagation (line 1). A unit


lause is a 
lause 
ontaining a single unassigned literal. In order for the formula

to be TRUE, the literals in all unit 
lauses must be made TRUE. After setting all

unit literals to TRUE, it is possible that more unit 
lauses will be 
reated. The

unit propagate() fun
tion iteratively sets unit literals to TRUE and re-evaluates the

formula until no unit 
lauses remain. The unit propagate() fun
tion returns a modi-

�ed variable assignment that has all variables that were unit propagated set to TRUE

or FALSE as ne
essary.

5.1.2 Quasi-Symboli
 Simulation

Symboli
 simulation with approximate values 
an be viewed as a non-
lausal SAT

solving algorithm. A partial assignment is a variable 
lassi�
ation; assigned variables

are 
are variables and unassigned variables are don't 
ares, the values TRUE and

FALSE are mapped to the 
onstants 1 and 0. Evaluating a formula by simulating it

with the Simple Approximation Rule will produ
e a result that is dire
tly equivalent

to the evaluation of a formula by the SAT solver. A result of 1 or 0 maps to TRUE

or FALSE respe
tively, and an approximate result indi
ates an unknown satis�ability

result.

Ignoring unit propagation for the moment, the DP algorithm 
an be viewed as an

approximation improvement algorithm. In DP, the goal is to �nd the best variable

to split on. In symboli
 simulation, the goal is to �nd the best variable to mark

as a BDD variable. The sele
t split var() fun
tion in DPLL 
an be implemented

using the Simple Variable Sele
tion heuristi
 (Algorithm 7 on page 64). Sin
e the

sele
ted variable is always split, meaning that it is set to a 
onstant, BDDs larger

than a single node will never be 
reated. At the same time, DP is 
omplete and,

thus, maintains the 
ompleteness of symboli
 simulation. Consequently, using DP to
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perform approximation improvement produ
es the same result as symboli
 simulation

with BDDs, but with no memory blowup!

The tradeo� is that the number of runs required to prove a test 
ase unsatis�able

may be exponential in the number of 
are variables. However, ea
h of these runs is

a s
alar run and so 
ompletes qui
kly. For 
omparison, the Sear
h and simulate

algorithm generally requires a number of runs that is linear in the number of 
are

variables, although the runs in simulate mode may run mu
h slower than the s
alar

valued runs used in sear
h mode.

At the same time, DP uses depth �rst sear
hing. Ea
h leaf node in the sear
h

will be found in a number of runs that is linear in the number of split variables. Leaf

nodes will be found at a rate that is proportional to the number of runs, whi
h is

proportional to the total simulation time. Ea
h leaf node is a 
omplete s
alar test and

so 
ontributes some amount of 
overage. Consequently, 
overage in
reases linearly

with simulation time using DP-based approximation improvement. This means that,

even if the DP algorithm is aborted early, some amount of 
overage is generated and

this amount is proportional to the amount of simulation time. This is exa
tly the

reliability property we are looking for.

Symboli
 simulation with approximate values using DP as the approximation im-

provement algorithm behaves identi
ally to symboli
 simulation using BDDs. How-

ever, it uses only s
alar values internally and has di�erent reliability 
hara
teristi
s.

Therefore, to distinguish it from BDD-based symboli
 simulation, we 
all this method

quasi-symboli
 simulation.

5.1.3 Quasi-Symboli
 Simulation with Unit Propagation

Unit propagation is a ne
essary optimization when dealing with 
lausal formulas. In

most 
ases there are many dependen
ies between variables. When a variable is 
ase

split by setting it to a 
onstant, unit propagation �nds those variables dependent on

the 
ase split variable that must be set to a parti
ular 
onstant in order to satisfy the

formula. This redu
es the size of the sear
h tree by eliminating bran
hes for variables

that are unit propagated. For example, internal signal values in a 
ir
uit are highly
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dependent on fan-in and fan-out signal values. If the input to an AND gate is set to

0, then the output must be set to 0 in order for the 
ir
uit state to be legal. Setting

the output to 0 may for
e other signals to be �xed values. Thus, unit propagation

is a ne
essary optimization for solving the satis�ability of 
ir
uits by 
onversion to


lausal form.

Unit propagation does not provide any advantage when all split variables are

independent. This is generally the 
ase in symboli
 system simulation. For example,

in multiplexor type 
ir
uits, there are no dependen
ies between the 
ontrol variables

that sele
t di�erent data values. Sin
e these 
ir
uit types are 
ommon, the value of

unit propagation is not 
lear in symboli
 system simulation. In fa
t, if the user writes

a test 
ase perfe
tly, all 
ontrol variables are independent and unit propagation is not

useful. However, if a bug is present due either to a test 
ase error or 
ir
uit error, unit

propagation 
an, in 
ertain 
ases, greatly redu
e the amount of sear
hing required to

�nd the bug. For example, if a bug only o

urs when 
ertain symboli
 values are set

to parti
ular values, then often when one of these variables is set to a 
onstant, the

rest 
an be unit propagated. In fa
t, this is more likely to o

ur with less probable

bugs. Thus, unit propagation 
an be bene�
ial when expe
ting bugs to o

ur.

The des
ription of the DPLL algorithm in Se
tion 5.1.1 des
ribed unit propagation

in terms of 
lausal formulas. Sin
e quasi-symboli
 simulation is an implementation of

the Davis-Putnam algorithm over non-
lausal formulas, a method of performing unit

propagation on non-
lausal formulas is needed. Dalal [23℄ des
ribes su
h a method

using additional data stru
tures for ea
h 
ir
uit node value. This algorithm is shown

in Algorithm 10.

Ea
h node in the 
ir
uit has two sets asso
iated with it: a C-set and D-set. These

sets 
ontain literals that list the unit propagation 
andidates for that node. C-sets

and D-sets are 
omputed for ea
h node based on the C-sets and D-sets of the fan-in

nodes and the Boolean operation of the node. The C-set for the PASS/FAIL output

of the simulator spe
i�es whi
h literals 
an be unit propagated. A non-empty D-set

at the PASS/FAIL output is an immediate indi
ation of satis�ability.

The C-set of a node value is the set of literals that are 
onjoined with this value.

If a literal is 
onjoined with a value, then when the literal is 0, the node value must
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Algorithm 10 Dalal's Algorithm(op,f,g)

1: if op = new then

2: l = 
reate literal();

3: C = flg, D = flg;

4: else if op = f ^ g then

5: C  C

f

[ C

g

, D D

f

\D

g

;

6: else if op = f _ g then

7: C  C

f

\ C

g

, D D

f

[D

g

;

8: else if op = :f then

9: C  f:ljl 2 D

f

g, D  f:ljl 2 C

f

g;

10: end if

11: if l 2 C ^ :l 2 C then

12: val(op) 0;

13: else if l 2 D ^ :l 2 D then

14: val(op) 1;

15: else

16: val(op) X;

17: end if

be 0. When the literal is 1, knowing nothing else about this node value, we must

assume that it is unknown. Thus, a value with C-set flg represents the value X ^ l.

D-sets list literals disjoined with a value. A value with D-set flg represents the value

X _ l. If a value has both a C-set and D-set with the same literal, then that value

must be equal to the literal. This is the only 
ase in whi
h a value 
an have both a

non-empty C-set and a non-empty D-set.

The inputs to Dalal's Algorithm are an operation and up to two input values.

At a primary input, the only possible operation is to 
reate a new variable. This is

done by 
reating the new variable and then assigning this literal to the C-set and

D-set of the resulting value (lines 1{3). If the operation is the AND or OR Boolean

fun
tions, the C-set and D-set are 
omputed as fun
tions of the input C/D-sets. For

the Boolean AND fun
tion the C-set is the union of the input C-sets and the D-set

is the interse
tion of the input D-sets (lines 4{7). This is easy to see by 
omputing

the AND of X ^ a and X ^ b whi
h have C-sets fag and fbg respe
tively.

V = (X ^ a) ^ (X ^ b)
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V = X ^ a ^X ^ b

V = X ^ a ^ b

Thus, the resulting value has C-set fa; bg. Negating a value with C-sets and D-sets

follows DeMorgan's rule; the literals in the C-sets and D-sets are swapped and ea
h

literal is negated (lines 8{9).

The 
omputed C-set or D-set may 
ontain a literal and its 
omplement after

performing a Boolean operation. Su
h as set is 
alled basi
 in
onsistent. Values with

basi
 in
onsistent sets 
an be repla
ed by 
onstants. If a C-set is basi
 in
onsistent,

the value is equal to 0 sin
e l ^ :l = 0 and if a D-set is basi
 in
onsistent, the value

is equal to 1. Basi
 in
onsistent sets are dete
ted and handled by lines 11{17 of the

algorithm.

5.1.4 Rea
tive Tests

There is one more issue that must be dealt with in using DP-based symboli
 simulation

that does not o

ur with BDD-based symboli
 simulation. The addition of unit

propagation to the basi
 DP algorithm 
auses rea
tive tests to be
ome in
omplete

even if the set of underlying binary tests is 
omplete. A rea
tive test may inje
t a

request and then wait for the 
ir
uit to respond before asserting stop to the simulator.

The amount of time the simulator has to wait may be unbounded. Rea
tive tests 
an

be made 
omplete by making three 
hanges to the DPLL algorithm. The 
omplete

quasi-symboli
 simulation algorithm with these 
hanges is shown in Algorithm 11.

First, theBasi
 simulation loop (Algorithm 1 on page 15) is used as the DPLL

evaluate() fun
tion instead of the Symboli
 simulation loop algorithm (line

1). The di�eren
e between these algorithms is that the Basi
 simulation loop

stops simulation at the �rst time step in whi
h stop is non-zero while the Sym-

boli
 simulation loop waits until the last possible time step to stop. Next, DPLL

is modi�ed to 
ase split on stop if it is approximate before 
ase splitting on fail

(lines 2,11{13). This is to prove that the simulation really stops at this time step
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Algorithm 11 Quasi symboli
 simulation(S)

1: fstop; failg  Basi
 simulation loop(S);

2: if stop = 1 then

3: if fail = 1 then

4: return TRUE ;

5: else if fail = 0 then

6: return FALSE ;

7: else

8: S

0

 unit propagate(S)

9: l  sele
t split var(fail ; S

0

);

10: end if

11: else

12: S

0

 S

13: l  sele
t split var(stop; S

0

);

14: end if

15: struth  DPLL(S

0

[l  1℄);

16: if struth = FALSE then

17: struth  DPLL(S

0

[l  0℄);

18: end if

19: return struth;

sin
e stop may be asserted prematurely if it is an unknown value. On
e stop is proven

to be satis�able (stop = 1) at a parti
ular time step, then fail 
an be split if ne
essary

(lines 3{10). To support this, sele
t split var() is modi�ed to sele
t the variable to

split on from either stop or fail as ne
essary (lines 9,13).

The �nal modi�
ation is to only allow unit propagation when splitting on fail (line

8) to prevent the algorithm from 
utting o� potential valid stop times. To illustrate

this, 
onsider the following example. A four bit 
ounter is initially loaded with a value

and then de
remented. The 
ounter asserts stop when the 
ount rea
hes zero. For

any binary ve
tor loaded into the 
ounter, stop will always eventually be asserted.

Thus, if a test 
onsists of loading the 
ounter and waiting for stop to be asserted, the

test 
ase will always eventually terminate.

Now 
onsider a symboli
 ve
tor representing the set of all possible 
ount values

being loaded into the 
ounter. A portion of the unrolled 
ir
uit with the stop genera-

tion logi
 for ea
h time step is shown in Figure 5.2. The solid lines indi
ate the signals
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stop

2��N

de


x

4

x

3

x

2

x

1

stop

0

de


gstop

stop

1

= X


y
le 0 
y
le 1

stop

0

= X ^ :x

4

^ :x

3

^ :x

2

^ :x

1

Figure 5.2: Unrolled example of de
rementing 
ounter with rea
tive stop

evaluated after simulating for one 
y
le. The dotted lines indi
ate values generated

after simulating for two or more 
y
les. Exa
t BDD-based symboli
 simulation would

stop when gstop, whi
h is the OR of stop for all 
y
les, is 1. The quasi-symboli


simulation algorithm, however, will stop at the �rst time step at whi
h stop be
omes

non-zero. For this example, stop be
omes non-zero in time step 0 as shown in the

�gure as the value of stop

0

. The approximation rule 
auses the value of stop

0

to be

X with the C-set f:x

4

;:x

3

;:x

2

;:x

1

g.

For the next run, all variables would be set to 0 as indi
ated by the stop 
ondition

C-set for stop

0

if unit propagation was allowed. In the next evaluation stop

0

is 1 sin
e

a value of all zeroes is loaded into the 
ounter. This means the test 
ase has been

proved to a
tually stop in the �rst 
y
le. The algorithm now tries to ba
ktra
k. Sin
e

all variables were unit propagated, no 
ase splitting will be performed. The simulator

will think that all 
ases have been explored. Therefore, the sear
h would terminate

immediately and would have tested only the 
ase in whi
h the test stops after one


y
le. But, 
learly, the test 
an stop at all lengths up to the maximum 
ounter value

sin
e the 
ount was spe
i�ed to be a symboli
 ve
tor representing all possible 
ounts.
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Sin
e the test 
ase should stop eventually for all 
ase split values, by not allowing

unit propagation of stop, the entire sear
h tree a�e
ting the time step at whi
h

the simulation stops will be enumerated. Unit propagation 
an still be done when

splitting on the fail 
ondition. At the point that this is being split, the 
urrent time

step has been proven to be a valid stopping point. Thus, unit propagation of fail


annot prevent the simulator from stopping in other time steps.

5.1.5 Analysis of Quasi-Symboli
 Simulation

In system-level tests, 
ontrol variables spe
ify independent parameters su
h as request

types, delays between requests, and addresses. The la
k of dependen
ies between


ontrol variables means that little or no unit propagation o

urs when performing

quasi-symboli
 simulation on these 
ases. Consequently, 
(2

N

) runs are required to

prove unsatis�ability for these 
ases where N is the number of 
ontrol variables. For

satis�able test 
ases, quasi-symboli
 simulation 
an prove satis�ability of a test 
ase

(�nd a bug) with the number of runs being linear in the number of variables that must

be made 
onstant to sensitize the error in the best 
ase; ea
h of these runs requires


onstant time. In the worst 
ase, the number of runs required to prove satis�ability

is O(2

N

) for N 
ontrol variables.

The run time for BDD-based symboli
 simulation has been observed to be in-

sensitive to whether the test is satis�able or not, even when using approximate val-

ues. If the run time is exponential in the number of symboli
 
ontrol variables for a

given 
ir
uit and test 
ase using BDDs, this run time is independent of whether bugs

are present and how hard or easy the bugs may be to sensitize. Thus, BDD-based

symboli
 simulation usually performs better on unsatis�able test 
ases while quasi-

symboli
 simulation 
an perform better on satis�able test 
ases, espe
ially for simple

bugs.

This se
tion presents the results of two experiments using quasi-symboli
 simu-

lation to illustrate the di�eren
e between BDD-based and quasi-symboli
 simulation



CHAPTER 5. RELIABLE SYMBOLIC SIMULATION 94


trl. quasi-symboli
 exa
t BDD approx. BDD

vars evals time BDD nodes time BDD nodes time

6 57 191s 313K 225s 6.2K 10.6s

9 57 193s 526K 2214s 22K 80s

11 59 199s - - 48K 316s

19 68 432s - - 197K 1277s

28 72 430s - - - -

37 76 457s - - - -

46 79 486s - - - -

55 82 501s - - - -

Table 5.1: NI bug test 
ase results for quasi-symboli
, exa
t BDD, and approximate

BDD-based symboli
 simulation

on both satis�able and unsatis�able test 
ases. The �rst experiment 
ompares quasi-

symboli
 simulation to BDD-based symboli
 simulation on the NI design (see Se
-

tion 3.5.5 on page 53). The se
ond experiment uses a di�erent design to demonstrate

the reliability of quasi-symboli
 simulation in developing a test 
ase to show that

quasi-symboli
 simulation 
an �nd simple bugs qui
kly.

Experiment 1: A Satis�able NI Test 
ase

This experiment 
ompares the exe
ution time of quasi-symboli
 simulation and BDD-

based symboli
 simulation with approximate values on a test 
ase that dete
ts a bug.

One of the bugs found in this design 
auses 
ertain words of a pa
ket to be 
orrupted

whenever the frame length of the target pa
ket is between 76 and 79 bytes. This is

independent of any other variable in the test. The target frame length is spe
i�ed by

eight symboli
 variables allowing pa
ket lengths to range from 0 to 255 bytes. The

probability of this bug o

urring in a binary dire
ted or random test, therefore, is one

in 64. The variables spe
ifying the frame length are sequential in the variable order

and appear as variables 51{59 in the order.

The experiment 
onsisted of making the frame length variables symboli
 and then

performing a number of runs, ea
h with a larger number of additional 
ontrol variables

set to symboli
 values. Non-symboli
 
ontrol variables were set to 0. Table 5.1 lists
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the results of performing these runs.

2

The �rst 
olumn in the table lists the total

number of symboli
 
ontrol variables for ea
h run. For quasi-symboli
 simulation, the

number of evaluations (simulation runs) and time required before the bug was found

are given. For BDD-based symboli
 simulation, the number of BDD nodes 
reated

and the total simulation time are given, in
luding any time required for approximation

improvement. Results are given for both exa
t values and approximate values using

Approximation Rule 1. For the runs using approximate BDD-based values, a variable


lassi�
ation was supplied by the user and no improvement was ne
essary to produ
e

an exa
t result for any of the runs.

The results show that exa
t BDD-based symboli
 simulation blows up qui
kly as

the number of symboli
 
ontrol variables is in
reased. BDD-based symboli
 simulation

with approximate values fares better, but still blows up qui
kly. Quasi-symboli


simulation �nds the bug with little varian
e in exe
ution time as the number of

symboli
 
ontrol variables is in
reased.

We 
an 
hara
terize the eÆ
ien
y of �nding a given bug using quasi-symboli


simulation from analyzing this bug. The 
ase splitting required to �nd this bug has

the following pattern. First, some number of 
ontrol variables ordered ahead of the

frame length variables are split before the simulator starts splitting the frame length

variables. The simulator only needs to explore one path for these variables sin
e they

don't a�e
t the sensitization of the bug. The simulator then has to enumerate 32 
ases

of the six frame length variables before �nally �nding the failing bran
h. It then 
ase

splits an additional 12 data variables along a single bran
h before produ
ing an exa
t

satis�able value. The varian
e in the number of evaluations for the test 
ases with

di�erent numbers of symboli
 
ontrol variables is due solely to the number of 
ontrol

variables ordered ahead of the frame length variables that need to be split. Sin
e

these only need to be split on
e, the number of evaluations is linear in the number of

symboli
 
ontrol variables.

If the frame length variables are ordered ahead of all other 
ontrol variables,

then the 
ase splitting of other 
ontrol variables would be eliminated, minimizing the

number of evaluations required. On the other hand, if the frame length variables are

2

Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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interleaved with the other 
ontrol variables, then the amount of 
ase splitting required


ould be exponential in the total number of 
ontrol variables. This is be
ause for ea
h

assignment to the frame length variables, for all variables interleaved with the frame

length variables, all assignments to these variables must be enumerated.

Thus, performan
e of quasi-symboli
 simulation on satis�able test 
ases is a fun
-

tion of the number of variables that a bug is sensitive to and the distan
e between

them in the variable order. A bug with few sensitizing variables 
lose together will

require few runs and generally will require mu
h less simulation time than BDD-based

symboli
 simulation to �nd the same bug. A bug with many or widely spread sen-

sitizing variables will require many runs and will require more simulation time than

BDD-based symboli
 simulation.

Experiment 2: MCU Test 
ase Development

This experiment explores the performan
e of quasi-symboli
 simulation in debugging

test 
ases. Test 
ase bugs are more 
ommon than hardware bugs; for every hardware

bug found, there may be one or more test 
ase bugs that must be found and debugged.

From the simulation algorithm's point of view, test 
ase bugs are no di�erent than

hardware DUT bugs. Thus, being able to reliably dete
t test 
ase bugs is an important

part of system-level testing.

A test 
ase was written to �nd a known bug in an existing design. The design,


alled the MCU [78℄, was taped out and a bug was subsequently found that es
aped

dete
tion during both simulation and bringup. This bug is 
onsidered to be an in-

stan
e of a hard bug. The test written was based on a loose des
ription of the problem.

This test was run using quasi-symboli
 simulation, then debugged and modi�ed until

the hardware bug was found. Ea
h test version had eight symboli
 
ontrol variables,

four symboli
 data variables, and between 411 and 1,334 symboli
 don't 
are vari-

ables. The run time of ea
h version of the test 
ase 
reated as the test was debugged

was re
orded. The results are summarized in Table 5.2.

3

There were 51 versions of the test 
orresponding to 50 test 
ase bugs found before

the hardware bug was found. Ea
h version of the test is 
ategorized into one of four

3

Simulations run on a Sun Ultra-5, 271MHz with 128Mbytes of memory.
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ase no. evals time(se
.)

SAT 19 3.8 31.4

TIMEOUT 22 1.6 49.0

LEAK 1 78 863.0

UNSAT8j 1 7.1

UNSAT8k 53 392.3

UNSAT11 111 886.64

UNSAT23 111 1025.21

UNSAT28 53 420.4

UNSAT27 53 432.3

UNSAT32 37 352.0

UNSAT33 37 353.6

UNSAT34 15 143.5

Table 5.2: MCU Test Case Development Performan
e

types. Tests whi
h were satis�able due to a test 
ase bug are labelled SAT bugs. Test


ases that ex
eeded a spe
i�ed simulated 
y
le limit are labelled TIMEOUT errors.

The test 
ase that found the target hardware bug is labelled LEAK. Test 
ases that

were 
orre
t based on an interpretation of the bug des
ription, but for whi
h this

interpretation was wrong resulted in the test reporting no errors. These 
ases are

labelled UNSATxx. There is a mu
h wider varian
e in exe
ution time between the

UNSAT 
ases, so ea
h of these is listed separately. For ea
h 
lass, the number of test


ases of that 
lass is listed, along with the average number of evaluations and average

exe
ution time.

The results show that the satis�able test error 
ases uniformly require a small

number of 
ase splits. Also, for these 
ases, no unsatis�able bran
hes were found;

the �rst exa
t value produ
ed by 
ase splitting dete
ted a bug in all 
ases. The

hardware bug 
aused in
orre
t data to be transmitted through the 
hip. The e�e
t

of this is that a large number of symboli
 don't 
are variables \leaked" through to

a 
he
ked output. A large number of 
ase splits were required to resolve this to an

exa
t value. However, this represents only a single bran
h in the sear
h tree. The

fa
t that symboli
 simulation 
ould de�nitively rule out in
orre
t interpretations of

an ambiguous spe
i�
ation was useful in �nding the bug. The longer run times and
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wide varian
e of these 
ases shows the ineÆ
ien
y of quasi-symboli
 simulation in

proving tests unsatis�able 
ompared to using BDD-based symboli
 simulation.

In summary, quasi-symboli
 simulation 
an be e�e
tive when bugs are present

in either the test 
ase or the DUT. It is potentially more s
alable in the number of


ontrol variables for satis�able test 
ases than BDD-based symboli
 simulation. For

unsatis�able 
ases, in whi
h no bug is present, quasi-symboli
 simulation is gener-

ally less e�e
tive than BDD-based symboli
 simulation. However, if memory blowup

o

urs, BDD-based symboli
 simulation 
annot prove anything about the design.

Quasi-symboli
 simulation 
an always produ
e a partial result. This means that it

meets our requirement for reliability. The next se
tion will explore ways of 
ombin-

ing SAT and BDD-based symboli
 simulation in order to improve performan
e on

unsatis�able 
ases while preserving suÆ
ient reliability.

5.2 Combining SAT-Based and BDD-Based Sym-

boli
 Simulation Methods

The di�eren
e between SAT and approximate BDD-based symboli
 simulation is in

how ea
h method handles a symboli
 variable that has been identi�ed as a 
are

variable. In approximate BDD-based symboli
 simulation, variables marked as 
are

variables be
ome BDD variables. In the SAT-based quasi-symboli
 method, 
are

variables are 
ase split su
h that two runs are performed, one for ea
h setting of

the 
are variable to the 
onstants 0 and 1. It is possible to 
ombine these two

approa
hes by de
iding on a variable-by-variable basis to either 
ase split or 
reate a

BDD variable.

This strategy is implemented by modifying algorithms we have already seen. There

are many ways to do this; exploring all the options is beyond the s
ope of this thesis.

Instead, this se
tion will explore two options with the goal of improving the relia-

bility of unsatis�able test 
ases. Both options require the same modi�
ations to the

lower level algorithms presented in this thesis. The remainder of this se
tion will

des
ribe these ne
essary modi�
ations before presenting the two high-level strategies
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Algorithm 12 approx Apply mo(f,g,hopi)

1: if terminal 
ase(f; g; hopi) then

2: return handle terminal 
asef; g; hopi);

3: end if

4: if 
a
he hit(ff; g; hopi)g then

5: return 
a
he lookup(ff; g; hopig);

6: end if

7: top var  min(var(f); var(g));

8: f

if

; f

else

 
ofa
tor(f; top var);

9: g

if

; g

else

 
ofa
tor(g; top var);

10: t

if

 approx Apply mo(f

if

; g

if

; hopi);

11: t

else

 approx Apply mo(f

else

; g

else

; hopi);

12: if t

if

= t

else

then

13: result  t

if

;

14: else if want approximate(top var ; t

if

; t

else

) then

15: result  approximate(top var ; t

if

; t

else

);

16: else if unique hit(top var ; t

if

; t

else

) then

17: result  unique lookup(ftop var ; t

if

; t

else

g);

18: else if BDD no memory available() then

19: result  X;

20: else

21: result  
reate node(top var ; t

if

; t

else

);

22: unique insert(ftop var ; t

if

; t

else

g; result);

23: end if

24: 
a
he insert(ff; g; hopi)g; result);

25: return result ;

for 
ombating memory explosion.

5.2.1 Memory Over
ow Handling

We want the simulator to use a �xed amount of memory to 
reate BDD nodes.

However, there is no a priori way of knowing exa
tly how mu
h memory will be

required based on the number of BDD variables in the test. The only way to determine

this is to build BDD nodes and then dete
t when over
ow o

urs. In order to not

throw away work already done, there must be a strategy for dealing with over
ow

when it happens.
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Over
ow o

urs in the approx Apply algorithm when it tries to 
reate a new

BDD node and there is no memory spa
e available. A simple way of handling this

is to simply return X in this 
ase. Thus, memory over
ow is handled using another

approximation rule. Algorithm 12 shows a version of approx Apply that returns

an approximate value when memory over
ow o

urs. The only modi�
ation to this

algorithm is the addition of lines 18 and 19. The BDD pa
kage is assumed to have

a fun
tion whi
h returns a 
ag indi
ating if there is suÆ
ient memory available to


reate a node. Normally this is implemented by allowing the user to set a threshold

for the maximum number of nodes that 
an be 
reated. This fun
tion simply 
he
ks

that the 
urrent node 
ount is less than the spe
i�ed threshold.

The approximate() fun
tion 
an 
reate new BDD nodes. However, the memory

available 
he
k is done after the approximation 
he
k. Thus, it may be ne
essary

to lower the node threshold to a

ount for these nodes. Be
ause of the nature of

approximated nodes, this is only a small per
entage of the total number of BDD

nodes when the number of nodes is near the maximum and usually does not 
ause a

problem.

5.2.2 Variable Sele
tion Heuristi


If there is insuÆ
ient memory to 
reate a new BDD node during simulation, ap-

prox Apply mo will return an approximate value. If the node is a don't 
are node,

then it is still possible that the �nal result will be exa
t. If the node value for whi
h

over
ow o

urred was a 
are value, then the �nal result will be approximate. Sin
e

in symboli
 system simulation there are many more don't 
are values than 
are val-

ues usually, we don't want the simulator to abort simply due to memory over
ow.

Instead, ea
h internal value that is approximated due to over
ow is marked as an over-


owed value. If the �nal satis�ability result returned by the simulator is marked as

an over
ow value, the sele
ted variable will be 
ase split resulting in two simulations

with smaller BDDs.

A heuristi
 is needed to 
hoose an appropriate 
are variable to be split when there

is insuÆ
ient memory to 
reate a new node. This is done by modifying the variable
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sele
tion heuristi
 (Algorithm 7 on page 64) to propagate a 
ase split 
andidate instead

of a re-
lassi�
ation 
andidate when over
ow o

urs during the 
reation of a node

value. To fa
ilitate this, approx Apply mo 
an be modi�ed to return an over
ow

indi
ation and a 
ase split 
andidate. A simple heuristi
 is to return top var as the


ase split 
andidate.

Algorithm 13 on page 109 illustrates a modi�ed version of the Simple Variable

Sele
tion heuristi
 that sele
ts 
ase split 
andidates when over
ow o

urs. The data

stru
ture for a value expression is modi�ed to add a 
ag, 
alled ov
w , indi
ating that

the var �eld is a 
ase split 
andidate due to over
ow instead of a re-
lassi�
ation 
andi-

date. The over
ow indi
ation and 
ase split variable returned by approx Apply mo

are spe
i�ed in global variables ov
w 
ag and ov
w var .

If over
ow o

urred in the 
urrent node, then Simple Var Sele
t mo sets the

over
ow 
ag and sets the 
ase split 
andidate to the over
owed variable returned by

approx Apply mo (lines 2{4). Lines 5{16 are the normal 
ases when a 
onstant

value is returned. Lines 17{29 are additional lines to handle the 
ase that over
ow

did not o

ur on this node, but did on one of the input values. Over
ow values

have pre
eden
e over non-over
ow values. If both inputs over
owed, then the lower

indexed variable is 
hosen (lines 17{23). Otherwise, if either input over
owed, that

value is 
hosen (lines 24{29). The remainder of the 
ode is unmodi�ed from the

original algorithm.

5.2.3 CD-MTBDDs

When using DP-based 
ase splitting with C-sets and D-sets to implement unit prop-

agation, the value fun
tion for ea
h node is extended to in
lude a pointer to a C/D-

set. BDDs and C/D-sets 
an be 
ombined. C/D-sets 
an be implemented using

approximate BDDs with an approximation rule that limits the possible BDDs to be

representations of C/D-sets only.

This approximation rule lies between the Data Approximation Rule and the Linear

Approximation Rule in the amount of approximation it 
reates. The if and else

bran
hes represent either C-sets or D-sets. In the 
ase that the AND fun
tion is
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being performed and the if and else bran
hes represent C-sets, an exa
t result will

be returned, whi
h is the same as that returned by the Linear Approximation Rule.

If both bran
hes are D-sets, the value X would be returned whi
h is the same as if

the Data Approximation Rule had been applied.

The qsym program implements this approximation rule using a di�erent approa
h.

Instead of implementing the approximation rule dire
tly, terminal nodes represent C-

sets and D-sets. Thus, the approximation rule is implemented in the terminal node

handling fun
tions. C-sets and D-sets are maintained in a 
anoni
al data stru
ture

and the terminal node values are pointers to these data stru
tures. The primary

advantage in using this method is that it allows the simpler C/D-set data stru
ture

to be used if DP-based 
ase splitting only is used.

4

5.2.4 DP Based Sear
h and BDD Based Symboli
 Simulation

Given a design and a test 
ase, a �xed amount of memory is required to perform s
alar

simulation and DP-based approximation improvement. The basi
 idea in 
ombining

DP and BDD-based symboli
 simulation is that any remaining memory 
an be used to


reate BDDs. This redu
es the amount of 
ase splitting exponentially in the number

of variables that are made BDD variables. From the simulator's point of view, there

are now three types of variables: 
are BDD variables, 
are 
ase split variables, and

don't 
are variables.

There are two basi
 strategies that 
an be used in determining whi
h variables to


ase split and whi
h to make BDD variables.

Option 1 Mark all dis
overed 
are variables as BDD variables and only re-mark

them as 
ase split variables if memory over
ow o

urs.

Option 2 Mark all dis
overed 
are variables as 
ase split variables. Variables are

then in
rementally re-marked as BDD variables until memory over
ow o

urs.

In both 
ases, on
e the right number of BDD variables is found that just �ts in the

available memory, 
ase splitting will o

ur over the remaining 
are variables.

4

The a
tual C/D-set data stru
ture is a trie.
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Neither one of these algorithms is better than the other, but they work di�erently

in di�erent 
ir
umstan
es. Option 1 works best when the number of BDD variables

that does not 
ause memory over
ow is 
lose to the total number of 
are variables.

This is be
ause the number of simulation runs that require re-marking a variable is

equal to the di�eren
e between the total number of 
are variables and the number

of BDD variables that allow the simulation to 
omplete without over
ow. Option 2

requires a number of runs equal to the number of BDD variables.

For example, if there are 36 total 
are variables and 32 of them 
an be marked

as BDD variables without memory over
ow, then Option 1 would require four re-

markings while Option 2 would require 32. On the other hand, if the total number of


are variables is mu
h larger than the number of BDD variables that allow no over
ow,

then Option 2 requires fewer re-markings. If there are 100 total 
are variables instead

of 36 for example, then Option 1 would require 68 simulation runs to re-mark variables

while Option 2 would still only require 32. Further, ea
h re-marking run using Option

1 will not produ
e any 
overage and will take the maximum simulation time. Option

2 will produ
e shorter re-marking runs and ea
h run will provide some amount of


overage whi
h grows larger with time. Thus, Option 2 is the more reliable algorithm.

Option 1 
an be implemented by using Sear
h and simulate as the evaluation

fun
tion for DPLL. In this 
ase, Sear
h and simulate is modi�ed to return im-

mediately if the �nal result is approximated due to over
ow. DPLL will dete
t this

and 
ase split the spe
i�ed variable.

Option 2 is implemented by modifying DPLL. The evaluation routine is still

the basi
 symboli
 simulation loop. Thus, DPLL gets the �nal result dire
tly. As

variables are 
ase split, no BDDs will be 
reated until a leaf node of the sear
h is

rea
hed and ba
ktra
king o

urs. Ba
ktra
king o

urs one step at a time. At ea
h

step, the variable that was ba
ktra
ked is marked as a BDD variable. This results in

the entire sub-tree for the se
ond 
ase split value of ea
h variable to be explored at

one time using BDDs. Ea
h sub-tree that is explored as ea
h variable is ba
ktra
ked

adds one more BDD variable. If over
ow o

urs, the variable that is returned will be


ase split.
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Figure 5.3: Exe
ution Time vs. BDD Node Limit for Unsatis�able NI Test 
ase

5.2.5 Analysis of Combined SAT and BDD-based Symboli


Simulation

This se
tion illustrates the e�e
t of memory over
ow handling in simulating an un-

satis�able test 
ase. In this experiment the NI design is used with an unsatis�able

test 
ase that has a �xed number of symboli
 
ontrol variables. The BDD node limit

is then varied to simulate di�erent over
ow 
onditions. The exe
ution time required

to prove the test unsatis�able is plotted as a fun
tion of the BDD node limit. The

goal of this experiment is to show the gra
eful degradation of exe
ution time when

there is insuÆ
ient memory for the test 
ase and design being simulated.

This experiment implements Option 1 by using Sear
h and simulate as the

simulation loop for DPLL. The simulator uses CD-MTBDDs and the variable se-

le
tion sele
tion routine modi�ed for memory over
ow as des
ribed above. The test

used a user supplied variable 
lassi�
ation whi
h did not need improvement in the


ase that there was suÆ
ient memory.
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A number of runs were performed in whi
h the BDD node limit was set to di�erent

values. The range of values was from 10,000 nodes to 200,000 nodes. The exe
ution

time required to prove the test 
ase unsatis�able as a fun
tion of the node limit is

plotted in Figure 5.3. The maximum number of nodes needed with no over
ow is

79,342 nodes. Below this number, BDD over
ow o

urred, but did not ne
essarily

a�e
t the exe
ution time of the test.

The simulator performs a garbage 
olle
tion whenever over
ow o

urs. For 
ases

with node limits above 30,000 nodes, this usually resulted in a large number of nodes

being freed. Consequently, 
ase splitting only o

urred for these 
ases if over
ow

o

urred when 
omputing a 
are value. This is the 
ase for the small peak between

79,310 and 79,341 nodes in the graph. The randomness of whether over
ow o

urs on

a 
are or don't 
are value 
auses the number of 
ase splits required to vary randomly

as a fun
tion of the BDD node limit. This a

ounts for all of the non-monotoni
ity

in exe
ution time seen in the graph.

Below a limit of 30,000 nodes, garbage 
olle
tion frees few if any nodes. This


auses the amount of 
ase splitting to in
rease inversely proportional to the node

limit and the number of BDD over
ows to in
rease hyper-exponentially as the node

limit is redu
ed below 30,000 nodes. Sin
e ea
h over
ow 
auses a garbage 
olle
tion to

o

ur, the exe
ution time 
omes to be dominated by the garbage 
olle
tion time. This

means that this algorithm will be ineÆ
ient for those 
ases in whi
h the node limit

is small 
ompared to the node limit required for no over
ow to o

ur. For 
ontrast,

quasi-symboli
 simulation requires 424 se
onds and 60 evaluations to prove this test


ase unsatis�able using only 8,248 BDD nodes. This 
ompares to 1,342 se
onds using

BDDs with a node limit of 10,000 nodes.

5.3 Related Work

The idea in semi-formal veri�
ation is to make symboli
 methods reliable. While sym-

boli
 simulation tries to in
rease fun
tional 
overage, many other semi-formalmethods

try to in
rease state 
overage using automated methods. Typi
ally, a three step pro-


ess is used. First, state ma
hines are either extra
ted from the design [34, 65, 83℄ or
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are 
reated manually [42℄, then symboli
 methods are used to �nd all rea
hable states

and, �nally, tests that visit ea
h state or transition are generated. Another semi-

formal te
hnique starts with existing binary tests and attempts to \expand" them

to in
rease state or transition 
overage [44, 33℄. These methods improve reliability

be
ause rea
hability and test generation 
an be done in
rementally. The relian
e on

state exploration, however, limits s
alability and does not provide suÆ
ient reliability

to be a primary veri�
ation method, although they may work well for �nding bugs.

Innologi
's 
ommer
ial symboli
 simulator has the ability to dete
t and handle

BDD over
ow. Apparently, their method is to abort the simulation as soon as over
ow

is dete
ted on an internal node value. Their method then randomly sets one of the

input symboli
 values to a 
onstant value in order to redu
e BDD sizes for the next

run. It is not 
lear that there is any attempt to make the method 
omplete by

performing two simulations for ea
h variable set to a 
onstant. Even if this were the


ase, sin
e their method does not distinguish between 
are and don't 
are variables,

a lot of don't 
are variables may need to be set to 
onstants before memory usage is

suÆ
iently redu
ed.

The appli
ation of SAT methods to veri�
ation has be
ome 
ommon in re
ent

years. The methods des
ribed in this thesis dire
tly in
orporate the SAT de
ision

pro
edure into the simulator. Other SAT-based veri�
ation methods typi
ally work

by generating a 
lausal formula that is fed to an o�-the-shelf SAT 
he
ker. An

example of this is Bounded Model Che
king (BMC) [6℄. BMC requires the 
ir
uit to

be unrolled for however many 
y
les are being simulated, using memory proportional

to the produ
t of design size and the number of 
y
les being unrolled. Performing

SAT solving dire
tly in the simulator eliminates the need to perform expli
it unrolling

and, thus, is more s
alable.

Sequential ATPG [20℄ is similar to symboli
 simulation in that it is trying to

produ
e a parti
ular value on a parti
ular output in a sequential 
ir
uit. Sequential

ATPG as a model 
he
king algorithm has been studied [8℄. Sequential ATPG has

been shown to be ineÆ
ient when there are few justifying states and may timeout

trying to justify a state and so does not meet our reliability goals.

Combining BDDs and SAT has also been a topi
 that has gained a lot of attention
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re
ently. Combining BDDs and SAT is most widely used in 
ombinational equivalen
e


he
king. Gupta and Ashar [40℄ des
ribe a method that initially uses SAT solving

to 
ompare nodes and then swit
hes to using BDDs. The basi
 strategy is similar

to Option 2 des
ribed in the previous se
tion. Instead of de
iding on a variable-by-

variable basis whether to 
ase split or use BDDs, their method de
ides on a node-by-

node basis. Nodes are partitioned into two halves, BDDs are used on one half and

SAT on the other. Reda and Salem [72℄ des
ribe a similar method but use BDDs and

SAT on opposite sides of the partition than Gupta and Ashar. It is not 
lear if these

methods 
an be extended to work on sequential 
ir
uits.

5.4 Summary

The inability to produ
e useful results when memory over
ow o

urs is the primary

reliability feature la
king in BDD-based symboli
 simulation. This 
hapter addressed

this problem using SAT-based methods. SAT-based methods were shown to be an

instan
e of using symboli
 simulation with approximate values and approximation

improvement. The primary di�eren
e between SAT-based symboli
 simulation and

BDD-based symboli
 simulation with approximate values is in how ea
h method han-

dles variables that have been re-
lassi�ed as 
are variables. BDD-based symboli


simulation marks the variable as a BDD variable and 
auses exa
t BDDs to be built.

SAT-based symboli
 simulation 
ase splits the variable, requiring multiple runs to

produ
e a result.

A symboli
 simulation method 
alled quasi-symboli
 simulation whi
h uses purely

SAT-based approximation improvement was des
ribed. This method was shown to

be e�e
tive when there were bugs present in the design. It was also shown to be more

s
alable and reliable than BDD-based symboli
 simulation for these 
ases. However,

it was shown to be ineÆ
ient 
ompared to BDD-based symboli
 simulation on unsat-

is�able test 
ases.

Combining SAT-based and BDD-based approximation improvement resulted in

improved performan
e on unsatis�able 
ases 
ompared to quasi-symboli
 simulation.

It also handles memory over
ow in a reliable way. That is, if over
ow o

urs, it
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allows resorting to 
ase splitting to maintain 
ompleteness of the simulation. This

also allows a partial result to be returned if memory over
ow o

urs and the 
overage

obtained is proportional to the exe
ution time. Thus, this method potentially meets

our reliability requirement.

There are tradeo�s involved in 
ombining SAT and BDD-based symboli
 simula-

tion. The amount of memory available versus the amount needed di
tates the best

heuristi
s to use to get the best eÆ
ien
y. There is still a lot of room left for resear
h

in 
ombining SAT and BDD-based methods to a
hieve optimal results.
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Algorithm 13 Simple Var Sele
t mo(f,g,node)

1: node:ov
w  false;

2: if ov
w 
ag then

3: node:ov
w  true;

4: node:var  ov
w var ;

5: else if is non 
ontrolling(g:val) then

6: node:var  f :var ;

7: else if is non 
ontrolling(f:val) then

8: node:var  g :var ;

9: else if is 
ontrolling(f:val) then

10: node:var  f :var ;

11: else if is 
ontrolling(g:val) then

12: node:var  g :var ;

13: else if g:var = fg then

14: node:var  f :var ;

15: else if f:var = fg then

16: node:var  g :var ;

17: else if f:ov
w ^ g:ov
w then

18: node:ov
w  true;

19: if g:var < f:var then

20: node:var  g :var ;

21: else

22: node:var  f :var ;

23: end if

24: else if f:ov
w then

25: node:ov
w  true;

26: node:var  f :var ;

27: else if g:ov
w then

28: node:ov
w  true;

29: node:var  g :var ;

30: else if :is 
are(g:var) ^ is 
are(f:var) then

31: node:var  g :var ;

32: else if :is 
are(g:var) ^ g:var < f:var) then

33: node:var  g :var ;

34: else

35: node:var  f :var ;

36: end if

37: return node;



Chapter 6

Con
lusions

The veri�
ation pro
ess normally 
onsists of two phases. The �rst phase, referred to

as the primary veri�
ation, systemati
ally tests all the fun
tionality in the design.

The se
ond phase augments the primary veri�
ation using di�erent methods with the

goal of �nding bugs that were missed in the �rst phase. The primary methods of

�nding bugs today are dire
ted and random testing. Most 
onventional approa
hes

to improving veri�
ation try to �nd better ways of augmenting random and dire
ted

testing. This thesis has argued that this does not provide suÆ
ient gain to signif-

i
antly improve the 
urrent veri�
ation bottlene
k. Instead, this thesis has taken

the approa
h of trying to �nd a better method than dire
ted or random testing for

primary veri�
ation.

Evaluating the su

ess or failure of a primary veri�
ation method uses di�erent


riteria than an augmenting method. The goal of methods that augment the primary

veri�
ation is to �nd bugs that were missed. Therefore, it is usually ne
essary to

show that a proposed augmenting method a
tually found a bug on a real design for

the method to be 
onsidered su

essful. For primary methods, however, the ability

to �nd bugs is a given. The su

ess of a primary veri�
ation method is measured

by how mu
h e�ort is required to exe
ute the test plan in terms of both human and


omputer time. It is assumed that su

essfully passing all tests in the plan entails

�nding and �xing all bugs.

The e�ort in exe
uting a test plan in
ludes the time to write the test, CPU time

110
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to run the test, test debug time, and any time required to debug hardware bugs.

Symboli
 simulation provides speedups over dire
ted and random testing in both test

writing and debugging e�ort be
ause of the symboli
 en
oding of multiple binary tests

into a single symboli
 test and the deterministi
 nature of symboli
 tests. The su

ess

of a symboli
 simulation tool, then, is measured by how mu
h CPU time speedup it

has over binary simulation for running an equivalent set of tests. This speedup 
an

vary from a billion or more in the ideal 
ase to zero in the 
ase that the symboli


simulation blows up due to memory limitations. Thus, a more important 
riteria is

the reliability of this speedup. We would rather have a lower best 
ase speedup if the

symboli
 simulator is no slower than binary simulation in the worst 
ase.

Thus, the primary fo
us of this thesis has been on improving the reliability of

symboli
 simulation. This is done using three primary ideas. First, the simulator is

given the ability to automati
ally approximate values on a node-by-node and 
y
le-by-


y
le basis. Approximation minimizes BDD sizes, in
reasing speed and lowering the

probability of BDD over
ow. Se
ond, variable 
lassi�
ation is an e�e
tive heuristi


for determining whi
h node values during simulation are don't 
are values. Values

that the simulator knows to be don't 
are values based on the variable 
lassi�
ation

are set to X. Third, SAT-based 
ase splitting 
an mitigate BDD over
ow su
h that

some useful 
overage is always obtained.

This produ
ed a symboli
 simulation method that had reliability 
hara
teristi
s

similar to dire
ted and random testing. These reliability 
hara
teristi
s are not ex-

a
tly the same as random and dire
ted testing. However, random and dire
ted testing

do not have the same reliability 
hara
teristi
s either, yet they are both 
onsidered

to be primary veri�
ation methods 
apable of �nding all bugs. Dire
ted and random

testing are 
onsidered to 
omplement ea
h other very well. Using the methods in-

trodu
ed in this thesis, symboli
 simulation with approximate values potentially 
an

take its pla
e as a third primary veri�
ation method that 
omplements both random

and dire
ted testing.
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6.1 Future Work

There is mu
h work that 
an be done to follow-on from this thesis. There are three

main areas that need to be addressed.

� Improvements to SAT and BDD-based symboli
 simulation with approximate

values.

� Coverage analysis of symboli
 simulation.

� Methodology improvements to support symboli
 simulation.

6.1.1 Improvements to Symboli
 Simulation with Approxi-

mate Values

The �rst item simply is to 
arry forward the work of this thesis. Many of the algo-

rithms presented in this thesis are heuristi
s. There are 
ertainly many variants of

these heuristi
s that need to be explored before knowing whi
h is best.

In parti
ular, the variable sele
tion heuristi
 is very simplisti
. The variable se-

le
tion heuristi
 is of primary importan
e when bugs are present to minimize the

amount of work needed to zero in on the bug.

Se
ondly, only a few options for 
ombining SAT and BDD-based symboli
 simu-

lation were explored. There is 
ertainly more work that 
ould be done here. It would

also be good to explore in
orporating other SAT optimizations that are standard op-

timizations in o�-the-shelf 
omplete SAT solvers. Exploring how to in
orporate lo
al

sear
h methods may also be fruitful.

6.1.2 Coverage Analysis

Symboli
 simulation using 
lassi�ed variables opens up a range of 
overage analysis

possibilities that is not possible with 
onventional binary simulation. In parti
ular,

variable 
lassi�
ation allows the dete
tion of ne
essary 
onditions for bug sensitiza-

tion.
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In the system-level tests we are 
onsidering, a bug is dete
ted when in
orre
t data

appears at a 
he
ked output. This in
orre
t data is often a don't 
are value. Assume

the 
orre
t value was inje
ted as a data value. If a bug o

urs, then it must be the


ase that, at some point, the don't 
are value was propagated through the 
ir
uit

while the 
are value was blo
ked. Thus, data being blo
ked is a ne
essary 
ondition

for a bug to o

ur.

Suppose the test passed, meaning that the data was 
orre
tly propagated through

the 
ir
uit. Suppose further that the data was blo
ked at some node in the 
ir
uit.

This implies that there is some other path in the 
ir
uit for this data to follow and

that this path is not being exer
ised by this test. In other words, there is a la
k of


overage.

Conventional metri
s su
h as line 
overage (in
luding observability based 
overage

[31℄) and state 
overage measure neither ne
essary nor suÆ
ient 
onditions for bugs

to o

ur. Therefore, la
k of 
overage using these metri
s 
an only be determined after

all tests have been written and passed, if at all. Measuring 
overage of ne
essary bug


onditions 
an be done on ea
h test 
ase and, so, 
an �nd potential bugs earlier and

more 
ompletely.

6.1.3 Methodology Improvements

Experien
e using symboli
 simulation with approximate values using the experimental

implementation qsym showed that this methodology required more work than normal

dire
ted and random testing to setup and debug. This resulted in this method being

less eÆ
ient when �nding bugs.

However, the primary 
ulprit was the primitive user interfa
e to the tool. qsym

required a gate level netlist instead of RTL simply be
ause this greatly simpli�ed the


oding of the tool. This made the turnaround time when 
hanging RTL very long.

When a bug o

urred, the primary debugging tool was gdb. Binary simulation enjoys

a plethora of support tools su
h as test ben
h automation tools, waveform viewers,

graphi
al debuggers, 
overage analysis tools, and hardware a

elerators. There is also

a lot of expertise and a

umulated wisdom on the best methodologies for maximizing
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the eÆ
ien
y of dire
ted and random testing. There is very little a

umulated wisdom

on using symboli
 simulation, espe
ially for doing system-level veri�
ation.

Symboli
 simulation introdu
es problems in all of these peripheral areas. What is

the best way to write tests in
orporating symboli
 values? How are symboli
 values

represented on a waveform viewer? What is the best way to debug a symboli
 test?

It may be that during the early stages of veri�
ation when there are many bugs,

it is the pro
ess of writing and debugging a test that is the bottlene
k in veri�
ation.

The a
tual veri�
ation engine may not be the bottlene
k at all, no matter whether it

is a binary or symboli
 engine. Thus, for symboli
 simulation to su

eed as a primary

veri�
ation method, it is vital to address these methodologi
al issues.

6.2 Con
lusion

This thesis has taken a di�erent approa
h to solving the veri�
ation bottlene
k. In-

stead of trying to augment existing binary simulation methods, the goal has been to

try to devise a better primary veri�
ation method. It is not 
lear if symboli
 simu-

lation with approximate values is the ultimate solution given this approa
h. A lot of

work is required to build the ne
essary infrastru
ture to determine if these methods

are indeed 
apable of meeting their goals. However, it is my hope that other re-

sear
hers will take this same approa
h to trying to break the veri�
ation bottlene
k.
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