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Chapter 1
Introduction

It is the thesis of this dissertation that the problem in solving the verification bottle-
neck in hardware design today is not in finding the few hard bugs, but is in finding
the many easy bugs. This thesis proposes using symbolic simulation as a replacement
for directed and random testing as the primary method for finding all easy bugs in
a design. Existing symbolic simulation algorithms have been optimized for finding
hard bugs, therefore, this thesis presents methods for optimizing symbolic simulation

to find easy bugs efficiently.

1.1 Problem Statement

1.1.1 The Verification Bottleneck

Twenty years ago, very little effort went into pre-silicon verification; most debug was
done post-silicon in the lab. Post-silicon debug times of one to two years were not
uncommon for large projects. Today’s project schedules typically call for no more
than three months of post-silicon debug. Consequently, most debug is now done
during pre-silicon verification in order to prevent bugs that require time-to-market
killing chip spins.

The pressure to continually reduce time-to-market even as chip complexity in-

creases has led to the belief that functional verification has become the bottleneck
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in hardware design. Reports from industry have shown verification consuming up to
80% of the design effort in a project [37, 82]. The fear is that, if this problem is not
addressed, chips will become un-designable within acceptable time frames in the near
future.

Many solutions have been proposed for the verification bottleneck, but little effort
has been made to try to understand the root cause of the problem. One generally held
belief is that simulation based verification methods cannot find all bugs, especially
hard bugs [26]. As design sizes grow, the perception is that there are more, harder
bugs to be found. Thus, simulation is viewed as becoming less effective in the future
as complexity increases. However, there has been no attempt to quantify this belief,
and in fact it is not even clear how to validate assumptions about the effectiveness of
different methods.

1.1.2 Conventional Solutions

In an attempt to characterize the verification bottleneck, Dill [26] asserted that a
common invariant amongst design projects is that the rate at which bugs are found
over time starts high and then diminishes [46, 60, 76, 81]. A point is reached at which
the bug rate remains very low for a sustained period before tape-out. Dill calls this
period purgatory to emphasize that it is this period that characterizes the verification
bottleneck.

A lower bug rate usually implies that it requires more effort to find each bug. It
is commonly assumed that hard bugs require more effort to find. Since the bug rate
gets lower over time, the conclusion generally reached is that bugs get harder over
time. This line of reasoning has led verification research to focus on finding hard, late
stage bugs in order to reduce the time spent in purgatory.

The primary method advocated for doing this is formal verification techniques
such as model checking. Model checking, invented in 1981 by Clarke and Emerson
[30, 18], is a method for exhaustively exploring the state space of a design looking for
bugs. Since every state in the design is explored, even the hardest bugs will be found.

Using model checking to check fundamental assumptions early in the design process
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has been successful [22]. This is usually done using an abstract model of a design
that removes everything except the conceptually difficult protocol to be verified. This
abstraction is necessary to make the model small enough such that the protocol can
be completely verified. However, it has also been found that a verified abstract design
does not guarantee that bugs will not be found later on [43].

Model checking is fragile due to the phenomenon of state explosion. It takes a
great deal of expertise and time to make model checking work for any given design.
However, since the goal is to find late stage bugs, this may be acceptable, as long
as the expertise is available and there is sufficient time. This has resulted in mostly
large projects, such as microprocessors, designed by large companies, such as Intel,
being able to get useful results from model checking.

Many success stories are reported from large companies using model checking
(62, 48, 29, 36|, however, these designs represent only a small fraction of the design
starts throughout the industry. Small companies simply do not have the time or
manpower to devote to complex verification methods that may or may not yield useful
results. Thus, in the design community at large, model checking has had negligible
impact in improving the overall verification process, despite having been around for
almost 20 years.

In recognition of this, Dill proposed using semi-formal verification. Semi-formal
verification gives up the ideal of complete state exploration in order to make these
tools easier to use. The primary idea in semi-formal verification that enables this is
to have the user guide the tool such that state explosion is reduced, but with the goal
of requiring little expertise in order to do so. Most semi-formal verification methods
are still based on the assumption that late stage bugs are hard and it is these bugs
that cause the verification bottleneck. It is too early to tell if semi-formal verification
tools targeted at finding hard late stage bugs will find wide acceptance. So far, these

tools have made little impact on the design community at large.
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1.2 Thesis

Despite the introduction of formal and semi-formal methods, simulation-based meth-
ods such as directed and random testing still find the majority of bugs in today’s
designs [53, 76, 81, 5]. Rather than view simulation-based methods as being ineffec-
tive, this thesis takes the view that directed and random testing are the most effective
way of finding all bugs in a design and will continue to be for the foreseeable future.
Thus, the direction pursued by this research is to improve upon directed and random
testing while maintaining the characteristics that make them the most effective veri-
fication methods. The characteristics that must be maintained are: predictability of
coverage and run time, good feedback for debugging, and good scalability as design
sizes increase. Together, these characteristics are called reliability.

This thesis investigates the use of symbolic simulation to extend directed and
random testing. The idea is that symbolic simulation can explore more behavior with
a given amount of effort than directed and random testing. The difficulty in doing
this is in maintaining the desired reliability characteristics of directed and random
simulation Therefore, the primary goal of this thesis is to make symbolic simulation
as reliable as random and directed testing.

The next two sections explore the rationale behind this approach in more depth.
The first section examines the effectiveness of simulation as a verification method. The

second shows how symbolic simulation improves upon directed and random testing.

1.2.1 The Effectiveness of Simulation

The conventional view that simulation cannot keep up with verification needs in the
future is based on the view that as designs get larger, bugs become harder to find.
What this usually is interpreted to mean is that there is some measure of inherent
hardness of a bug and that bugs that are inherently hard require more effort to find.
Conventional analysis is predicated on the idea that bug hardness increases with time
in a given project and also increases as design size increases. This drives the belief
that simulation is an increasingly ineffective way of finding bugs.

Bug hardness, in practice, is a subjective measure. The same bug may be viewed
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as being either easy or hard depending on factors such as the verification methodology
and who is doing the verification. The Intel Pentium FDIV bug [79] is widely quoted
as being a hard bug because the probability of failure is on the order of between one
in a million and one in nine billion [71]. However, this bug was due to a translation
error, not a design error. If it had been a design error, it is quite likely the bug would
have been easy to find since it was a simple table error. Exercising all table entries
is a standard verification practice, easily done using directed testing. Thus, from a
verification standpoint, this bug is not inherently hard to find.

At the same time, hard bugs that slip into silicon are usually easier to work around
than simple bugs. The less often a bug occurs during normal operation, the more
performance loss that can be tolerated for the failing function. This allows software
fixes for hard bugs. Therefore, if bugs are going to slip into silicon, it is better that
they be hard bugs that are potentially easier to work around.

Without making any assumptions about bug hardness, the only thing that is
certain as design becomes larger is that there will be more bugs to find. Finding
all easy bugs will continue to be the primary problem during verification, requiring
methods as reliable as directed and random testing, since this is the majority of
bugs. Therefore, methods that search only for easy bugs more efficiently may improve
the overall verification process. In fact, directed and random testing appear to be
extremely efficient methods for finding bugs and it will be difficult to do better than
these methods.

1.2.2 Symbolic Simulation

Before describing how symbolic simulation is used to improve upon directed and
random testing, it is necessary to give a brief description of what it is. Simulation
is a method of representing a device such that the result of applying a stimulus to
the simulation is the same as applying the stimulus to the real device. In hardware
verification, the device under test (DUT) is a circuit consisting of basic logic gates
such as AND, OR, NOT gates, and registers. Signal values are binary, which means
they range over the set {0, 1}.
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Binary simulation, which is used in directed and random testing, requires either
a one or zero to be applied to each input value for the simulation. For example, if
a circuit implements the function f = A A B, we could make the input assignments
A =1 and B =1 and simulate the function to get the result f = 1. To completely
verify this circuit would require simulating four different combinations of values for
the inputs A and B.

In symbolic simulation, instead of applying a one or a zero to a given input, a
symbol is applied. The symbol represents both one and zero at the same time. Values
computed at each node in the circuit are represented as expressions over the input
symbols. Thus, in the example above, we could make the input assignments A = z;
and B = xy, where z; is a symbolic variable. Simulating the circuit results in the
the symbolic value f = z; A x5 being computed. This symbolic value represents all
possible combinations of binary values on inputs A and B. Thus, symbolic simulation
requires simulating only one pattern to cover all combinations compared to the four
required for binary simulation. In several existing systems, BDDs [13, 16] are used
to represent symbolic values.

This thesis proposes using symbolic simulation to extend standard directed and
random tests. The basic idea is to write tests in essentially the same way as standard
directed and random tests, but to replace some of the values injected into the circuit
with symbolic values.

To understand how this improves the detection of easy bugs, consider how a test
plan is designed. A test plan basically divides the entire space of possible behavior
into a set of equivalence classes. For example, consider the creation of the test plan
for a simple memory system. First, the set of all tests could be divided into two
basic test types: read tests and write tests. Next, each of these classes could be
divided into cacheable and uncacheable classes. Next each of these subclasses could be
divided into different subclasses based on memory alignment. FEach of these subclasses
could further be subdivided based on whether the next sequential request was a
request to the same address or not. This second request could be further divided by
cacheable/uncacheable, memory alignment, and so forth.

Thus, a test plan can be represented as a tree in which each branch of the tree
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represents a subdivision of the possible set of behaviors. Theoretically, this tree could
be infinitely deep, however, the verification engineer decides how deep is necessary
in order to cover all possible bug cases. Directed testing then consists of sampling
each leaf of this tree. Usually there are far more leaves than can be covered using
directed testing. Thus, the verification engineer must chose which subset of the cases
to write tests for. Random testing is often used to sample those cases which were not
explicitly chosen for directed testing.

There are two ways that bugs may be missed using the above strategy. The first
is that there are simply too many leaf nodes and that a bug exists only in a leaf node
that was not tested. The second way bugs can be missed is when a bug exists only
under certain conditions in a leaf node that was tested and the directed test that
sampled this leaf node did not exercise those conditions.

To increase the likelihood of finding the first type of bug requires covering more
cases with the same amount of effort by speeding up simulation. It is also often the
case that the bug finding rate is limited by how fast tests can be written. Thus,
increasing the likelihood of finding the first type of bug also requires more efficient
test writing.

Symbolic simulation can be used to provide both of these speedups. First, each
leaf node in the test tree can be labelled with a unique identifying number. Symbolic
simulation can simulate the entire set of tests in one symbolic simulation run by
encoding the test identifier using symbolic values. Also, writing a single symbolic
test requires less time than writing many individual tests, although the symbolic test
is more complex than any given single test. Thus, symbolic simulation can potentially
cover more leaf nodes with a given amount of effort compared to directed and random
testing.

Symbolic simulation can also improve the likelihood of finding the second type
of bug. The goal of creating a test plan is to create equivalence classes such that if
a test within that equivalence class fails, all tests within that equivalence class fail.
Thus, sampling a single member of the class is sufficient to detect any bug within the
class of tests. If this is not the case, then there must be some input that distinguishes

between those test cases that fail and those that do not. A bug is missed if the test
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case sampling a particular equivalence class happens to set this input to the wrong
value.

Inputs that should not affect the correctness of a particular test case are called
don’t care inputs. If a bug occurs within an equivalence class only if some don’t care
input is set to a particular value, then that input is a distinguishing input. Putting
symbolic values on a don’t care input allows the simulator to explore both values of
that input. Thus, bugs due to don’t care inputs will be detected by the symbolic
simulator. Consequently, symbolic simulation increases the likelihood of finding bugs
due to don’t care inputs by exploring all possible values of don’t care inputs.

Because there are a finite number of equivalence classes in the test plan out of
a possible infinite set, there may be an infinite number of don’t care inputs within
any given equivalence class. Conventional symbolic simulation runs into problems
in dealing with these types of inputs because the number of BDD variables needed
to improve coverage of these cases generally exceeds the capacity of standard BDD
algorithms. In addition, if there is, in fact, no bug in the equivalence class, then the
work computing symbolic values for don’t care nodes in the circuit can actually slow
down the simulation compared to directed and random testing. Thus, conventional

symbolic simulation does not work well for finding bugs due to don’t care inputs.

1.2.3 Symbolic Simulation with Approximate Values

If we make the assumption that bugs are easy, then it is likely that only a few don’t
care inputs actually cause a bug. Thus, to detect this type of bug, it is not necessary
to verify all combinations of values over all don’t care inputs. It is usually sufficient
to check that some distinguishing don’t care input can cause an incorrect value to
propagate to an output in order to detect a bug. To do this does not require computing
exact values for every don’t care node in the circuit during simulation. This thesis
proposes using approzimate values on don’t care nodes to minimize computation
effort. Approximate values are values which range over the binary values plus a value
X, which represents an unknown value; values that are not approximated are called

exact. Approximate values are chosen such that a sufficient amount of information is
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maintained to allow easy don’t care bugs to be quickly detected.

The algorithms described in this thesis allow a small representation to be used
for values on don’t care nodes, which minimizes the simulation time for these nodes.
However, this is a conservative approximation, which means that the simulator may
detect a failure in cases that no failure would be detected if exact values were used.
This thesis describes methods to automatically resolve this conservativeness such that
an exact answer is produced while minimizing memory usage and simulation time.

Approximate values have been used in conventional symbolic simulation [74]. In
these methods, the user decides on which input nodes unknown values will be used.
The simulator has no choice in how to approximate internal circuit node values and
so cannot reduce computation effort on don’t care nodes.

This thesis describes methods to allow a simulator to vary dynamically the amount
of approximation of a value on a node-by-node and simulation run by simulation run
basis. The simulator can determine automatically which internal circuit nodes are
don’t care nodes and which are not and then increase the level of approximation on
don’t care nodes while keeping care nodes exact. This allows symbolic simulation to
maintain its speedup over conventional directed and random simulation even in the
presence of many symbolic don’t care input values.

Consequently, symbolic simulation with approximate values can improve upon
directed and random testing both in finding bugs due to insufficient leaf coverage and
in finding bugs within a leaf that occur only when distinguishing inputs are set to
a particular value. Because of these features, automatically abstracing internal node
values during simulation gives symbolic simulation the potential to be a primary

verification method for finding the majority of bugs in a design.

1.3 Overview of the Thesis

1.3.1 Contributions

A primary contribution of this thesis is approaching the verification problem from a

different angle than most researchers using symbolic methods. Specifically, arguing
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that improving upon directed and random testing as primary verification methods is
the best approach to address the verification bottleneck may be the most important
contribution of this thesis.

This thesis has chosen symbolic simulation as a way of approaching this problem.

In relation to this, the contributions of this thesis are as follows.

e Symbolic simulation with approximate internal values. The simulator can ap-
proximate values on a node-by-node and cycle-by-cycle basis. This allows the

simulator to use smaller symbolic representations for don’t care nodes.

e Variable classification-based approrimation. Symbolic variables are classified as
either control, data, or don’t care. Variable classification is shown to be a good
heuristic for determining the appropriate level of approximation for each value

the simulator computes.

o Automatic approzimation improvement. If the initial variable classification is
incorrect, the simulator automatically re-classifies variables and re-runs the test
in order to generate the correct approximation for each node value. This process

adds little overhead to the simulation process.

e Quasi-symbolic simulation. SAT-based case splitting is used to perform ap-
proximation improvement with no additional memory required. This provides
reliability comparable to random and directed testing. In addition, it is shown

to be have good performance on test cases in which bugs are present.

e Reliable symbolic simulation. Combining SAT-based and BDD-based approxi-
mation improvement methods allows the benefits of BDDs to be used in speeding

up simulation while mitigating memory blowup.

e The effectiveness of these techniques is demonstrated on two realistic industrial

designs.
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1.3.2 Outline of the Thesis

Chapter 1 provides an introduction to the problem and gives arguments for using a
different set of assumptions in pursuing a solution for the verification bottleneck.

Chapter 2 is a detailed introduction to symbolic simulation, including background
material. After reading this chapter, the reader should be able to write a basic
symbolic simulator.

Chapter 3 introduces approximations and gives algorithms for manipulating values
that include approximations. Variable classification is introduced as a heuristic for
the simulator to use in creating approximate values.

Chapter 4 discusses methods to improve the approximation. The algorithms in
Chapter 3 assume a static variable classification that may be wrong. This chapter
shows how the classification can be improved automatically with little overhead.

Chapter 5 shows that symbolic simulation can be cast as a satisfiability (SAT)
problem. SAT solving using partial assignments is shown to be an instance of symbolic
simulation with approximate values and approximation improvement. A method of
performing symbolic simulation using SAT-based methods only is presented with the
advantage of requiring no additional memory to manipulate symbolic values. SAT-
based and BDD-based methods are combined to allow available additional memory to
be used for BDDs without sacrificing the reliability of SAT-based symbolic simulation.

Chapter 6 concludes with results and future work.



Chapter 2
Symbolic Simulation

This chapter describes the basic algorithms and data structures related to symbolic
simulation. Circuits are defined and event driven simulation is described. Basic
Boolean algebra is introduced and BDDs which are used to represent symbolic values
are described. A detailed description of the APPLY algorithm, which is one of the
primary algorithms used in this thesis, is given. Following that is a formal definition

of symbolic simulation and proofs of the correctness of symbolic simulation.

2.1 Simulation

The input to the simulation process consists of a circuit and a set of input/output
patterns which specify how to test some functionality that needs to be verified. The
simulation process itself consists of computing values for each node in the circuit for

each step of simulated time.

2.1.1 Circuits

There are many possible circuit abstractions that can be used depending on the type
of verification being performed. Protocols and high-level algorithms often are given

in terms of operations on states, thus a Mealy or Moore F'SM model is appropriate.

12
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Equivalence checking is often done between the gate and transistor level representa-
tions of a design.

Since we are interested in functional verification of the design as entered by the
logic designer, the most relevant circuit description is what the designer enters. In
most cases, this is a register transfer level (RTL) description, written using a hardware
description language (HDL) such as Verilog or VHDL.

RTL represents a design as a set of unabstracted registers and a behavioral-level
description of the combinational logic. The syntax and semantics of RTL are complex
to define. Therefore this thesis will assume a gate level description of the design is
used. Since synthesis from RTL to the gate level is straightforward, any conclusions
that are derived for the algorithms presented in this thesis on gate level representations
are also claimed to hold for RTL representations.

A gate level circuit consists of a network of nodes connected using wires. Each
node in the circuit implements a Boolean function. All Boolean combinational func-
tions can be implemented using only two-input AND gates and NOT gates. Therefore,
without loss of generality, nodes are assumed to be either two-input AND, NOT, pri-
mary input (PI,) or primary output (PO) nodes. Each circuit node has an associated
Boolean value which is a function of the operation the node performs and the input
values to the node. Primary input values change as a function of time as controlled
by the test case; consequently, node values change as a function of time. Figure 2.1
shows an example of a simple circuit consisting of three two-input AND gates, three
NOT gates, three primary inputs and one primary output.

This definition of a circuit mentions nothing about state holding elements such
as latches or registers. However, it does allow cyclic connections in the circuit net-
work. Consequently, state holding elements can be implemented by creating gate
level representations of latches and registers. Thus, this circuit definition allows both

sequential and combinational circuits to be represented. !

'Tt also allows asynchronous circuits to be represented. Although simulation of asynchronous
circuits is not precluded by the algorithms presented in this thesis, this is not an explicit goal of this
thesis.
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Figure 2.1: An example of a simple circuit

2.1.2 Test Environment

The test environment is the interface between the user and the circuit. The goal of
the test environment is to allow the user to control the value of each input or output
at each time during the simulation. The test environment specifies a value for each
primary input at each time step of the simulation. It also specifies which outputs
are checked for correctness at each time step and the correct values for each checked
output.

Most input and output values can be generated algorithmically based on the
protocols that the circuit understands. Normally, these protocols are written using
behavioral code, generally at a higher level of abstraction than RTL. This behavioral
code relieves the user from having to specify every value of every input on every
cycle, which can be quite a tedious task. Symbolic simulation creates some problems
when simulating test environments written using behavioral code. These issues will
generally be ignored in this thesis unless they affect a relevant algorithm.

We can assume that there is some mechanism for applying values to inputs and
for checking outputs. A simple way to think about this is to assume that there is a
table of values that for every time step lists the value of every input and the value of
every output and whether it is checked. The user creates the table and the simulator
steps through the table applying values, simulating the circuit and then checking the

output values.
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Algorithm 1 BASIC_SIMULATION_LOOP
t < 0; {t is the current time step}
stop < 0;
Initialize_all_node_values();
while —stop A —fail do

{stop, fail} < Simulate(t);

t < Next_time_step(t);
end while

There are two special outputs that are generated by the test bench that the
simulator understands to have a special meaning. These are the stop and fail outputs.
The stop output indicates that the test is finished and the simulator should stop
simulation. The fail output indicates that an output miscompare was detected by
the test bench. It is assumed that the simulator stops if the fail output is ever
asserted. A test passes if stop is asserted without fail being asserted.

There are two basic types of tests: time-bounded and reactive. Time-bounded tests
run for a fixed amount of simulation time. If MAX _TIME represents the amount of
time we want the simulation to run, then stop is the function ¢t > MAX_TIME.
Reactive tests run until the circuit generates some condition. For example, the test
bench may inject a response and then wait for a response from the circuit. The stop
condition would then be a function of the circuit’s response. The specification may
not specify a maximum time for the circuit to respond. Therefore, the test bench must
allow an unbounded amount of time. Thus, reactive tests are also called unbounded
tests. To achieve the goals of this thesis, supporting reactive tests is a requirement.
Therefore, issues in dealing with reactive tests will be discussed when relevant in this

thesis.

2.1.3 Simulation Algorithm

Simulation consists of applying inputs to a circuit, computing the value of each node
in the circuit for each time step of the simulation, and checking outputs. The basic
algorithm for simulating a circuit is given in Algorithm 1.

This algorithm starts the simulation at time 0 and simulates each time step until
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completion. The Initialize_all_node values() function generates an initial value for
all nodes in the circuit.

The most time consuming part of simulation usually is in computing the values
of each node in the circuit. As circuit sizes have grown, much work has been done
trying to improve the performance of binary simulators. Consequently, there are many
different algorithms that can be used to compute values during simulation. Most of
these algorithms can be classified into two basic methods: event driven simulation
and compiled code simulation.

Event driven simulation and compiled code simulation compare differently for
symbolic simulation than for binary simulation. The difference between these meth-
ods lies in the number of node evaluations that must be performed and the overhead
of handling a node event. The performance difference is a function of the activity
factor, which is the percentage of nodes that have input value changes during a given
time step. Symbolic simulation has much higher activity factors than binary simula-
tion which potentially makes compiled code simulation more attractive for symbolic
simulation. However, node value computation time dominates over event processing
time in symbolic simulation. This means that neither method has a particular advan-
tage for symbolic simulation. Therefore, the experiments in this thesis use an event
driven simulation algorithm since this is simpler to implement.

Algorithm 2 lists the event driven simulation algorithm. In this algorithm, the
value of a node is computed only if one of its input values changes. At the beginning
of each time step, the test bench applies values to each primary input (line 1). The
fanout of a node is the set of nodes which are driven by this node. If a primary input
value is different from its previous value, all of the fanouts of this primary input will
be added to the pending event list.

The outer loop (lines 2-13) simulates for one time step. At the beginning of this
loop, the set of pending events becomes the set of active events. The inner loop (lines
5-12) computes the value of each node on the active event list, checks to see if the
node value changes and, if so, puts the set of fanouts for this node on the pending

list.
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Algorithm 2 SIMULATE_EVENT_DRIVEN(t)
1. pending_event _list < get_testbench_inputs(t);
2: while —is_empty(pending_event _list) do
3. active_event_list <— pending_event_list;

4:  pending_event _list < ();

5. while —is_empty(active_event_list) do

6: node < Pop(active_event_list);

7: val < Compute_value_of (node);

8: if val # node.val then

9: Push(fanout_of (node), pending _event _list);
10: node.val < val;

11: end if

12:  end while

13: end while

14: fail < testbench_check _outputs(t);
15: stop < testbench_stop(t);

16: return {stop, fail};

This loop continues until both the active and pending lists are empty. This in-
dicates that all nodes have correct values for the current time step. Next, the test
bench checks any primary outputs that need to be checked and computes the stop

and fail indications which are returned to the main simulator loop (lines 14-16).

2.2 Values and Their Representation

The simulation algorithms given in the previous section are independent of the values
a simulator supports. Circuits use a Boolean domain. Binary simulators use binary
values that represent a Boolean domain. This section describes basic Boolean algebra.

Symbolic simulators use symbolic values. The major data structure used in this
thesis to represent symbolic values is the Binary Decision Diagram (BDD). This

section also describes BDDs and the algorithms used to manipulate them.
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2.2.1 Boolean Algebra

The lowest level of value abstraction that is used for functional verification is the
binary domain {0,1}. Values are computed based on Boolean algebra, thus, 0 is
interpreted to mean FALSE and 1 is interpreted to mean TRUE.

A Boolean formula is an expression over an alphabet consisting of the constants 0
and 1, variables x, z1, x9, . . ., the connectives A, -, and parentheses (,). All Boolean
functions over a set of variables can be represented by a Boolean formula requiring
only the connectives A and —. However, it useful to abbreviate particular functions

for convenience. Some examples are shown in Table 2.1.

‘ Function ‘ Symbol ‘ Expression ‘
Inclusive-or (OR) fvg | =(=f A—g)
Exclusive-or (XOR) f@g | (fA-g)V(=fAg)
Exclusive-nor (XNOR) | f=g | (=fA=g)V (fAg)

Table 2.1: Boolean Function Definitions

An example of a Boolean formula is

(.I'O A\ _'.Tl) \Y (_'.CC[) A\ .CL'Q)

2.2.2 Binary Decision Diagrams

BDDs [14] are a data structure used to represent Boolean functions. BDDs are widely
used in formal verification, synthesis, and other CAD applications to manipulate
symbolic values represented as Boolean functions. There are many variants of BDDs.
The most widely used variant is the Reduced Ordered BDD (ROBDD). In fact, the
term BDD generally is interpreted to mean a ROBDD.

ROBDDs have the feature that Boolean functions can have a significantly more
compact representations for many functions than representations such as truth tables
or sum-of-products. Given a fixed variable order, ROBDDs are canonical, meaning
that if two functions are the same they will have the same ROBDD representation

and if they are different, they will have different representations.
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(a8 OBDD (b) ROBDD

Figure 2.2: An example of an OBDD and ROBDD

The compact representation ROBDDs achieve is the source of the speedup of
symbolic simulation over binary simulation. Also, since verification of a circuit usu-
ally involves comparing the value computed by the circuit to some reference value,
canonicity allows these comparisons to be carried out efficiently. Thus, ROBDDs are
an attractive representation for verification, in general, and symbolic simulation in
particular.

The data structure of a BDD is a rooted, directed acyclic graph. There are two
types of nodes in the graph: terminal nodes and non-terminal nodes. A terminal node
is labelled with either the constant O or the constant 1 and has no outgoing edges.
Each non-terminal node v is labelled with a variable var(v) and has two outgoing
edges, each connected to a different child node. There is a single root node of the
graph that has only outgoing edges.

Let f(xg,21,...,2,) be a Boolean function. This function is equivalent to its
Shannon expansion: (Z A f(0,z1,...,2,)) V (x A f(1,21,...,2,)). The root node of
BDD f represents f(xg,z1,...,x,) and has var(f) = xy. One of its outgoing edges,
called if (f) points to the BDD node representing f(1,z,...,z,) and the other edge,
labelled else(f) points to the BDD node representing f(0,x1,...,z,). The if and
else nodes are recursively decomposed this way until only the terminal functions O
and 1 are left.
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An Ordered Binary Decision Diagram (OBDD) is a BDD in which all paths start-
ing from the root node and traversing the graph to a terminal node have the variables
appear in the same order. Since it is possible for a path from root to terminal node
to traverse all variables, there is a total ordering of variables that must be maintained
in order to enforce this property. The [evel of a variable is its order of appearance in
this total order with the root node being at level one and the order increasing as the
graph is traversed toward the terminal nodes. Figure 2.2a illustrates the OBDD for
a simple function.

A ROBDD is an OBDD in which there are no duplicate nodes. A duplicate
terminal node is one that is labelled with the same constant as another. Two non-
terminal nodes u and v are duplicates if var(u) = var(v) and if (u) = if(v) and
else(u) = else(v).

It is possible to create an ROBDD from an OBDD by recursively applying the

following two rules starting from the terminal nodes and working up the graph.

e Remove duplicate nodes. For each set of equivalent nodes, choose one of
them to remain and remove all others. All incoming edges to this set of nodes

should be changed to point to the remaining node.

¢ Remove redundant nodes. The removal of equivalent nodes can result in
nodes having if (v) = else(v). These nodes are redundant and can be removed

and all incoming edges can be re-directed to point to if (v).

Figure 2.2b shows the ROBDD generated from Figure 2.2a as a result of applying
these rules. Normally it is not practical to create a OBDD and then reduce it. Instead
a ROBDD is built directly from two existing ROBDDs. APPLY is a general algorithm
that takes two BDDs and an algebraic operation as arguments and produces the result

of applying the operation to the two BDDs.

2.2.3 The Apply Algorithm

This thesis will present modifications to the basic APPLY algorithm in the next chap-

ters in order to support the creation of approximate values. Therefore, it is useful to
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Algorithm 3 siMpLE_AppLY(f,g,(0p))

. if terminal_case(f, g, (op)) then

return handle_terminal_casef, g, (op));

1
2
3: end if

4: top_var < min(var(f),var(g));
o
6
7
8
9

fifs feise < cofactor(f, top_var);

L gifs Geise < cofactor(g, top_var);

: tif <= SIMPLE_APPLY(fir, gir, (0D));

D telse < SIMPLE—APPLY(felsea Gelse <0p>)7
o if tif = telse then

10:
11:
12:
13:
14:

result < t;;
else

result < create_node(top_var,ti, tese);
end if

return result;

understand the basic APPLY algorithm in some detail. Algorithm 3 presents an unop-

timized version of APPLY that is easier to understand than the complete, optimized

version. This simple algorithm will be presented first followed by the full algorithm

with optimizations.

Lines 1-3 handle terminal cases, in which the result of the operation applied to

the two input BDDs can be directly determined by examining the two input BDDs.

For example, if the operation is AND and one of the input BDDs is the terminal

node 0, the result is the terminal node 0. The function terminal_case() detects this
and handle_terminal_case() computes the correct result.? The complete set of cases

handled as terminal functions is given in the following table (note that symmetric

cases are not shown).

f | g | terminal value for A
0| ¢ 0
11y g
flr f
f|-f 0

2These functions are usually performed by the same subroutine in a BDD package.
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If the result is not going to be a terminal node, then the computation is decom-
posed by splitting it into two cases. This is done by selecting the root variable in f
or g that has the lowest order and then performing a Shannon expansion over this
variable on both BDDs.

The cofactor() function (lines 5-6) returns the if and else branches of BDD f if
var(f) is equal to top_var. If var(f) is greater than top_var, then f is not a function
of top_var and so cofactor() simply returns the BDD that was passed to it for both
cofactors.

The SIMPLE_APPLY algorithm is called recursively (lines 7-8) on the if and else
cofactors separately. These two calls will return BDD nodes representing the if
and else functions for the computed function. Elimination of redundant nodes is
done by detecting that the if and else nodes are equal (lines 9-10). If the node is
not redundant, the BDD node representing the result of applying (op) on f and g
can be computed by creating a node, labelling it with top_var and pointing the if
and else branches to the appropriate BDD nodes returned by the recursive calls to
SIMPLE_APPLY (line 12).

SIMPLE_APPLY computes an ordered BDD, but not an ROBDD. The if, else nodes
and top_var value computed for some call to SIMPLE_APPLY may be equivalent to
those of some other call. Since a new node will be created in both cases, one of the
nodes is a duplicate of the other.

The optimized APPLY algorithm fixes this problem by keeping a list of all created
nodes in a hash table called the unique table. This table is looked up after the if and
else branches are computed to see if this node was previously created. A hash tag
is created consisting of the if and else nodes and top_var. If the node exists in the
unique table, it is returned as the result of this ApPPLY. If not, a new node is created
as in the SIMPLE_APPLY algorithm and inserted in the unique table.

APPLY can be called with the same set of arguments multiple times. The first call
with this set of arguments will create the node and all subsequent calls with the same
set, of arguments will return a node from the unique table. However, this will only
be detected after recursively computing the entire if and else sub-trees, each node of

which will also be returned from the unique table.
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Algorithm 4 ApprLy(f,g,(op))

1. if terminal_case(f, g, (op)) then

2:  return handle_terminal_casef, g, (op));
3: end if

4: if cache_hit({f, g, (op))} then

5. return cache_lookup({f, g, (op)});

6

7

8

9

. end if

. top_var <— min(var(f),var(g));

: fifa fetse < COfCLCtOT(f, tOp_UCl’I");

L gifs Geise < cofactor(g, top_var);
10: tip < APPLY(fir, gir, (0D));
11: tese <— APPLY(felse; Gelse <0p>);
12: if tzf = Telse then
13:  result < ti;
14: else if unique_hit(top_var,t;s,tese) then
15:  result <— unique_lookup({top_var,tif, teise});
16: else
17: result <— create_node(top_var,t;s, tese);
18:  unique_insert({top_var,tis, tese}, result);
19: end if
20: cache_insert({ f, g, (op))}, result);
21: return result;

This computation can be eliminated using another hash table, this time tagged
by the incoming arguments f, g, and (op). This hash table is checked before any
recursive computation is done and the result immediately returned if the value exists
in this hash table.

Note that this hash table is not necessary for correctness, thus, entries can be
deleted from this table with only a (potentially exponential) performance penalty.
This hash table is often called the node cache to emphasize this aspect. BDD node
caching almost always significantly reduces BDD computation time.

Algorithm 4 is the optimized APPLY algorithm including both types of hash table.
Lines 4-6 check the cache to see if this function has been computed before and return
the computed value if so. If this function was not already computed, then after the
node has been created, the new node is inserted into the cache at line 20.

Lines 14-15 perform the unique table lookup on the computed node and return
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the node from the table if it exists. Line 17 creates a new node and line 18 inserts
the created node value into the unique table.

Now that the basic algorithms for ROBDD creation have been presented, the term
BDD will refer to a ROBDD from here on in this thesis unless otherwise stated.

2.2.4 BDD Variable Ordering for Symbolic Simulation

An equally important aspect in creating BDDs is determining a good BDD variable
order. The chosen order can have a dramatic effect on the size of the BDD. For
most functions, there exists variable orders such that the BDD size is exponential
in the number of BDD variables. For many functions, most variable orders result
in exponential sized BDDs and there are few orders that result in polynomial sized
BDDs. Finding a good BDD variable order is an NP-complete problem, thus research
has been done on finding heuristics that work well in most cases [59].

It is not an objective of this thesis to study BDD variable ordering for symbolic
simulation. However, finding good variable orders is an important part in making
symbolic simulation practical. It is a goal of this thesis to make symbolic simulation
efficient in verifying control dominated circuits. In effect, this is done by exploring as
many combinations of control variables as possible mixed with some data values that
are used to check the correctness of the results. The following two simple heuristics

have been found to be effective in producing good variable orders in this case.

e Order control variables before data. Different settings of control variables
often have the effect of causing different data to be checked at the output
of the circuit. If timing is abstracted away and the effects of other inputs
are abstracted, then the circuit is reduced to a multiplexor with the control
variables selecting different data inputs. Multiplexors have well known BDD
variable ordering characteristics. Basically, ordering the select variables ahead
of the data variables results in a minimum sized BDD. Thus, ordering control

variables before data variables will, in general, minimize BDD sizes.

e Interleave variables representing values that are summed. This heuris-

tic generally is applied to data variables. When verifying an adder, interleaving
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the variables for the two operand inputs minimizes BDD size. This heuristic
also works for comparators and equality detectors, elements which occur quite

frequently in circuits.

Another subtle use of this heuristic is to apply it to control variables. For exam-
ple, verification of data transfer protocols such as bus controllers can done by
injecting a number of requests and then checking that each request transferred
data properly. Since it is covering all timing cases that is difficult in these pro-
tocols, it is desirable to test as many timing combinations between requests as

possible.

One way to do this is to have a delay value associated with each request. Let
d be the delay before injecting the first request and e be the delay after the
first request before injecting the second request. The cycle at which the second
request is injected is equal to the sum of the two delays, d + e. At any given
cycle, the request_valid signal that indicates a request is to be injected is a
function of d and e. For the second request, if 7" is a constant representing the
current, cycle, then the symbolic value on the request_valid signal represents the
relation d + e = T. Thus, the best ordering for the variables representing d and

e is to interleave the Boolean variables encoding the integers d and e.

Dynamic variable ordering [73] is a technique that automatically varies the vari-
able order while BDDs are being built in order to find a variable order that minimizes
BDD size. Dynamic variable ordering is a very time consuming technique, but is ef-
fective in certain circumstances. It is usually the case that once a good order is found,
this order works well on future runs even if the BDDs being generated change due to
design changes. Thus, a standard practice is to perform dynamic variable ordering
once to find a good order and then use this order for subsequent runs.

The characteristics of BDDs created during symbolic simulation are different than
those created by other applications such as model checking. In particular, model
checking tends to create a relatively small number of very large BDDs while symbolic
simulation creates a very large number of small BDDs. Because of the large number

of BDDs created by symbolic simulation, it is highly likely that most of them will
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be exponential in size, albeit over a small number of variables. It is unlikely that
dynamic variable ordering will be able to significantly reduce the BDD size in this
case. Consequently, this thesis does not explore the use of dynamic variable ordering

during symbolic simulation.

2.3 Symbolic Simulation

2.3.1 History and Related Work

In the broadest sense, symbolic simulation encompasses any simulation method that
uses values other than from the Boolean domain. The first such instance was the
incorporation of the X value to represent physically indeterminate values during
simulation by IBM in the 1960s [28]. The X value was found to be useful for detecting
hazards in logic. A few years later the use of X for increasing test vector coverage
was explored [49]. This work pointed out the effectiveness of using X values to verify
all possible reset conditions of memories.

An early paper by Breuer [9] explored the use of multiple X values, each with a
unique identity. It was concluded that the use of such values would result in expression
blow-up and therefore did not look promising.

The term “symbolic simulation” was coined by researchers at IBM in the late
1970s who were exploring the application of symbolic software verification techniques
to hardware verification [24, 19]. This work also suffered from a lack of good symbolic
representation and did not advance beyond this initial exploration[14].

BDD-based symbolic simulation appeared soon after the introduction of OBDDs.
MOSSYM [12] was the first BDD-based symbolic simulator and was designed to
verify switch level representations of circuits. For this class of problem, modeling
indeterminate values is very important. Therefore, from the very beginning, BDD-
based symbolic simulation has always supported the ternary base domain. This line
of research evolved into the COSMOS switch-level symbolic simulation [10] and STE
[11].

The work in this thesis is a direct descendent of the the MOSSYM/COSMOS/STE
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line of symbolic simulation. The primary difference between this thesis and these other
methods is the introduction of automatic approximation methods in the simulator.

Another symbolic simulation methodology uses a two-step property verification
approach. In this methodology, symbolic simulation is used to extract a formula which
is fed to a validity checker. This allows the symbolic expressions in the simulator to
be non-canonical and is typically used with high-level data types such as integers,
reals, and arrays. A primary application of this is the verification of pipelined mi-
croprocessor implementations [17]. A successful application of this approach uses the
Stanford Validity Checker (SVC) which supports quantifier-free first order logic [50].
Another application used ACL2 [64] as the validity checker for verifying processor
microcode [39].

As the basic symbolic simulation algorithms have increased in power, more atten-
tion has been paid to applications and the methodology of using symbolic simulation.
Parametric representations [45, 1] are a methodology that allows symbolic simulation
to be more robust for verifying data path elements, such as floating point adders, that
do not allow a polynomial-sized BDD representation. Self-consistency checking [52]
is another technique that reduces the effort required in writing reference models for
verification. Specifying a symbolic address for a RAM effectively requires accessing
all locations in the RAM simultaneously during symbolic simulation. To alleviate
the work in accessing many physical locations, an Efficient Memory Model (EMM)
was developed for use in symbolic simulation [77]. The basic idea of this model is to
store the state of the entire RAM using a single BDD which is updated as writes are
performed.3

One of the initial applications of ternary simulation was the switch-level veri-
fication of RAM circuits [15]. This led to one of the first successful commercial
applications of BDD-based symbolic simulation on PowerPC memory arrays [67]. A
company, Innologic, whose main product is a BDD-based symbolic simulator was
founded. The most common application of their symbolic simulator has been in

verifying memory arrays.

3An EMM is implemented in the program gsym which embodies the algorithms in this thesis and
was used for some of the experiments in this thesis.
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Symbolic simulation has also been applied to the verification of blocks within
commercial microprocessors. Several blocks within recent Intel microprocessors have

been successfully tested using symbolic simulation [51].

2.3.2 Theory

Symbolic simulation was informally introduced in Chapter 1 as a method in which
symbolic variables replaced some of the binary values in a directed or random test.
It was claimed that each symbolic variable applied to an input covered the case of
that input being set to both a 0 and 1. However, this informal description does not
have clearly defined semantics. This section will formalize the concepts of symbolic
simulation and tie together the pieces of this chapter that we have seen so far.

Our informal definition of symbolic simulation is imprecise because we have not
been given a formal definition of what the symbols mean. It is tempting to think of
symbols as values unto themselves, however, a more useful interpretation is to think
of symbolic values as functions that map the value of sets of Boolean variables onto
a finite domain.

The finite domain is called the base domain. The base domain is the set of
scalar values that the simulator supports. For binary simulation, the base domain
is the Boolean, or binary, domain B = {0,1}. In Chapter 3, the ternary domain
T = {0,1, X} will be used. Thus, we can refer to symbolic simulation using each
of these base domains as binary symbolic simulation and ternary symbolic simulation
respectively.

Let V be the set of all the symbolic variables in a test. A literal is a variable or
its complement. An assignment to V is a function ¢:V — {0, 1} that maps variables
to Boolean values. Let @ be the set of all possible assignments. The value of a node
in the circuit is a function f:® — {0,1, X'} that maps each assignment in ® to a
ternary value. This function is called the value function of the node, which is not to
be confused with the operation function (AND, OR, NOT) for that node. Each node
in the circuit has its own value and consequently, its own value function.

We pre-define some value functions that will be useful later. For each variable
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a € V, let @ be the value function defined such that a(¢) = ¢(a). Let 0, 1, and
X be those value functions that return the values 0, 1, and X respectively for all
assignments.

Symbolic simulation consists of computing an output value function for each node

given value functions for the input nodes. The computation is done point wise:

(f (op) 9)(¢) = f(¢) (op) 9(¢) (2.1)

where f and g are the input values and (op) is the defined Boolean operation for this
node.

We will not consider the ternary domain until the next chapter, therefore, the
remainder of this chapter will assume that symbolic values are over a Boolean base
domain. [t is straightforward to represent symbolic values as defined above using
BDDs. The computation of values at nodes is done using the AppLY algorithm.

As an example, we can formalize the simple example of an AND gate introduced
in Chapter 1. Let V = {x1,x2} and the test case P be the input assignments {X =
x1,Y = x5}, Let @ = {¢o, 41, P2, 3} be the set of assignments to V as specified in
the following table.

Assignment | ¢;(x1)  ¢i(xe) | (X AY) ()
o 0 0 0
é1 0 1 0
b2 1 0 0
b5 1 1 1

The value function for (X AY’) is computed using Equation 2.1. The value function
is the symbolic value z; A x5.

A simulation loop similar to algorithm 1 is used in performing symbolic simulation.
Again, we assume a very basic test bench environment in which the user creates table
entries for all inputs and outputs over all time steps. For symbolic simulation, table
values can contain symbolic values over a set of symbolic variables that the user

creates for the test.
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input values
V1,V | ing iny ing ing
0,0 0 0 1 0
0,1 | 1 1 0 1
1,0 0 1 0 1
1,1 1 1 1 0
v1,v0 | (vg) (v1 V) (vi=w) (v ®wvp)

Table 2.2: Example of creating symbolic input functions

Symbolic input vectors can be generated by encoding sets of binary input vectors
using a parametric representation [45, 1]. A set of parametric variables is introduced
and a symbolic input vector is created as a function of these variables representing
all the Boolean input vectors. Table 2.2 shows an example of encoding four Boolean
vectors over four inputs using two parametric variables vy and v,. The symbolic
representation of this set of vectors is given in the last line of the table.

Symbolic values are computed at each node over all time steps using Equation 2.1
to do the evaluation of each node value. A symbolic simulation run produces symbolic
values for the fail and stop outputs. A test case failure is indicated when the value
function for the fail output is 1 for at least one variable assignment. A test case passes
if the fail output is O for all variable assignments and stop is 1 for all assignments.

The fact that the stop output can be symbolic creates an interesting problem for
the simulator. It is possible that, for some time step, the value of stop is 0 for some
variable assignments and 1 for others. Since a value of 1 means the simulator should
stop and 0 means it should continue to the next time step, the simulator is faced with
dilemma of whether to stop at the current time step or continue executing.

This is resolved by having the simulator continue, but having it keep track of
for which assignments the simulation has stopped. Any fail conditions for variable
assignments that were stopped in previous time steps are ignored. Thus, the basic
simulation loop is modified as shown in Algorithm 5 to handle symbolic stop values.

The symbolic simulation loop is augmented with a variable gstop which records for

which assignments the simulation has stopped for all time steps up until the previous
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Algorithm 5 SYMBOLIC_SIMULATION_LOOP
t < 0; {t is the current time step}
stop <— ﬁ;
gstop < f);
Initialize_all _-node_values();
while gstop # 1 A fail = 0 do
{stop, fail} < Simulate(t);
fail < fail \ —gstop;
gstop < gstop V stop;
t < Next_time_step(t);
end while

._.
e

time step. The fail condition is only checked for those assignments in which gstop is
false.

We are now at a point where we can state and prove the fundamental theorems
of symbolic simulation. We want to prove that symbolic simulation is both sound
and complete. Soundness means that proving a property to be valid implies that the
property is true. When applied to simulation, soundness means that if a test case
passes in simulation, it will pass on the real design. Completeness means that any
property of the design is provable in simulation.

Symbolic simulation can only be as sound and complete as binary simulation.
Binary simulation is sound only if applied to ideal gates, that is, if we ignore timing,
noise margin, and other electrical effects. What we want to prove, therefore, is that
symbolic simulation is sound and complete when the underlying binary simulation is

sound and complete. This is proved in the following two theorems.

Theorem 2.1 (Symbolic Simulation is Sound). Let ® be the set of all assign-
ments over a set of variables V. Let P be a symbolic test consisting of a set of
symbolic input vectors over all time steps, a set of expected symbolic output vectors
and a symbolic indication of whether each output should be checked at each time step.
Then symbolically simulating P with the result that fail = 0 implies that for all as-
signments ¢ € @, simulating P(p) will result in fail = 0, where P(¢) is the binary

test resulting from substituting symbolic variables with their binary assignments in ¢.
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Proof. The proof of soundness is straightforward from the definition of symbolic sim-
ulation. Equation 2.1 defines the evaluation of symbolic values as a point wise eval-
uation over the set of binary values. Symbolic input and output values are encoded
point wise over the set of binary input vectors. Thus, if the result of the symbolic
simulation results in no failures, then none of the point wise binary simulations must

have any failures. O

Completeness means that a pass/fail indication will be determined in all cases. For
binary simulation, completeness is guaranteed if the simulation stops. Thus, binary
simulation is incomplete only if the simulation never stops. The symbolic equivalent

is stated by the next theorem.

Theorem 2.2 (Symbolic Simulation is Complete). Let @, V, and P be defined
as in Theorem 2.1. If for all ¢ € ®, binary simulation of P(p) stops, then symbolic

simulation of P stops.

Proof. To prove this, we must analyze Algorithm 5. Since we assume that all binary
simulations must stop, there must be some time step for which each binary simulation
corresponding to some variable assignment stops.

The value of gstop in Algorithm 5 is simply the OR of the value of stop over all
time steps. Since each binary simulation must stop in a unique cycle, the assignments
for which stop is 1 for each time step are unique between all time steps. Therefore,
each assignment for which stop is asserted that is ORed into gstop at each time step
adds one assignment for which gstop is asserted. Thus, when all time steps have been
evaluated, the number of assignments for which gstop is asserted will be the sum of all
assignments for which stop was asserted during the simulation run. Since we assumed
that all binary simulations must stop, then for all possible assignments, gstop will be
1. This is equal to the constant function 1. Since one of the the exit conditions for
the while loop in Algorithm 5 is gstop = 1, the symbolic simulation run terminates.

O
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2.4 Summary

This chapter has presented background material on symbolic simulation. This in-
cludes an overview of BDDs and algorithms used to manipulate them and the basic
concepts of simulation. These are then combined to produce symbolic simulation. A
theory of symbolic simulation was presented that showed that symbolic simulation is

as sound and complete as binary simulation.



Chapter 3
Approximate Values

The use of BDDs in symbolic simulation creates the possibility of memory blow-up
which prevents the simulation from completing. This is the primary problem that
must be overcome in order for symbolic simulation to become a primary verification
method. This chapter introduces approximate values as a useful abstraction mech-
anism in symbolic simulation. Informally, a value is approximated by replacing it
with the value X indicating that the value is either unknown or does not matter.
Approximation of values results in fewer BDD nodes being created during simulation
thereby lessening the probability of memory overflow.

This chapter presents algorithms for creating and manipulating approximate val-
ues. It then goes on to show how the simulator can create approximate values dy-
namically based on variable classification. Symbolic variables in a test are classified
as either care or don’t care. Functions of care variables are not approximated while

functions of don’t cares variables are approximated.

3.1 Abstraction

Abstraction, when applied to verification, refers to the suppression of detail that is
irrelevant in proving a desired property [63]. There are two potentially useful types of
abstraction in symbolic simulation: circuit abstraction and value abstraction. Circuit

abstraction removes irrelevant parts of the circuit while value abstraction keeps the

34
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irrelevant logic, but abstracts values on circuit nodes that are not relevant.

The effectiveness of the different types of abstraction depends on the type of
verification is being done. There are two basic types of verification: full and partial.
Full methods attempt to verify all functionality in one shot; partial methods verify
functionality a piece at a time. Model checking and theorem proving are full methods
while simulation, including symbolic simulation, is a partial method.

Circuit abstraction is a common, and in fact, generally necessary, strategy used in
model checking to reduce state space. Value abstraction is useful in simulation since
each test case verifies only a small piece of the functionality. Since the same circuit is
used for all test cases, it is useful to abstract away values on those parts of the circuit
that are not relevant to a given test case.

Circuit abstraction is generally more powerful than value abstraction. Value ab-
straction requires values to be computed for irrelevant nodes; circuit abstraction does
not because the nodes have been abstracted away. However, circuit abstraction gen-
erally requires more effort than value abstraction. In fact, the large amount of exper-
tise required in finding good circuit abstractions is one of the primary impediments
in making model checking practical.

Symbolic simulation can benefit from value abstraction. Since each symbolic vec-
tor verifies only a portion of the functionality, limiting the size of BDDs used to
represent values on irrelevant nodes can speed up the simulation. An additional ben-
efit in doing this is that a larger number of symbolic variables can be used in a test,
allowing more coverage with the same effort as symbolic simulation without value

abstraction.

3.2 Approximation

In this thesis, value abstraction is done through approximation. Informally, approx-
imation is the process of replacing 1s and Os in the truth table of a value function
with X's. In order to formalize this concept, it is necessary to provide a framework
for relating approximate values to their exact values. This is done through a partially

ordered state space.
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3.2.1 Partially Ordered State Spaces

Let A, B, ..., denote sets of values in a domain. A poset is a pair (S, C) in which C
represents a partial order over the set S.

If AC S then a € Sis an upper bound of A if and only if b C a for all b € S. The
value a is a least upper bound (lub) if a C b for all upper bounds, b, of A. A lower
bound is defined similarly as a value a such that a C b for all b € A. The greatest
lower bound (glb) is also defined similarly as a such that b C a for all lower bounds,
b, of A.

An upper semi-lattice is defined as a poset in which a least upper bound exists for
all pairs of elements. Similarly, a lower semi-lattice is defined as a poset in which a
greatest lower bound exists for all pairs of elements. A lattice is a defined as a poset
that is both an upper and lower semi-lattice. a complete lattice is one for which a lub
and glb exist for all pairs of the poset. All finite lattices are complete.

Let (S;,C;) be a complete lattice. The poset (S,C) = Sy x §1...8, is a lattice
if the orderings C,; are extended point-wise. The ordering C is defined such that for
all a,b € S, a C b if and only if for all ¢, a; C; b;. The state of a circuit is the set of
values on all nodes. If node values form a lattice, then, by point wise extension, the

state of a circuit forms a lattice.

3.2.2 Approximate Values

A value function f' is an approrimation of f, written as f T f’, if and only if
Vo.f(¢) C f'(¢) where ¢ is a variable assignment. Given two approximations, f’ and
f"of f, f"issaid to be more approximate than f’if f' C f”. Different approximations
of a given value function are not necessarily comparable.

An ezxact value is defined as a value function which ranges over the Boolean do-
main. The exact value of a node is the value function computed for that node using
the Boolean operation defined for that node given that both input value functions
are exact. An approximate value of a node is any value function which is an approx-
imation of the exact value. By point wise extension, a circuit state is approximate if

any of its node values are approximate.
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Let the symbolic extension of an operation be an operation applied point-wise over
all possible symbolic variable assignments to a value function. An approximate value
for a circuit node can be generated by applying the symbolic extension of the node’s
operation to the two approximate input values to produce an approximate output

value. The correctness of this method is captured in the following formula:

FEFNgEG = (f (op) 9) E (f' (op) 9') (3.1)

where (op) is the Boolean operation defined for the node, f’ and ¢’ are the input value
functions, and f and ¢ are the exact values for the input nodes. This formula holds
if the symbolic extension of the Boolean operator (op) is defined to be monotonic. A

function f is monotonic if it obeys the following relationship.

rCy= flz)C fly) (3:2)

3.3 The Ternary Domain

Ternary valued simulation is an example of simulation using approximate values.

Ternary values can also be used as the base domain for symbolic simulation.

3.3.1 Ternary Valued Simulation

Let 7 ={0,1, X} be the ternary domain of values that can appear on nodes in the
circuit. The value X denotes the fact that the actual value could be 0, 1, or some
combination of 0 and 1 as a function of symbolic variables, but that the simulator
does not know or does not care about the actual value.

We form the upper semi-lattice (7,C) defined as 1 C X, 0 C X, and a C a for

all a € T.} This ordering reflects the semantics of state vectors as representing sets

!The work in this thesis is closely related to Symbolic Trajectory Evaluation (STE) [74] and
invites comparisons between the two. One of the major theoretical differences is the ordering of the
lattice (X above 0 and 1 instead of below). This has only a minor effect on the theory and has no
practical significance.
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Figure 3.1: Hasse diagram and table for NOT, AND for ternary upper semi-lattice

of binary vectors. Higher elements in the semi-lattice represent more possible sets of
binary vectors than elements lower in the semi-lattice.

The functions AND, OR, and NOT are defined over this semi-lattice. Ternary
simulation is performed by evaluating each node in the circuit using the ternary
extension of the Boolean operation defined for each node over the input values at
that node. Figure 3.1 shows a monotonic implementation of the AND and NOT

functions over the ternary domain.

3.3.2 Ternary Symbolic Simulation

Using a partially ordered ternary domain as the base domain for symbolic simulation
is one way of using approximate values in symbolic simulation. Beatty and Bryant
[4] showed that using ternary vectors instead of binary vectors to exhaustively verify
functionality can reduce the number of vectors required. This, in turn, reduces the
number of variables required to symbolically encode a set of vectors, thereby reducing
BDD sizes and computation time during symbolic simulation.

Symbolic Trajectory Evaluation (STE) [74] is a symbolic simulation method that
uses a ternary base domain. STE represents symbolic approximate values using a pair
of BDDs to encode the three possible ternary values. An example of this encoding
is shown in Figure 3.2 with the encodings [1, 0] representing 0, [0, 1] representing 1,
and [1, 1] representing X.

In STE, the user must determine the best set of ternary values that minimizes BDD
size and computation time. This works well for verifying circuits that modify data

because partitioning the set of vectors is very regular and can be done algorithmically
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‘ index input values y.H(v,v) = v =u
decimal ‘ v, |y y.H y.L y.L(v1,10) = v Vv

0 0000 1 0 T PR

1 0,1 |1 0 1

2 1,0 | 1 0 1

3 1,1 | X 1 1

Figure 3.2: Symbolic indexing of ternary vectors

[45].

Thus, STE and other symbolic simulators based on ternary symbolic simulation
have primarily been used in verifying datapath components such as RAMs [67], arith-
metic units [51] and instruction decoders [1].

We are interested in increasing the efficiency of verification for control circuits.
For these cases, it is not obvious to the user how to partition a symbolic vector into
a set of ternary vectors. Instead, the user wants to create sets of binary vectors
that represent things such as command types, numbers of requests, and delay values
between different transactions. We want the simulator to take these binary symbolic
values and approximate them where possible to reduce BDD size and computation

time.

3.3.3 Simulator Changes Required to Support Approximate

Values

The stop and fail conditions may need to be handled differently due to the presence
of X values on these outputs. STE assumes that any X appearing on the fail output
indicates a bug. It is up to the user to correct this even if this is due simply to an
input vector being too conservative.

STE does not allow reactive tests as defined in Section 2.1.2. Therefore, stop
is always exact in STE. Approximate stop values in reactive tests cause problems

that cannot be handled with the SYMBOLIC_SIMULATION_LOOP algorithm given in
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Chapter 2. We will deal with this problem in Chapter 5.

3.4 BDD-based Approximate Values

The STE method of encoding ternary symbolic values as two BDDs works well for
the ternary domain, but does not extend easily to arbitrary finite base domains. This
section describes a general method for representing and manipulating approximate
values represented as BDDs over arbitrary base domains. The basis of this technique
uses a modified BDD called a Multi- Terminal BDD (MTBDD).

3.4.1 Multi-Terminal BDDs

A MTBDD [32] is a BDD which allows terminal nodes other than 0 and 1. MTBDDs
were originally developed to represent algebraic values. In this application, it is
useful to think of terminals as pointers to base domain values. Thus, MTBDDs can
represent arbitrary approximate base domains. In all cases, however, approximate
base domains will contain values for TRUFE and FALSE. These will always be the
distinguished values 1 and O respectively.

There are minor differences in the algorithms for manipulating MTBDDs com-
pared to BDDs. However, the basic ApPLY algorithm works without modification.
Most of the differences are taken care of by the functions that check and manipulate
terminal values. A requirement on the base domain is that the approximate values
be canonical. This is necessary in order to maintain the canonicity of BDDs with

approximate values.

3.4.2 Ternary BDDs

Ternary BDDs (TBDDs) are MTBDDs having terminal nodes from the ternary base
domain. They are created and manipulated in the same way as BDDs over the

Boolean domain except that the terminal functions implement ternary operations.
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returned stored
if else | return | if else
X U U U U
X C C U U
U X U Uu U
U U U Uu U
u C U u C
Cc X C U U
c U C U C
c C C Uu U

Table 3.1: BDD Transformations for Complemented Edges

Ternary values create a complication in dealing with complemented edges. Com-
plemented edges are an optimization of standard BDDs that allow a smaller repre-
sentation than BDDs without complemented edges. BDDs with complemented edges
have a complement flag for both the if and else branches of each node. The com-
plement flag indicates that the sub-function for that branch is complemented for this
node.

There are four different combinations of values of the complement flags for the if
and else branches. This allows the same function to be represented in two different
ways, thereby breaking the canonicity of the BDD. The standard way of resolving this
is by selecting one of the representations as the canonical one and transforming the
non-canonical one to its canonical representation by complementing the node [58].

When complementation is applied to terminal nodes, the node is required to be
complemented. If the terminal node is the X value, its complemented value is also
X. This creates another source of non-canonicity when combined with complemented
edges. If either the if or else sub-functions return the value X, then additional rules
must be used to ensure canonicity. These rules are described in Table 3.1. The
left “if” and “else” columns represent the value of the complement flag returned by
the computation of these sub-functions. The “return” column indicates whether this
node should be returned as complemented or uncomplemented, and the last columns

indicate the setting of the complement flags when creating this node. “U” and “C”
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indicate complemented and uncomplemented edges respectively and “X” indicates a

value of X was returned by the sub-function computation.

3.4.3 Approximate Apply Algorithm

The representation of approximate values using MTBDDs allows the user to create
approximate values. But, so far, the algorithms we have seen do not allow the sim-
ulator any choice in determining the level of approximation in creating values. We
need an algorithm that allows the simulator to increase the amount of approximation
on values as they are created. We also need methods to remove this approximation
when necessary. This is the subject of the next chapter. For now, a general algorithm
for allowing the simulator to approximate values on a case by case basis is presented.

The algorithm used to create approximate algorithms is a modification of the basic
APppLY algorithm. The algorithm is modified to allow the creation of either an exact
value or an approximate value on a node by node basis while computing the BDD.
This algorithm, called APPROX_APPLY, is shown in Algorithm 6.

The difference between APPROX_APPLY and APPLY is the addition of lines 14—
15. The function want_approzimate() implements a set of rules, called approzimation
rules that determine whether a value should be approximated or not. If so, the
approzimate() function computes and returns the correct approximate value. In the-
ory, approzimate() could return any value that is an approximation of the actual
value. However, in practice, normally the terminal value X is returned since ap-
proximation is applied to values that are considered to be “don’t care” values that
should not affect the property being verified. The value X is the least expensive
value to return for this case in terms of both time and memory. If no approximation
is needed, then the node is returned from the unique table or created and inserted
into the unique table as usual.

Figure 3.3 illustrates the operation of APPROX_APPLY in computing the AND of
two BDDs. Assume that the approximation rule is that a node is approximated by
returning X if both the if and else functions are non-terminal nodes.

The execution sequence illustrates the series of calls to APPROX_APPLY with the
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Algorithm 6 ApPROX_APPLY(f,g,(0p))

1. if terminal_case(f, g, (op)) then

2:  return handle_terminal_casef, g, (op));
3: end if

4: if cache_hit({f, g, (op))} then

5. return cache_lookup({f, g, (op)});

6

7

8

9

. end if
. top_var <— min(var(f),var(g));
: fzf felse — COfCLCtOT(f, top- UG’I"),
L gifs Geise < cofactor(g, top_var);
10: ti <= APPROX_APPLY( fir, gif, (0p));
11: tese < APPROX_APPLY( feise, Geises (OD));
12: if tzf = Telse then
13: result < ti;
14: else if want_approzimate(top_var,t;f, tes.) then
15:  result <— approzimate(top_var, tif, teise);
16: else if unique_hit(top_var,t;s, tese) then
17: result <— unique_lookup({top_var,tif, teise});
18: else
19:  result <— create_node(top_var,t;s, tese);
20:  unique_insert({top_var,t;s, tese }, result);
21: end if
22: cache_insert({f, g, (op))}, result);
23: return result;

arguments passed in computing the i¢f and else branches. The value in parentheses
following the pair of operands is the BDD node that is returned by this call. The
initial call is with nodes A; and B;. Since both of these nodes have the same top
variable, the else branch is computed by passing the else branches of each of these
nodes, A, and Bj.

The computation of the sub-functions for the A,, B, node are terminal cases be-
cause one of the operands is 1 in both cases. Therefore, the BDDs that are returned
in these cases are A; and Bj for the if and else branches respectively. Since neither of
these nodes is a terminal, the value of this node is approximated by the approximation
rule and X is returned.

The computation of the ¢f branch of the A;, B; node is a terminal case and
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Function A

Al)‘/Bl({

Ao, By(X) B, 1(By)

Ay, 1(43) 1, By(By) 0 (w) B
Execution Sequence | /
X 0 1
if branch
A A B (approximated)

else branch

Figure 3.3: An example of approximate apply

returns the node Bs. Since the else branch computation returned the terminal value
X, no approximation is done and a new node Fj is created with if (F}) = By and

else(F}) = X. For this case, approximation has reduced the size of the BDD by two
nodes (A new node for Ay, By and A3) compared to the exact BDD for F.
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3.5 Approximation Based on Variable Classifica-
tion

We want the simulator to identify nodes irrelevant to proving the property being
verified. Nodes may or may not be relevant as a function of the current simulation time
step and setting of symbolic variables. For those time steps and variable assignments
that are irrelevant, approximate values suffice in order to reduce memory consumption
and simulation time. This section presents heuristics that allow the simulator to
discriminate relevant from irrelevant nodes.

There is a wide range of possibilities in choosing approximation rules for sym-
bolic simulation. This thesis studies heuristics based on wvariable classification. To
understand the motivation for using these heuristics, a generic example is given. This
example illustrates the use of symbolic simulation in verifying large systems. This
methodology is called symbolic system simulation to distinguish it from other sym-
bolic simulation methodologies.

These heuristics are not 100% accurate in identifying when it is appropriate to
approximate values and when it is not. There must be some way of dealing with this
inaccuracy. This issue will be deferred until the next chapter. The remainder of this
chapter will present the motivation for the variable classification heuristic, how it is

implemented, and then demonstrate its effectiveness on an industrial design.

3.5.1 Symbolic System Simulation

Figure 3.4 depicts an example of a circuit (labelled DUT) surrounded by structures
implementing an environment that constrain the values that can be applied to the
circuit. The circuit receives a request that includes data, an address, and a request
type that specifies an operation to be performed. Assume there are only four valid
request types. The multiplexor constrains the request inputs to only valid types. The
multiplexor input selects one of the valid types.

The circuit stores data in a pipeline before being transmitted on the data output.

Assume that the DUT transmits data on the output a fixed number of cycles after
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Figure 3.4: Symbolic System Simulation Example

the request arrives. Checking the correctness of the output data requires pipelining
the data the same number of cycles as the circuit should. This is done by the registers
placed above the DUT in the figure. A comparator at the output determines whether
the data matches the expected value and generates the fail output.

Since this is a sequential circuit, we want to be able to vary the delay of inject-
ing the request into the circuit in order to explore potential pipeline forwarding in
the DUT. This is accomplished by having a programmable down-counter in the en-
vironment. A value is loaded into this counter and the counter counts down until it
reaches zero, signalled by the output labelled “= 0” in the figure. This output drives
the request valid input of the circuit, thus allowing a variable delay for injecting a
request into the circuit.

In a directed or random test, we would simply put various binary values on the
inputs, issue some clocks, and check the outputs. In symbolic simulation, we would
replace some of these scalar values with symbolic values. In the figure, symbolic values

are used to select the request type (variables zp and z) and the request injection delay
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(x9 and x3). The data is made symbolic (variables x4—z7) as is the address (variables
xg—x11). The rest of the variables are left as binary values. Note that the figure shows
the state of the test for a single cycle only. In practice, the clock input would oscillate
every cycle and the load input to the counter would be asserted active only on the
first cycle and deasserted for the remainder of the test.

Also, the symbolic values shown would only be asserted on the cycle in which the
request is valid. On other cycles, the request, data, and address inputs are don’t care
inputs, which means values on these inputs should not affect the functionality of the
circuit for this test. In binary simulation, it is normal to set these inputs to a benign
value, such as all zeroes, once the request has been injected.

Using symbolic simulation, we can do better. After the request is injected, we
can put symbolic variables on the don’t care inputs since this should not affect the
correctness of the test. There are 13 inputs that are don’t cares after request injection.
Basically, this is all inputs except the load input to the counter. Assume that after
the request is injected, symbolic variables xi5—x94 are injected on the 13 don’t care
inputs.

If we consider all 25 variables, then this symbolic test represents 22° ~ 32 million
binary tests. However, the don’t care variables do not necessarily increase the amount
of control state covered by the test. Also, the data variables that are checked at the
end don’t necessarily increase control state coverage either. Because of the data
independence property [80], a single symbolic data variable is sufficient to distinguish
correct from incorrect data. Thus, the set of symbolic variables that search the
control space of the design are those that select the request and delay value, xy—x3.
The address inputs are also don’t care inputs since the correct output value does not

depend on them. Thus, this test represents 16 significantly different binary tests.

3.5.2 Variable Classification

Based on the above example, we can classify symbolic variables into three types:

e Control Variables. These are the variables that significantly differentiate

the binary tests represented by a symbolic test. These variables control the
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operation of the DUT and the timing of events. They are the variables that
search the control state space of the DUT. In the example above, xq—x3 are the

control variables.

e Data Variables. These are values that are injected and checked by the test.
For many cases, data variables are simply transferred through the DUT unal-
tered. If they are modified, by an ALU for example, then data variables may
rightly be called control variables since one set of data variables can be viewed
as steering the other set through the circuit in order to produce an output value.
Therefore, we only consider variables transferred unmodified as data variables.

Variables x4-x7 are the data variables in the above example.

e Don’t Care Variables. These are values that do not affect the correctness
of the test. If there is a bug in either the environment or DUT, don’t cares
from the simulator’s point of view may actually be care variables. Thus, there
are two types of don’t care variables: user don’t cares which are what the user
intends to be don'’t cares, and simulator don’t cares which are true don’t cares.

Variables xg—x94 are the user don’t care variables in the above example.

We only consider control variables to index the set of binary tests encoded by
a symbolic test since only these variables cause different control state space to be
searched. A single test from the set of indexed tests will have all its control variables
assigned to constants, but can have symbolic variables on data and don’t care inputs.
Since these symbolic variables do not increase coverage of control state in the DUT,
it is fair to ask what the value is of using symbolic data and don’t care variables,
especially if they cause a significant increase in simulation time due to large BDDs
being created on don’t care nodes.

The value of these symbolic variables is two-fold. First, symbolic don’t cares
may catch bugs by exercising inputs that were thought not to be relevant. This is
usually only a minor source of bugs. Finding these bugs at the expense of slowing
down the simulation so much that other bugs may not be found is unproductive.
Second, if no bugs are found, the fact that don’t care inputs are symbolic gives

the user more information about what has been covered by the test. Don’t care
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inputs that were covered by symbolic variables eliminate the need to perform random
simulation to cover different combinations of these inputs. But, again, this advantage
is not worthwhile if the cost is too high. Thus, having symbolic variables on don’t
care inputs has value, but only if the cost of doing so is low. Using approximate
values minimizes the cost of computing don’t care values and makes it feasible to put

symbolic variables on all don’t care inputs during simulation.

3.5.3 Approximation Based on Variable Classification

A node being evaluated by the simulator may be a care node or a don’t care node. A
care node is one which affects a checked output value. That is, an incorrect value on
a care node causes an incorrect value on a checked output value. A don’t care node is
one that does not affect a checked output. Nodes may be care or don’t care nodes at
different time steps during simulation. In a symbolic test, a node may also be either
a care or don’t care node as a function of the control variable assignments.

A care value is a value function that if incorrect causes an incorrect value function
to appear at a checked output. A don’t care value is a value function that does not
affect a checked value.

Assume that control and data variables are ordered ahead of don’t care variables
in BDDs. If for some variable assignment a node is a care node, then all variables
on the path from the root of the BDD to a terminal node for this assignment will
contain only control and data variables. For all assignments for which the node is a
don’t care node, control, data, and don’t care variables may appear on the path from
the BDD root to a terminal node.

Thus, BDD subtrees in which don’t care variables appear can be approximated
since they represent don’t care nodes. However, we do not want the entire subtree
approximated since some branches may represent care assignments and others don’t
care assignments. If a node is labelled with a don’t care variable, then the entire
subtree rooted by this node must be don’t care assignments only. This node can
be approximated by the value X. Any subtree that points to this value will also

be approximate with some branches pointing to exact values and others pointing to
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approximate values.
Thus, don’t care values can be identified by classifying the variables in the BDDs
being created for a particular node. We can exploit this classification using the

following approximation rule.

Approximation Rule 1 (Simple Variable Categorization Rule). if top_var is

a don’t care variable, then return X as an approximation of this BDD node value.

This is implemented by having want_approzimate() return TRUE if the variable
passed to it (top_var) is a don’t care variable. This means that the simulator must
keep a table classifying each variable as either a care or don’t care variable. It is
not obvious how such a table is created. The problem of classifying variables will be
addressed in the next chapter. Assume for now that each variable has already been
classified.

Approximation Rule 1 implies several things. First, variables need only be clas-
sified as care or don’t care variables. Second, this classification is based on the
simulator’s view of things, not the users. Third, control variables are classified as
care variables, don’t care variables are classified as don’t cares, and data variables
may be classified as either.

It may not be obvious why data variables do not need to be classified as care
variables. Normally, if data variables are simply passed through the circuit as a
function of the control variables and control variables are ordered ahead of data
variables in BDDs, then computed data variable nodes in the BDD are handled by
the terminal value functions. In these cases, either a constant is returned or one of the
original BDDs. In either case, no new node will need to be created. Approximation
only occurs if it is possible to create a new node. Therefore, no approximation is done
for these cases.

By treating data variables as don’t cares, they will remain exact if they are simply
passed through the circuit and will be approximated if they are manipulated in any
way. If data variables are manipulated and this manipulation is being verified, then
it is appropriate to use exact values for these values. Thus, data variables that are

manipulated are considered to be care variables.
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Figure 3.5: Synthetic circuit with don’t care logic

3.5.4 Analysis of the Simple Variable Categorization Rule

We would like to understand Approximation Rule 1. Figure 3.5 is an example of a
circuit with don’t care logic. The primary component in this circuit is an adder. The
data paths into and out of the adder go to other places in the circuit and other inputs
may be multiplexed with the output of the adder. A CPU, for example, may have
an ALU. Its inputs may be connected to other functional units which are selected by
the opcode. Its outputs may be multiplexed with the outputs of other units, again
depending on the opcode or other control signals. Thus, this circuit is representative
of the type of systems we are interested in verifying.

Suppose we are only interested in testing the paths from inputs w, z, and y to
output z. In this case paths leading to other outputs are don’t care paths. Don’t care
logic is represented by the blocks labelled “HWB” (hidden weighted bit). In general,
we must consider that don’t care logic may have any function. Since random functions
create exponential sized BDDs in general, the HWB block, which has exponential
BDD size for any variable order [7], represents worst case don’t care logic.

There are two types of don’t care logic: input and output. Input don’t care logic
is driven by don’t care inputs. Output don’t care logic is driven by care inputs, but
drives don’t care outputs. The effect of approximation on these two types of don’t
care logic is different since approximation is based on the input variable classification

and each type receives different classes of variable. The two HWB blocks in the
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example represent these two types of don’t care logic.

If the goal was to verify the adder completely, then variables on the x and y
inputs would all be care variables. In this case, all node values would be exact and
there would be no benefit in using approximate values over exact symbolic simulation.
However, in symbolic system simulation, we are usually interesting in verifying the
behavior of the system after verifying the individual components. Thus, if we assume
the adder has already been verified at the component level, we only need to verify
that it is correctly connected in the system. The only control variable that needs
to be exercised in this example is the multiplexor select input s. To verify that this
control signal works correctly, it is only necessary to pass data through the adder.

Thus, a simple system level test would be to put a set of symbolic data variables
on z inputs, zeroes on y inputs, and a different set of symbolic data variables on
the w inputs. If we put a symbolic control variable on the s input, we need only
check that the correct symbolic variables passed through the circuit as a function of
the symbolic control variable. We can repeat this test with the inputs on x and y
swapped to check all paths through the circuit. The following table lists the results

of running these two tests using both approximate and exact symbolic simulation.?

approximate exact
BDD nodes BDD nodes
test case | time | peak | final | time peak final

add_dc2 | 0.03s | 196 99 | 256s | 7.7 x 105 | 48,477
add_dc3 | 0.03s | 196 | 99 | 258s | 7.7 x 10° | 48,477

Approximation has radically reduced simulation time on the don’t care portion
of the logic compared to exact symbolic simulation. The final BDD size shows a
large improvement also, but a more realistic measure of improvement is the differ-
ence between peak BDD node usage which more accurately reflects the amount of
computation done during each simulation run.

It may not be apparent why this dramatic improvement is possible. Although the

circuit state is highly approximate, the pass/fail indication for the property being

2Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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verified is not. But this is only a necessary condition since the test case passed. If
there was a bug and the test case failed, it is quite likely that the pass/fail output
would be approximate. Since approximate values are conservative, additional work
may need to be done in order to produce an exact result that indicates that bug
really exists. In fact, it may require more work than using exact symbolic simulation.
In practice, bugs are triggered easily and producing an exact enough value for these
cases is generally a small amount of overhead.

The variable classification that was used for these tests marked the select input as
a care variable and all data variables as don’t care variables. Because the data was
simply passed through the circuit, all BDD manipulation involving data variables on
the care path through the circuit was done by the handle_terminal_case() function.
As soon as the data variables entered the HWB blocks which tried to manipulate
them, these values were immediately approximated.

This case is a worst case for exact symbolic simulation. The worst case for ap-
proximate symbolic simulation occurs when both inputs to the adder are symbolic
and the output value of the adder is checked. In this case, these data values would
have to be made care values. Consequently, exact values would be generated in the
HWRB blocks and approximate symbolic simulation would have the same performance
as exact symbolic simulation.

This leaves open the question of what the behavior might be on a realistic example
which has a mixture of symbolic care and don’t care variables. The next section
presents results of applying symbolic simulation with approximate values on a realistic

example.

3.5.5 Symbolic Simulation with Approximate Values on an

Industrial Example

This section examines the behavior of symbolic simulation with approximate values on
a real industrial design. The design, called the NI, is a block in a traffic management
chip which is part of a large networking system. The primary function of this chip is

buffering packets into and out of the system.
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Simulator Implementation

The implementation of the algorithms in this thesis is embodied in a program called
gsym. 'This program accepts hierarchical gate level Verilog input. It is compatible
with the gate level format generated by Synopsys’ Design Compiler. The test circuit
is in Verilog RTL format. Code is synthesized with no constraints and low compile
effort to generate a gate level netlist quickly.

The simulator supports a custom behavioral test language which is bit-level, but
allows behavioral constructs including assign, thread, guard (if-else,) wait, symbolic
variable creation, data check, and stop. This language allows most of the functions
available in behavioral Verilog. A custom language was chosen because Verilog does
not support some of the constructs necessary for symbolic simulation (namely, sym-
bolic variable creation) and for ease of implementation.

The simulator uses David Long’s BDD package cmubdd [57]. This package was
extended to support the APPROX_APPLY algorithm in addition to being heavily mod-
ified® to improve the performance of the package in this application. It was found that
symbolic simulation with approximate values tends to produce many small BDDs.
Profiling of the simulator revealed that up to 80% of the execution time of the sim-
ulator was spent in the BDD routines performing error checking. These routines
were optimized by stripping out all error checking. This gave a five-fold improvement
in BDD package performance and a two to three times improvement in simulator

performance when there are less than 10 symbolic control variables.

Circuit Description

One of the main functions of networking circuits is to buffer data. To maximize
the utilization of buffering RAM, packets are stored in fixed sized cells in memory.
Therefore, there needs to be a circuit that breaks incoming packets into fixed sized
cells. The NI block performs this function. The basic functions of the block are listed

below.

e Add an eight byte header to the incoming packet.

3read:hacked
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Break the resulting packet into 112 byte cells.

Create cell headers identifying which packet the cell belongs to.

Handle packet lengths between 64 and 16K bytes.

Pad out end-of-packet cells to the correct length.

Convert a 128 bit wide packet interface to a 160 bit wide cell interface.

e Check for errors and mark cells as bad if any word within the cell is in error.

Structurally, the block consists of three main components: an incoming 128-bit
word FIFO which feeds a re-alignment buffer to convert the 128-bit interface to 160-
bits. The re-alignment buffer also breaks packets into cells and performs the necessary
padding and insertion. The output of the re-alignment buffer is a cell FIFO which
drives the output of the block. The block implementation requires approximately
100K gates and 3500 state holding elements. The main difficulty in implementing
this unit is in handling the various boundary conditions in packing 128-bit words into
a 160-bit interface and padding cells to the correct length at the end of the packet.

The NI consists mostly of data path elements. The control state consists of the
depth of the incoming word queue, the depth of the cell FIFO, and the state of the

re-alignment buffer.

The Test case

The strategy for verifying this unit using symbolic simulation is to inject a stream of
packets and then check that each is properly converted to cells. The test case takes
advantage of packet symmetry by checking only a single packet within the stream.
Symbolic variables are used to select the target packet within the stream. The role
of the symmetric packets within the stream is to reach all the possible initial states
that the target packet may encounter. If all possible target packets are exercised,
then all possible states are tested. Symmetry reduces the number of checked data

variables and increases the number of don’t care variables allowing more opportunity
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for approximation. Symmetry does not reduce the number of control variables that
are care variables.

In order to explore the entire reachable state, the following parameters are con-
trolled by symbolic variables in the test case: target packet length, symmetric packet
length, inter-packet delay for each packet, and intra-packet delay (one delay “bubble”
is inserted within each packet, with the place within the packet selected by symbolic
variables) for both the target packet and symmetric packets.

The test case has 66 control variables, 32 data variables, and up to 565 don’t care
variables. The test simulates between 56 and 76 machine cycles, depending on the
the control variable assignments.

This test was run on the NI shortly after the block was designed. The designer
had done extensive, but not complete, verification of the block using directed tests.
At the time this symbolic test was run on the block, many bugs had already been
found and fixed in the design.

The symbolic test found two bugs, one trivial and the other simple. The first bug
was that two packet header bits were not being passed through to the cell headers.
This was due to an ambiguity in the specification and so would easily have been
caught by directed testing if the designer had interpreted the specification differently.

The second bug was that one particular data word was not transferred properly
when the packet length was between 76 and 79 bytes. This was discovered easily
by the symbolic simulator since it specifies the packet length using a symbolic value.
The bug was easy to diagnose since the symptom was a don’t care data variable on a
different word in the previous packet being propagated through instead of the correct
word. This bug could have been found by directed testing without too much effort.
This is exactly the type of bug that is targeted by this research.

Results

Figure 3.6 plots the execution time and memory usage of both exact symbolic simu-

lation and symbolic simulation with approximate values for the NI.*

4Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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Figure 3.6: Comparison of approximate and exact symbolic simulation

The test case code identifies control variables and allows the user to individually
specify whether each control variable is symbolic or is either the constant 0 or 1. The
figure plots execution time and the maximum number of BDD nodes used during the
test as a function of the number of symbolic control variables. A number of runs were
performed in which the number of control variables made symbolic is varied from zero
to 21. Control variables that are not symbolic are set to either 1 or 0.

The plot shows that both exact and approximate symbolic simulation scale expo-
nentially with the number of symbolic control variables. In both cases, increasing the
number of symbolic control variables by one increases the number of BDD nodes by
approximately 25%. Run time in both cases is proportional to the number of BDD
nodes created, indicating that run time is dominated by BDD creation time.

Exact symbolic simulation creates more than ten times the number of nodes than



CHAPTER 3. APPROXIMATE VALUES 58

approximate symbolic simulation with commensurately slower execution time. There-
fore, for this example, symbolic simulation with approximate values improves sim-
ulation efficiency compared to exact symbolic simulation. However, because both
methods scale exponentially at the same rate, this advantage only allows approxi-
mate symbolic simulation to handle a fixed number of additional symbolic control
variables before memory runs out. For this example, approximate symbolic simula-
tion allows tests with 11 more control variables to be used with the same BDD node

limit.

3.6 Summary

This chapter introduced approximation and presented algorithms for creating approxi-
mate values on a case-by-case basis. A strategy for deciding how much to approximate
values based on variable classification was described. An experiment on a realistic
test case showed that approximate values based on variable classification improve the

performance of symbolic simulation by reducing the BDD sizes.



Chapter 4
Improving the Approximation

The previous chapter presented algorithms for approximating values and for using
variable classification to direct the creation of approximate values. The result was a
reduction of BDD computation time compared to performing exact symbolic simula-
tion.

There is a price that is paid for this: the user must manually classify variables
as either control, data, or don’t care variables. This has two problems. First, there
is the additional, though generally small, effort in doing this. Second, the user may
incorrectly classify variables leading to conservative answers if too few variables are
classified as care variables or excessive simulation time if too many are classified as
care variables.

This chapter addresses these problems by introducing methods to automatically
classify variables. The simulator starts with an optimistic classification which may
cause the simulator to incorrectly approximate values. This may cause the final
simulation result to be approximate. The simulator then re-classifies variables to
“improve” the approximation and re-simulates the design using the improved vari-
able classification. Multiple iterations of re-classification and simulation may be per-
formed until an exact result is produced by the simulator. The goal is to improve the
approximation just enough to create an exact result and no more in order to minimize

simulation time and memory usage.

29
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4.1 Adaptive Variable Classification

There are three steps in performing automatic variable classification. First, an initial
classification for each variable is chosen. Next, simulation is performed, and finally,
variables are re-classified based on the result of the simulation run. The last two steps
are repeated until an exact result is produced. The initial classification may either
be specified by the user or be some default classification.

During simulation with a particular classification, every node value will have its
own unique approximate value function that is dependent on the node, simulation
time, and current variable classification. If re-simulation is required due to an overly
conservative result, then there is a set of node values that must be made more exact
to produce an exact final result. This could be done either by explicitly identifying
those node values and making only these values more exact or by identifying the
variables that those node values depend on and re-classifying these as care variables.

Identifying the set of nodes that needs improvement entails storing information
about how all computed node values were approximated. The amount of information
required to be stored can be prohibitive, limiting design and test scalability. Since
our goal is to replace random and directed tests, it is necessary to be able to scale
design and test sizes as well as they do. Node-by-node approximation improvement
does not allow that, consequently this thesis considers improvements using variable
re-classification only.

Iteratively simulating and then re-classifying variables until an exact final result is
produced can be done using a single extra word of storage per node in the circuit (see
Section 4.2). Since a given variable may fan-in to many nodes over many simulation
cycles, variable re-classification may cause more values than is necessary to be made
exact. Thus, variable re-classification-based improvement is scalable, but at the cost

of node values potentially being more exact than is necessary.

4.1.1 Related Work

Approximation improvement by re-classifying variables is an instance of automatic

abstraction refinement. As far as is known, the work described in this thesis is the only
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work describing the use of automatic abstraction refinement on symbolic simulation.

Automatic abstraction refinement has been studied in the context of model check-
ing [69, 68, 56]. Although the goals and algorithms are quite different between ab-
straction applied to model checking and symbolic simulation, at a high-level, there
is some commonality. The approximation improvements in this thesis are iterative.
Several methods proposed for refining model checking abstractions iteratively have
been proposed [2, 21, 38, 54, 3, 47]. The general methodology is to partition the
state space, abstract each partition, and then incrementally improve one partition at
a time.

Some of these methods select a partition to refine based on the abstract coun-
terexample generated [21, 38, 54, 3, 2]. A counterexample in model checking is a
sequence of states, while in symbolic simulation it is a variable assignment. Thus,
the algorithms for extracting the necessary information from the counterexample are
different from the methods used in this thesis.

Of the methods using counterexample guided refinement, some base the refinement
on variable analysis [54, 3, 21]. These methods generally use more sophisticated

analysis techniques than the simple variable selection heuristic used in this thesis.

4.1.2 Example of Approximation Improvement

Consider the circuit shown in Figure 4.1. This circuit has three inputs: a, b, and c.
We want to show that the output f is O for all possible input values. To prove this,
we apply symbolic variables x;, x2, and z3 to each of these inputs respectively. Let
the variable order be z; < x5 < x3.

Analyzing the circuit, we decide that x; is a care variable and z, and x5 are
don’t cares. Therefore, we set the approximation rule to return X when a BDD with
variables x5 or x3 is being created, and an exact value when x; is the BDD variable.
The first line of Table 4.1 shows the computed values for each node.

The result that is produced, x; A X, is conservative. To improve this result, the
simulator re-classifies one of the variables from don’t care to care. For now, assume

that the simulator arbitrarily chooses from amongst the don’t care variables. We will
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Figure 4.1: Example circuit for approximation improvement
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Values for variables x; indicate whether the variable is a care (C) or don’t care (D)
in the approrimation rule.

Table 4.1: Node Values for Approximation Improvement Example

see better algorithms for doing this shortly.
In this case, let x3 be the variable that is chosen to be promoted from don’t care
to care status. The second line in Table 4.1 shows the values computed for each node

using this new classification. The result is the exact value 0 on the output.

4.2 Re-Classification Variable Selection

In the test cases we are studying, it is common to have hundreds or even thousands of
symbolic variables injected into the test. Most of these variables are don’t care vari-
ables that we want the simulator to keep as approximate as possible. Consequently,
re-classifying don’t care variables by random selection is very inefficient. Instead, we
want the simulator to intelligently select variables to be re-classified.

To do this, a set of variables that are potential re-classification candidates are
associated with each node value computed during simulation. This set is created
dynamically for each node when a new value is computed for that node. Similarly

to how the actual node value is computed, the set of re-classification candidates is
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created from the re-classification candidate sets for the input values to this node. The
re-classification candidate set for the final output of the simulation specifies which
variables are to be re-classified for the next simulation run.

There are different strategies in computing these sets that have implications on
memory usage and the number of simulation runs required to classify all variables
correctly. Possibilities range from computing the largest possible set of variables to
re-classify to the minimum number of one variable to re-classify per run. Computing
the largest set means that only one re-simulation run is required, but it is possible
that many more variables than necessary are re-classified.

In order to avoid memory explosion caused by re-classifying too many variables,
this thesis only studies methods that re-classify a single variable per run. This requires
only a single extra word of storage per circuit node. The tradeoff is that a large
number of runs may need to be performed in order to re-classify a sufficient number
of variables.

However, the additional runs do not add as much overhead as might be apparent.
Assume that all variables are initially classified as don’t care variables. This will cause
all computed node variables to be ternary values. Simulation time, therefore, will be
short. As variables are re-classified to be exact, more simulation time is required
as more exact node values are generated. When all variables are classified correctly,
simulation time is much longer than the initial re-classification runs. Thus, the total
fraction of time the simulator spends re-classifying variables is less than the total
number of runs indicates.

To minimize the number of re-classification runs required, a good heuristic is
needed to choose a candidate variable at each node. The goal of the heuristic is
to select a variable that is a potential fan-in of the node value; as a requirement, it
should not select variables that it can determine are not fan-in variables. Algorithm 7
illustrates a simple heuristic that always selects a don’t care variable that the output
value is sensitive to. This algorithm assumes a node value data structure which has
two components: val which contains the value, and var which contains the identifier
for the re-classification candidate. The values f and ¢ are inputs and node is the

output value. The output node value function is assumed to have already been
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Algorithm 7 SiMPLE_VAR_SELECT(f,g,node)
1. if is_non_controlling(g.val) then
2 node.var < f.var;
3: else if is_non_controlling(f.val) then
4:  node.var < g.var,
5. else if is_controlling(f.val) then
6
7
8
9

node.var < f.var;

. else if is_controlling(g.val) then

. node.var < g.var;

. else if g.var = {} then
10:  node.var < f.var;
11: else if f.var = {} then
12:  node.var < g.var;
13: else if —is_care(g.var) A is_care(f.var) then
14:  node.var < g.var;
15: else if —is_care(g.var) A g.var < f.war) then
16:  node.var < g.var;
17: else
18:  node.var < f.var;
19: end if
20: return node;

computed. Initial re-classification candidate sets for values injected by the test case
are selected according to Table 4.2.

Lines 1-8 select a candidate variable for those cases in which at least one of the
inputs is a constant. The function is_non_controlling() returns true if the value is a
non-controlling constant for the Boolean function of this node. For the AND function,
1 is a non-controlling value. Similarly, is_controlling() returns true if its argument is
a controlling constant value with 0 being controlling for the AND function.

If one input is non-controlling, the relevant re-classification candidate is the re-
classification candidate value on the other input. If one of the inputs is controlling,
then the other input cannot affect this output value. Thus, the candidate value from
the controlling input is selected. Note, that the output value will be a binary constant
in this case, which means that this re-classification candidate is really a don’t care.

However, for debugging purposes, it is useful to propagate the variable from the
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‘ value ‘ re-classification candidate set ‘
0 {}
1 {}
X {}

{}
{z:}

care variable z;
don’t care variable z;

Table 4.2: Re-classification Candidate Set Creation Rules

run class. node values{re-classification candidate}
Ty Ty T3 a b c d e f
1 D D D .’171{1'1} ZL‘Q{.’L‘Q} .’173{1'3} X{ZL‘Q} X{ZL‘Q} X{.’L‘l}
2 C D D .’171{} ZL‘Q{.’L‘Q} .’173{111'3} X{ZL‘Q} X{ZL‘Q} el /\X{ZL‘Q}
3 |C C D| =i} zo{}  w3{xs} woAX{xs} X{zs} o A X{z3}
4 | C C C| ni} zo{} z3{} xo AN z3{} 0{} 0{}

Values for variables x; indicate whether the variable is a care (C) or don’t care (D)
in the approrimation rule.

Table 4.3: Node Values for Re-classification Example

controlling input.

Lines 9-12 catch those cases in which the value X was applied as an input value.
The function is_care() returns true if the variable passed to it has been marked as a
care variable. Lines 13—-14 cause a don’t care variable to be selected if either of the
input candidates is a don’t care variable.

Lines 15-16 select a don’t care variable when both input candidates are don’t care
variables. There are a lot of possible heuristics that could apply in this case. However,
using only local information, it is impossible to guarantee that the best variable will
be selected in all cases. The simple heuristic of selecting the lowest ordered variable
allows the user to control re-classification candidate selection when there is a choice.
This heuristic works well in most circumstances.

To illustrate this algorithm, we can apply this to the example shown in Figure 4.1.
Assume that the initial classification of all variables is as don’t care variables. Ta-
ble 4.3 lists the values of each node and the re-classification candidate set for each

node. After each run, the re-classification candidate at output f is marked as a
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care variable and the simulation re-run. The table lists each run performed by the
simulator after re-classification until an exact value is produced.

In this example, the simulator had to classify all variables as care variables in
order to get an exact result at the output. Contrast this with the re-classification
done in Table 4.1. In this case, only one re-classification was required to produce an
exact result. However, in order to determine the correct variable to re-classify in this
case, it is necessary for the simulator to know about the reconvergence of xy. This
requires non-local knowledge of the circuit when computing the value of node d. In
the worst case, the effort required to determine this is the same as simply making all
variables exact. Thus, we must accept some amount of inefficiency in finding variables
to re-classify. This can be a problem in realistic cases. Section 4.5 will address this

problem in more detail and propose some solutions.

4.3 The Search and simulate Algorithm

The simple algorithm suggested in the previous section suffers from significant over-
head in performing re-classification runs before a final result is produced. This section
describes an algorithm that improves the efficiency of searching for re-classification
candidates. The basic idea of this algorithm is to have two simulation modes, one
for searching for variables to re-classify and the other to simulate with a particular
variable classification.

It is not necessary to mark variables as care variables and create BDDs in order
to discover which variables are care variables using our variable selection heuristic.
Instead, the simulator can operate in a mode in which it is “searching” for care
variables. Each time it discovers a variable, the simulator sets it to a constant for the
next run to remove it from consideration and reruns the test. It continues doing this
until the output value is a constant.

When the final output is constant during search mode, the simulator can assume
that it has discovered all care variables. It can then re-run the simulation with all
variables symbolic and care variables marked as such so that exact values are gener-

ated where needed. This is called “simulate” mode to emphasis that the simulator
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expects that the test case will be completely simulated.

An added bonus of the search and simulate method is that setting symbolic vari-
ables to constants can very quickly find simple bugs. This is especially important
when debugging test cases in which the test may fail due to incorrect errors on non-
symbolic inputs. Simulating with all variables marked as don’t cares will find these
basic errors much quicker than even approximate symbolic simulation with all care
variables classified correctly. Experience has shown that once the simulator produces
a passing exact value while searching, the test usually will pass completely. Thus, at
this point it makes sense to restore all symbolic variables to their original state and
re-simulate using the correct classification to make values exact where necessary.!

Algorithm 8 lists the SEARCH_AND_SIMULATE algorithm. The simulation starts
by applying an initial classification to all symbolic variables. This could either be
supplied by the user or be a default classification of don’t care for all variables.

The variable mode in the algorithm determines whether the algorithm is searching
or simulating. In simulate mode, it assumes that the current classification is correct.
The outer while loop performs iterations of searching and simulating. Initially, the
loop assumes that the current classification is correct and so it sets the mode to
simulate (line 3). The inner while loop first simulates the test case (line 5) and a
symbolic value for fail is returned. A symbolic value is said to be satisfiable if there
exists some variable assignment for which the value true. If the fail value returned
is satisfiable, then a bug has been discovered and the algorithm immediately returns
a FAIL indication (lines 6-7).

If a symbolic value is 0 for all assignments, it is said to be unsatisfiable. If the
value of fail is unsatisfiable, then an exact value has been produced. In simulate mode
this means the test completed with no errors. Therefore, the algorithm returns with
a PASS indication (lines 8-10). If not in simulate mode, then the simulator must
have set some variables to constants. Therefore, at this point, the simulator breaks
out of the inner while loop (line 12) in order to restore the discovered variables to
symbolic values.

If the fail output was neither satisfiable nor unsatisfiable, then it is approximate

ITn fact, it is this observation that inspired the search and simulate method in the first place.



CHAPTER 4. IMPROVING THE APPROXIMATION 68

Algorithm 8 SEARCH_AND_SIMULATE(f,g)
L. apply_initial _classification();
2: while (1) do
3:  mode < SIMULATE,;

4:  while (1) do

5: fail < simulation _loop();

6: if is_satisfiable(fail)) then

7 return FAIL;

8: else if fail = 0 then

9: if mode = SIMULATE then
10: return OK;

11: end if

12: break;

13: end if

14: mode < SEARCH;

15: var_id < get_selected _var(fail);
16: var|var_id] < {0, 1};

17: pushvar_id;

18: z_satisfy(fail);

19: end while

20:  while stack not empty do

21: var < pop();

22: make_symbolic_care_variable(var);
23: end while

24: end while

(assignments are either to 0 or X'). The simulator, therefore, switches to search mode
(line 14) gets the variable id returned by the selection heuristic for the fail output,
and randomly sets this variable to one of the constants, 0 or 1 (lines 15-16). Each
variable that is discovered in this way is pushed onto a stack to allow restoration to
symbolic values later on (line 17).

The last while loop (lines 20-23) restores those variables that were set to con-
stants back to being symbolic values. At this point, the simulator potentially has all
variables correctly classified. Since the outer loop sets the mode to simulate, if they
are classified correctly, simulation will produce an exact value. If not, the simulator

reverts to search mode and continues searching for more variables.
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Figure 4.2: Example BDD for search and simulate algorithm

This algorithm does not obviously terminate. The issue is: what is to prevent the
simulator from re-discovering the same set of care variables from one simulate/search
iteration to another? For example, suppose the output of exact simulation was the
BDD depicted in Figure 4.2a. Assume the SEARCH_AND_SIMULATE algorithm dis-
covers variable u in the first iteration and sets this variable to 1. In the next iteration
it finds v and sets this variable to 0. The third iteration will produce the exact value
0 since this path in the BDD leads to the terminal node 0.

The SEARCH_AND_SIMULATE algorithm will then switch to simulate mode and
mark u and v as care variables and re-simulate. The result of this simulation will
be the BDD in Figure 4.2b. However, if it starts searching again, the algorithm may
follow the same path as before and never discover variable w, which is necessary in
order to produce an exact result.

To solve this problem, whenever an approximate fail value is returned, the algo-
rithm calls the z_satisfy() function (line 18) which traces a path from the X terminal
node back to the root node. For each variable encountered along this path, it pushes
that variable onto the stack and sets the variable to the constant value required to
traverse the edge from that node to the terminal X. In this way, the algorithm is

forced to discover at least one new variable that caused an approximate result to be
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produced during each search.

This guarantees that SEARCH_AND_SIMULATE will always be complete assum-
ing that the set of underlying binary tests is complete. The is true because calling
z_satisfy() always forces the simulator to improve the approximation at least some

amount on each run.

4.4 Analysis of the Search and simulate Algorithm

The overhead introduced by automatic approximation improvement is the runs spent
searching and simulating before the last run. Overhead, therefore, is measured as the
time spent simulating all runs before the final one. This section analyzes the amount
of overhead on an example of using symbolic simulation to verify a simple adder.

In the best case, the overhead of the SEARCH_AND_SIMULATE algorithm is only the
scalar runs that must be performed; one for each variable that must be re-classified
as a care variable. In the worst case, there is a symbolic run for each re-classified
variable in addition to the scalar re-classification runs. The variance in overhead is
unpredictable in general: the number of variables requiring re-classification is un-
known and the number of simulate mode runs is unknown. In this section, we will
analyze a 32-bit adder. For this case, the number of scalar re-classification runs is
predictable in advance, but the number of simulate mode runs is not.

The adder is a simple ripple-carry adder with 64 inputs and each one must be
marked as a care variable in order to completely verify the functionality of the adder.
This experiment uses the SEARCH_AND_SIMULATE algorithm with all variables ini-
tially classified as don’t care variables.

The test case uses a method called self consistency checking [52] to verify the
functionality of the adder. Self consistency checking uses the circuit itself as its
specification. The laws of addition given below can be used to verify the functionality

of the adder without having to model a separate reference adder.

Identity X +0=X.

Successor X + 1 = succ(X).
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runs time BDD nodes

approx. rule | search | sim | search | sim | peak | final
simple 63 3 0.8s | 17.5s | 569K | 159K
exact - 1 - 7.1s | 312K | 82K

Table 4.4: Results from self consistency test of a 32-bit adder

Commutativity X +Y =Y + X.

Associativity X + (Y +2) = (X +Y) + Z.

All of these except the Successor property can be verified without having to per-
form any complex operations. Let f and ¢ be vectors of symbolic variables. Com-
mutativity can be verified by applying f and ¢ to inputs X and Y of the adder
respectively, simulating, and saving the symbolic output of the adder away. Then f
and ¢ can be applied to the opposite inputs, Y and X respectively, and simulating to
produce a new symbolic output. If this value is equal to the previous value, then the
commutativity property holds.

Verifying all of these properties does not guarantee that the adder has no bugs.
However, it does provide better coverage than thorough directed and random testing
can provide.

Table 4.4 shows the result of running a single test that verifies the Identity, Suc-
cessor, and Commutativity properties on a 32-bit adder.? The variable order used for
this test was Xy < .. X7 < Yy...V; < Xg < ... X5 < Ys...Yi5.... This is neither a
best case nor worst case order.

Although 63 runs in search mode were required, the total time taken by all of
these runs is a small fraction of the total simulation time. However, three runs in
simulate mode were required before all variables were classified correctly The first run
is always in simulate mode, but its run time is equivalent to a search mode run since
all variables are initially classified as don’t care variables. The first set of iterations
found all variables except for one. Because all variables but one were classified as care

variables, the second simulate mode run had a run time roughly equal to the final

2Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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run using exact simulation. A single subsequent search mode run was required after
the second simulate mode run in order to find the remaining care variable. Thus,
the simulate time is the sum of two runs with most or all variables classified as care
variables.

One thing to note is that the BDD node usage is higher using approximate val-
ues than exact values. The final run using approximate values is identical to the
exact symbolic simulation and the BDD node usage for this run is identical to exact
simulation. The large BDD node usage occurs in the second simulate mode run. Ap-
proximation has increased the size of BDDs rather than decreased them. This is due
to BDD node sharing being destroyed by approximation.

In conclusion, performing approximation improvement incurs some overhead. This
section has shown that this overhead is not as large as may appear on the surface.
However, there is potentially a large amount of variance in the amount of overhead
induced by automatic approximation improvement. The next section analyzes this in

more depth and explores some optimizations to reduce overhead.

4.5 Different Approximation Rules

This section shows that reconvergent paths in the circuit and test case are the primary
cause of the large variance in approximation improvement overhead. Weakening the
approximation rule is explored as a way of dealing with this problem.

In symbolic system simulation, different settings of care variables can cause dif-
ferent data variables to be propagated to checked outputs. The value function of
a checked data output is usually represented as a multiplexor function in this case.
Suppose the circuit we wanted to verify was exactly a multiplexor. Figure 4.3a illus-
trates a multiplexor being compared to a reference multiplexor as a test case. The
test case has a single control variable ¢ and two data variables z; and x,. Assume
we used the SEARCH_AND_SIMULATE algorithm starting with all variables classified
as don’t cares on to verify this circuit. Table 4.5 lists the values computed for each
run of the SEARCH_AND_SIMULATE algorithm.

The simulation starts in simulate with all variables classified as don’t cares. The
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Figure 4.3: Multiplexor circuit and multiplexor circuit with reconvergent inputs

| mode | ¢ |z | fail value{re-class. candidate} |

simulate | D | D D X{c}
search | 0| D D 0{z,}
simulate | C | D D 0{z}

Values for variables indicate whether the variable is a care (C), or don’t care (D) if
symbolic, constants otherwise

Table 4.5: Node values for multiplexor verification example

resulting simulation is conservative with variable c as the re-classification candidate.
A simulation in search mode with ¢ set to 0 causes an exact value to be generated
since only the single data variable z; is passed through the circuit. Approximation
is not done in this case because all BDD operations are handled by the terminal
handling function. The last run in simulate mode has the control variable classified
as a care variable. This will cause exact BDDs to be generated since operations on
data variables on all branches of the BDD will be handled as terminal functions.
Now assume that the circuit we were verifying was a multiplexor, but with each
data input having a reconvergent don’t care path such as is shown in Figure 4.3b.
The outputs of the reconvergent data inputs are always 0. Therefore, this test case

verifies that the output of the multiplexor is O for all variable assignments. Table 4.6
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‘ mode ‘ ¢ ‘ T, Ty ‘ Y1 Yo ‘fail value{re-class. candidate} ‘
simulate | D | D D D D X{c}
search |0| D D|D D X{x}
search [0 0 D|D D 0{y1}
simulate | C | C D | D D (e N X){xo}
search |1 | D 0|D D 0{y2}
simulate | C | C C |D D 0{zy}

Values for variables indicate whether the variable is a care (C), or don’t care (D) if
symbolic, constants otherwise

Table 4.6: Node values for multiplexor with reconvergence verification example

lists the runs performed by the SEARCH_AND_SIMULATE algorithm on this test case.

Three iterations of simulating then searching are required. The first simulate mode
run discovers the care variable ¢ plus the first data variable x; which must be made
a care variable because of the logic in front of the data input. The second simulate
mode run produces an approximate result because x5 has not been discovered as a
care variable yet. The subsequent search finds the second data variable and the final
simulate run produces an exact result.

The pattern here is that each simulate-then-search iteration discovers a single data
variable only. If we extended the size of the multiplexor, there would be one of these
iterations per data variable. Since the number of data variables is exponential in the
number of control variables for a mux, there can be an exponential blowup of search
and simulate runs compared to the multiplexor example without fan-in logic on the
data inputs.

The Simple Approximation Rule (Approximation Rule 1) always approximates
values whenever it is invoked. The fan-in logic causes the rule always to be invoked
resulting in the need to mark data variables as care variables. Different approximation
rules that are less conservative may reduce the need to mark data variables as care
variables. This section explores two different possibilities for approximation rules and
analyzes their performance on the NI example (see Section 3.5.5 on page 53 for details

on this example).
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| if (v) | else(v) | BDD size | total nodes |
terminal terminal 1 N
terminal | non-terminal N 2NV
non-terminal |  terminal N 2NV
non-terminal | non-terminal 2N 22"

N is the number of variables below this node

Table 4.7: BDD Sizes for different cases of returned if and else branch values

4.5.1 The Data and Linear Approximation Rules

The Simple Approximation Rule approximates a node value solely on the basis of
whether top_var is a care variable or not. Suppose that the if and else nodes returned
were the terminals 1 and O respectively. In this case, the BDD rooted at this node
is just this single node. No BDD blow up is possible for these cases. Thus, if we
relax the approximation rule to allow an exact value to be returned if the if and else
branches are both terminals, then APPLY can return exact values in some cases that
the Simple Approximation Rule cannot. BDD node usage may increase somewhat,
but the amount should be small.

This can be generalized by considering all combinations of the if and else branches
returning either a terminal or non-terminal BDD. There could be either zero, one,
or two terminal values returned. For each of these cases, it is possible to determine
the maximum size of the BDD rooted by the node being created and the maximum
number of nodes created in the unique table for this variable. This is summarized in
Table 4.7.

It obviously doesn’t make sense to return an exact value if the if and else branches
are both non-terminals if top_var is a don’t care variable. However, since for all other
cases, the BDD size that can be created is quite restricted, we can consider two new

approximation rules.

Approximation Rule 2 (Data Approximation Rule). If top_var is a don’t care
variable and either the iof or else branches is a non-terminal value, then return X as

an approximation of this BDD node value.
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Approximation Rule
Function Label Function Simple | Data | Linear
multiplexor (cANxy)V(meANxy) || exact | exact | exact
data xy A (A x9) X 1 AN X | exact
linear (x1 Axa) V (21 A 22) X X exact
non-linear (z1 ® x2) V (x1 ® x2) X X X

c 1s a marked care variable, x, x5 are don’t care variables.

Table 4.8: Computed values for different approximation rules

Approximation Rule 3 (Linear Approximation Rule). If top_var is a don’t
care variable, then if both the if and else branches are non-terminal values, then

return X as an approximation of this BDD node value.

The effect of these rules is apparent only when there is reconvergence present
in the circuit. Table 4.8 shows the values computed for these two approximation
rules and the Simple Approximation Rule for four functions with different types of
reconvergence.

The differences between the functions in the table are the complexity of the re-
convergence. The multiplexor function has no reconvergence. Consequently, the data
variables are only ANDed with constants and, thus, are not approximated. If data
variables reconverge as in the data case, then the approximation rule will be invoked
when computing the outer AND. Since the Simple Approximation Rule always re-
turns an approximate value, it will approximate this case to X. However, the other
approximation rules will produce more exact values since the i¢f and else branches
are constants in this case.

The linear case will be approximated by the Data Approximation Rule during the
computation of x; A xs since a non-constant node will be returned for the if branch
for the root node of this BDD. Thus, this value will be approximated and the recon-
vergent value will also be approximated. The Linear Approximation Rule will not
approximate x; A w9 since one branch is always constant for simple product terms.
When computing the reconvergent function, since both the if and else branches are

equal, APPROX_APPLY will return the if branch before getting to the approximation
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runs time BDD nodes
approx. rule | search | sim | search | sim | peak | final

exact - 1 - 197s | 738K | 61K
simple 22 2 148s | 20s | 8.7K | 2.5K
data 22 2 196s | 7Hs | 122K | 28K
linear 6 2 41s 65s | 153K | 24K

Table 4.9: Results from different approximation rules on the NI test case

rule and, thus, an exact result is returned. For the non-linear case, the XOR func-
tion is approximated even for the Linear Approximation Rule and so it returns an

approximated value for this function.

4.5.2 Analysis of Different Approximation Rules on the NI
Test Case

Table 4.9 lists the results of running SEARCH_AND_SIMULATE with different approx-
imation rules on the NI test case.® For this test, six control variables were made
symbolic and all other symbolic variables were set to constant values. All data and
don’t care variables are symbolic. The initial variable classification was to mark all
variables as don’t care variables.

The minimum number of search mode runs we would expect is six, which is the
number of symbolic control variables. The Simple and Data Approximation Rules
require 16 additional variables to be marked as care variables. In both cases these are
data variables. The fact that these must be made care variables indicates that these
functions are not simple multiplexor functions. However, the test case is simply pass-
ing data through the circuit and checking it. Thus, it must be the case that the data
paths are affected by reconvergent don’t care logic. Determining the reconvergence
present by analyzing the circuit is difficult because the large design size means there
are many paths feeding a single data output. Also, the reconvergence takes place

over many cycles because the test case injects data at the beginning of the test and

3Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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then checks at the end after many cycles have been simulated. The fact that only the
Linear Approximation Rule need classify only the six control variables indicates that
the don’t care reconvergence is at least as complex as the linear convergence function
given in Table 4.8.

The total execution time (search time plus simulate time) for the Simple and
Linear Approximation Rules is less than the execution time for exact symbolic sim-
ulation despite the number of simulation runs required. The final run with properly
classified variables requires substantially less execution time than the exact symbolic
simulation time. The Data Approximation Rule requires more execution time than
exact symbolic simulation because it needs 22 search mode runs and the execution
time per run is longer than using the Simple Approximation Rule due to the more
exact BDD values being created.

Comparing BDD node usage, we see that the Simple Approximation Rule gener-
ates considerably fewer nodes than any other method. This is to be expected because
the more relaxed rules allow more exact values to occur on don’t care nodes, while
the Simple Rule almost always approximates all don’t care values to X. The only
reason that the Linear Rule requires less simulation time is because it requires fewer
search mode runs. Thus, these two approximation rules have a time/memory trade-
off. Neither one is better in any sense. The Data Rule has no advantage for this
test case, however, for other test cases, it may represent a point that is between the
Simple and Linear Rules. Based on this, a good strategy to follow might be to use the
Linear Approximation Rule initially and switch to the Data Rule if memory capacity

becomes a problem.

4.6 Summary

The problem introduced by using variable classification to identify values that can be
approximated is that it requires additional work by the user to classify variables. This
chapter addressed this problem by presenting methods to improve a default and/or
incorrect classification such that an exact result can be produced while maintaining

the maximum amount of approximation.
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The primary problem in doing this is in selecting variables to re-classify. A re-
classification candidate selection algorithm was presented that finds a single variable
per run to be re-classified. It may require many runs to re-classify sufficient variables
using this heuristic. Therefore, the SEARCH_AND_SIMULATE algorithm was presented
which can efficiently find variables with a minimum of overhead.

In the worst case, it was shown that the SEARCH_AND_SIMULATE algorithm could
increase simulation time beyond that of exact symbolic simulation. To alleviate this
problem, different approximation rules were explored that allowed trading off the
number of runs for memory consumption.

In conclusion, it is probably best to treat approximation improvement analogously
to dynamic variable ordering in BDD packages. Dynamic variable ordering requires
a lot of computational effort and while it is being performed, forward progress on
the task at hand stops. Approximation improvement has the same flavor in that
it is time consuming and no forward progress is being made on simulation while
it is being done. Therefore, it is probably best to use approximation improvement
similarly to how dynamic variable ordering is used: typically, find a good variable
order by dynamically ordering, then re-use it on subsequent runs of the application,
since normally only minor changes are made between runs that do not affect the
variable order.

Symbolic simulation with approximate values can be done the same way. Start
with a default classification, perform approximation improvement, and then save the
resulting classification for re-use in subsequent runs. Even if SEARCH_AND_SIMULATE
is always applied from the saved classification, usually the classification is correct so

a single run suffices to return an exact value.



Chapter 5
Reliable Symbolic Simulation

The previous two chapters presented methods for improving the performance of sym-
bolic simulation on system level tests. Automatic approximation of node values using
variable classification to guide the amount of approximation reduces both execution
time and memory usage compared to using exact symbolic simulation without auto-
matic approximation. However, these gains are still insufficient to fulfill our original
goal of using symbolic simulation as a primary verification method. In order to do
this, symbolic simulation must be made as easy to use as other primary methods such
as directed and random testing.

Whether or not it is the most efficient verification method in terms of bugs found
for the effort spent, directed testing is generally held to be the easiest to use. This
makes it the most widely used verification method, so naturally it finds the majority
of bugs in most designs. The following factors contribute to making directed testing

easy to use.

e Directed tests can be written quickly.

Directed tests have predictable run times.

Directed tests provide good feedback if an error is detected.

Each test case adds some coverage which grows predictably with time.

There is no memory blow up.

80
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e Run time scalability is linear in the size of the design.

The main themes in this list are predictability, feedback, and scalability. As a
whole, we call these characteristics reliability. It is not necessary to completely replace
directed testing, however, so it is not necessary to meet all the reliability requirements
of directed testing. Random simulation, for example, has lower predictability, lacks
good feedback, and requires more up front work than directed testing, but is still
considered sufficiently reliable to be a primary verification method.

Model checking fails to meet our reliability requirements because of its poor design
size scaling, unpredictable memory blowup and lack of feedback about the source of
the blowup. Exact symbolic simulation is more reliable than model checking because
it allows the user to control the number of variables in a test. This allows design sizes
to be scalable given a fixed number of symbolic variables. Symbolic simulation with
approximate values improves upon this by allowing the number of symbolic variables
to be scalable if they are don’t care variables. So far, however, we have seen no
way to scale the number of control variables without unpredictable memory blowup
occurring.

As long as BDDs are being used to represent values, memory blowup cannot be
eliminated. It is sufficient, however, for the simulator either to continue in a degraded
mode after blowup occurs or blowup in such a way that some coverage proportional
to execution time is generated. This behavior is called graceful degradation. Graceful
degradation of control variable scaling is a sufficient condition to meet the reliability
requirements we are looking for.

This thesis addresses this problem using satisfiability (SAT) solving techniques.
Instead of creating BDD variables, each discovered care variable will be case split
such that two runs are performed, one for each setting of the discovered care variable
to the constants 0 and 1. The case splitting is accomplished using the Davis-Putnam
(DP) algorithm, a well known SAT solving algorithm. The DP algorithm can prove
a test to be satisfiable or unsatisfiable using only a small, fixed amount of memory,
the trade-off being a run time that is potentially exponential in the number of split
variables. However, this method provides coverage proportional to run time if the user

terminates the run before completion and thus has the desired property of graceful
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degradation.

After presenting background material on SAT and the DP algorithm, this chapter
will show that symbolic simulation can be cast as a SAT problem. It will then
show that the DP algorithm is equivalent to performing symbolic simulation with
approximate values using automatic approximation improvement. Quasi-symbolic
stmulation, a method for performing symbolic simulation based purely on this idea
is presented. Finally, it will be shown that BDD-based symbolic simulation can be

made reliable by using DP to handle memory overflow.

5.1 Symbolic Simulation as a SAT problem

An instance of the satisfiability problem consists of a Boolean formula, normally in
conjunctive normal form (CNF). A CNF formula consists of a set of clauses, each of
which is a disjunction of literals. The problem is to find an assignment to all variables
in the formula such that the formula is true. SAT is NP-complete and thus, for the
best known algorithms, it may require time exponential in the size of the formula to
find a satisfying assignment.

It is straightforward to convert a CNF formula to a circuit. Each variable is a
primary input to the circuit. Each clause corresponds to an OR gate with each input
being driven by either a primary input or its complement. All OR gate outputs
are ANDed together to form a single primary output. Evaluation of the formula is
done by applying different symbolic variables to each primary input and symbolically
simulating. If the result is satisfiable, then the formula is satisfiable.

It is also possible to convert an instance of symbolic simulation to a SAT problem.
Consider a combinational circuit and test. The circuit consists of combinational gates.
The test specifies a value, which can be either a constant or a symbolic variable, for
each primary input. The test also specifies some relation to be checked over the
outputs that produces either a PASS or FAIL indication. This check also can be
implemented in gates. The goal of symbolic simulation of this test is to find a variable
assignment for which FAIL is asserted. This is a satisfiability problem if we interpret

FAIL to mean satisfiable. Since it is possible to convert one to the other and vice
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Figure 5.1: Unrolled sequential circuit example

versa, then symbolic simulation of a test case and SAT are equivalent problems.!

A sequential circuit with a test case that requires multiple cycles is also an instance
of a SAT problem. This is demonstrated by treating a sequential circuit simulated for
N time steps as a combinational circuit that has been replicated N times. For each
primary input and output of the sequential circuit, there are N primary inputs and
outputs in the unrolled circuit, one for each time step. State holding elements, such
as registers, are eliminated by connecting the input to the register in one cycle to the
output of the register in the next cycle. Figure 5.1 illustrates a sequential circuit and
the equivalent combinational circuit unrolled for two time steps. Note that the initial
state of the register is assumed to be X.

Most research in SAT solving algorithms focuses on CNF formulas. Algorithms
that work with CNF formulas are called clausal SAT solvers. Symbolic simulation
formulated as a SAT problem is not in clausal form. To apply clausal SAT solving
algorithms to symbolic simulation, it is necessary to convert the symbolic simulation
problem to a clausal form. There are two ways to do this. First, the circuit can be
flattened to a two level representation directly. However, this can cause an exponential
blowup in the number of gates in the circuit. For large circuits, this is usually too

costly.

!This does not imply that all uses of symbolic simulation are instances of SAT problems. Image
computation is one example of an application of symbolic simulation which is not a SAT problem.
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In the second method, a new variable is created for each signal in the circuit [55].
Given that each gate is connected only to a set of input signals and an output signal,
a set of clauses can be generated that constrains the input and output signals to be
legal values. For example, for the gate Z = X AY in the circuit, we could create sym-
bolic variables z, y, and z and the set of clauses {(—z, —y, z), (z, =2), (y, —72)} which
constrain the inputs and output to legal combinations of values. The conjunction of
the set of clauses for all gates and the test case results in a clause database that is
satisfiable if and only if the circuit and test case are satisfiable.

The number of variables and clauses in this database is proportional to the number
of gates in the circuit. For large circuits, this can lead to thousands of variables
in the database. A clausal SAT solver has the freedom to set these variables any
way it chooses. Since most combinations of variables are illegal, this can lead to a
lot of wasted time searching invalid state space. For circuit properties that can be
proved unsatisfiable by setting some internal signal to a particular value, clausal SAT
solvers tuned particularly for circuit-like structures can be very effective [61]. We are
interested in verification methods that scale to design sizes of millions of gates and
tests of hundreds of cycles. Unrolling a circuit this large may lead to a database that
does not fit in available memory, meaning that clausal SAT solving methods do not
meet our scalability requirements.

Symbolic simulation can be viewed as a type of non-clausal SAT solving. Non-
clausal SAT solving algorithms have been studied, with a variety of techniques being
proposed [66, 35]. Non-clausal SAT solving has some similarities and differences
with clausal SAT solving. In both cases, case splitting is the primary method of
searching the state space. The difference is in how formulas are evaluated as a result
of the variable settings decided upon by the search algorithm. The most widely used
complete search algorithm for SAT solving is a variant of the Davis-Putnam (DP)
algorithm. Before discussing how SAT solving is used in symbolic simulation, the DP

algorithm will be presented.
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Algorithm 9 DPLL(S)
S" < unit_propagate(S)
truth < evaluate(S');
if truth = TRUFE then
return TRUE;
else if truth = FALSE then
return FALSFE;
else
[ « select_split_var(S');
struth <~ DPLL(S'[l <+~ TRUE));
if struth = FALSE then
struth <— DPLL(S'[l <+ FALSE));
end if
return struth;
: end if

e e T
Ll ol S T

5.1.1 The Davis-Putnam Algorithm

The DP algorithm is a complete algorithm based on searching in the space of partial
assignments. The most widely used variant of this algorithm is due to Davis, Putnam,
Logemann, and Loveland [25] and is called DPLL. A partial assignment allows a
variable to be assigned to TRUE, FALSE, or to be unassigned. The search uses case
splitting and backtracking to search the entire space of assignments. Algorithm 9
lists the DPLL algorithm including some heuristics designed to speed up the search.

DPLL is passed the set of current variable assignments S which specifies for
each variable, whether it is TRUE, FALSE, or unassigned; the initial assignment has
all variables unassigned. The evaluate() function evaluates the formula for a given
variable assignment. If evaluate() returns TRUE or FALSE, then DPLL immediately
returns the truth value (lines 2-6).

If the truth value using the current variable assignment set is unknown, the vari-
able assignment is refined by splitting it into two cases. A variable is chosen to split
on using heuristics that try to minimize the number of case splits. The function
select _split_var() (line 8) selects this variable. DPLL is recursively called with the
variable assignment modified to set the selected variable to FALSE. This recursive
call must return either TRUE or FALSE. If TRUE is returned, a satisfying partial
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assignment has been found and the function can return at this point (lines 9 — 10).
If FALSE, then the other variable assignment is recursively checked (line 11). If both
cases yield a FALSE result, then this subtree of the search is unsatisfiable and FALSE
is returned, otherwise TRUE will be returned (line 13).

A standard optimization is a procedure called unit propagation (line 1). A wunit
clause is a clause containing a single unassigned literal. In order for the formula
to be TRUE, the literals in all unit clauses must be made TRUE. After setting all
unit literals to TRUE, it is possible that more unit clauses will be created. The
unit_propagate() function iteratively sets unit literals to TRUE and re-evaluates the
formula until no unit clauses remain. The unit_propagate() function returns a modi-
fied variable assignment that has all variables that were unit propagated set to TRUE
or FALSE as necessary.

5.1.2 Quasi-Symbolic Simulation

Symbolic simulation with approximate values can be viewed as a non-clausal SAT
solving algorithm. A partial assignment is a variable classification; assigned variables
are care variables and unassigned variables are don’t cares, the values TRUE and
FALSE are mapped to the constants 1 and 0. Evaluating a formula by simulating it
with the Simple Approximation Rule will produce a result that is directly equivalent
to the evaluation of a formula by the SAT solver. A result of 1 or 0 maps to TRUE
or FALSE respectively, and an approximate result indicates an unknown satisfiability
result.

Ignoring unit propagation for the moment, the DP algorithm can be viewed as an
approximation improvement algorithm. In DP, the goal is to find the best variable
to split on. In symbolic simulation, the goal is to find the best variable to mark
as a BDD variable. The select_split_var() function in DPLL can be implemented
using the Simple Variable Selection heuristic (Algorithm 7 on page 64). Since the
selected variable is always split, meaning that it is set to a constant, BDDs larger
than a single node will never be created. At the same time, DP is complete and,

thus, maintains the completeness of symbolic simulation. Consequently, using DP to
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perform approximation improvement produces the same result as symbolic simulation
with BDDs, but with no memory blowup!

The tradeoff is that the number of runs required to prove a test case unsatisfiable
may be exponential in the number of care variables. However, each of these runs is
a scalar run and so completes quickly. For comparison, the SEARCH_AND_SIMULATE
algorithm generally requires a number of runs that is linear in the number of care
variables, although the runs in simulate mode may run much slower than the scalar
valued runs used in search mode.

At the same time, DP uses depth first searching. Each leaf node in the search
will be found in a number of runs that is linear in the number of split variables. Leaf
nodes will be found at a rate that is proportional to the number of runs, which is
proportional to the total simulation time. Each leaf node is a complete scalar test and
so contributes some amount of coverage. Consequently, coverage increases linearly
with simulation time using DP-based approximation improvement. This means that,
even if the DP algorithm is aborted early, some amount of coverage is generated and
this amount is proportional to the amount of simulation time. This is exactly the
reliability property we are looking for.

Symbolic simulation with approximate values using DP as the approximation im-
provement algorithm behaves identically to symbolic simulation using BDDs. How-
ever, it uses only scalar values internally and has different reliability characteristics.
Therefore, to distinguish it from BDD-based symbolic simulation, we call this method

quasi-symbolic simulation.

5.1.3 Quasi-Symbolic Simulation with Unit Propagation

Unit propagation is a necessary optimization when dealing with clausal formulas. In
most cases there are many dependencies between variables. When a variable is case
split by setting it to a constant, unit propagation finds those variables dependent on
the case split variable that must be set to a particular constant in order to satisfy the
formula. This reduces the size of the search tree by eliminating branches for variables

that are unit propagated. For example, internal signal values in a circuit are highly
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dependent on fan-in and fan-out signal values. If the input to an AND gate is set to
0, then the output must be set to 0 in order for the circuit state to be legal. Setting
the output to 0 may force other signals to be fixed values. Thus, unit propagation
is a necessary optimization for solving the satisfiability of circuits by conversion to
clausal form.

Unit propagation does not provide any advantage when all split variables are
independent. This is generally the case in symbolic system simulation. For example,
in multiplexor type circuits, there are no dependencies between the control variables
that select different data values. Since these circuit types are common, the value of
unit propagation is not clear in symbolic system simulation. In fact, if the user writes
a test case perfectly, all control variables are independent and unit propagation is not
useful. However, if a bug is present due either to a test case error or circuit error, unit
propagation can, in certain cases, greatly reduce the amount of searching required to
find the bug. For example, if a bug only occurs when certain symbolic values are set
to particular values, then often when one of these variables is set to a constant, the
rest can be unit propagated. In fact, this is more likely to occur with less probable
bugs. Thus, unit propagation can be beneficial when expecting bugs to occur.

The description of the DPLL algorithm in Section 5.1.1 described unit propagation
in terms of clausal formulas. Since quasi-symbolic simulation is an implementation of
the Davis-Putnam algorithm over non-clausal formulas, a method of performing unit
propagation on non-clausal formulas is needed. Dalal [23] describes such a method
using additional data structures for each circuit node value. This algorithm is shown
in Algorithm 10.

Each node in the circuit has two sets associated with it: a C-set and D-set. These
sets contain literals that list the unit propagation candidates for that node. C-sets
and D-sets are computed for each node based on the C-sets and D-sets of the fan-in
nodes and the Boolean operation of the node. The C-set for the PASS/FAIL output
of the simulator specifies which literals can be unit propagated. A non-empty D-set
at the PASS/FAIL output is an immediate indication of satisfiability.

The C-set of a node value is the set of literals that are conjoined with this value.

If a literal is conjoined with a value, then when the literal is 0, the node value must
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Algorithm 10 DALAL’S ALGORITHM(0p,f,g)

1: if op = new then

2: | = create_literal();

32 C={l}, D=A{l};

4: else if op = f A g then

5: O(—CfUOg,DFDfﬂDg;
6: else if op = f V g then

7. C<+CrNCy, D <+ DU Dy;
8: else if op = —f then

9: C<«{~l|le Dy}, D« {-l|l € C};
10: end if

11: if [ € C A=l € C then

12:  wal(op) < 0O;

13: else if [ € D A=l € D then
14:  wal(op) < 1;

15: else

16:  wal(op) < X

17: end if

be 0. When the literal is 1, knowing nothing else about this node value, we must
assume that it is unknown. Thus, a value with C-set {l} represents the value X A [l.
D-sets list literals disjoined with a value. A value with D-set {1} represents the value
X V. If a value has both a C-set and D-set with the same literal, then that value
must be equal to the literal. This is the only case in which a value can have both a
non-empty C-set and a non-empty D-set.

The inputs to Dalal’s Algorithm are an operation and up to two input values.
At a primary input, the only possible operation is to create a new variable. This is
done by creating the new variable and then assigning this literal to the C-set and
D-set of the resulting value (lines 1-3). If the operation is the AND or OR Boolean
functions, the C-set and D-set are computed as functions of the input C/D-sets. For
the Boolean AND function the C-set is the union of the input C-sets and the D-set
is the intersection of the input D-sets (lines 4-7). This is easy to see by computing
the AND of X A a and X A b which have C-sets {a} and {b} respectively.

V = (XAa)A(XAD)
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V= XANaANXAD
V. = XAaAb

Thus, the resulting value has C-set {a,b}. Negating a value with C-sets and D-sets
follows DeMorgan’s rule; the literals in the C-sets and D-sets are swapped and each
literal is negated (lines 8-9).

The computed C-set or D-set may contain a literal and its complement after
performing a Boolean operation. Such as set is called basic inconsistent. Values with
basic inconsistent sets can be replaced by constants. If a C-set is basic inconsistent,
the value is equal to 0 since [ A =] = 0 and if a D-set is basic inconsistent, the value
is equal to 1. Basic inconsistent sets are detected and handled by lines 11-17 of the

algorithm.

5.1.4 Reactive Tests

There is one more issue that must be dealt with in using DP-based symbolic simulation
that does not occur with BDD-based symbolic simulation. The addition of unit
propagation to the basic DP algorithm causes reactive tests to become incomplete
even if the set of underlying binary tests is complete. A reactive test may inject a
request and then wait for the circuit to respond before asserting stop to the simulator.
The amount of time the simulator has to wait may be unbounded. Reactive tests can
be made complete by making three changes to the DPLL algorithm. The complete
quasi-symbolic simulation algorithm with these changes is shown in Algorithm 11.
First, the BASIC_SIMULATION_LOOP (Algorithm 1 on page 15) is used as the DPLL
evaluate() function instead of the SYMBOLIC_SIMULATION_LOOP algorithm (line
1). The difference between these algorithms is that the BASIC_SIMULATION_LOOP
stops simulation at the first time step in which stop is non-zero while the Sym-
BOLIC_SIMULATION_LOOP waits until the last possible time step to stop. Next, DPLL
is modified to case split on stop if it is approximate before case splitting on fail

(lines 2,11-13). This is to prove that the simulation really stops at this time step
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Algorithm 11 QUASI_SYMBOLIC_SIMULATION(S)

1: {stop, fail} <— BASIC_SIMULATION_LOOP(S);
2: if stop = 1 then

3: if fail =1 then

4: return TRUFE;

5. else if fail = 0 then

6: return FALSFE;

7. else

8: S’ « unit_propagate(S)

9: [ « select_split_var(fail, S");
10: end if

11: else

122 S« S

13: 1 < select_split_var(stop, S');
14: end if

15: struth <— DPLL(S'[l < 1]);
16: if struth = FALSE then

17: struth < DPLL(S'[l < 0]);
18: end if

19: return struth;

since stop may be asserted prematurely if it is an unknown value. Once stop is proven
to be satisfiable (stop = 1) at a particular time step, then fail can be split if necessary
(lines 3-10). To support this, select_split_var() is modified to select the variable to
split on from either stop or fail as necessary (lines 9,13).

The final modification is to only allow unit propagation when splitting on fail (line
8) to prevent the algorithm from cutting off potential valid stop times. To illustrate
this, consider the following example. A four bit counter is initially loaded with a value
and then decremented. The counter asserts stop when the count reaches zero. For
any binary vector loaded into the counter, stop will always eventually be asserted.
Thus, if a test consists of loading the counter and waiting for stop to be asserted, the
test case will always eventually terminate.

Now consider a symbolic vector representing the set of all possible count values
being loaded into the counter. A portion of the unrolled circuit with the stop genera-

tion logic for each time step is shown in Figure 5.2. The solid lines indicate the signals
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Figure 5.2: Unrolled example of decrementing counter with reactive stop

evaluated after simulating for one cycle. The dotted lines indicate values generated
after simulating for two or more cycles. Exact BDD-based symbolic simulation would
stop when gstop, which is the OR of stop for all cycles, is 1. The quasi-symbolic
simulation algorithm, however, will stop at the first time step at which stop becomes
non-zero. For this example, stop becomes non-zero in time step 0 as shown in the
figure as the value of stop,. The approximation rule causes the value of stop, to be
X with the C-set {—xy, ~x3, "9, 21 }.

For the next run, all variables would be set to 0 as indicated by the stop condition
C-set for stop, if unit propagation was allowed. In the next evaluation stop, is 1 since
a value of all zeroes is loaded into the counter. This means the test case has been
proved to actually stop in the first cycle. The algorithm now tries to backtrack. Since
all variables were unit propagated, no case splitting will be performed. The simulator
will think that all cases have been explored. Therefore, the search would terminate
immediately and would have tested only the case in which the test stops after one
cycle. But, clearly, the test can stop at all lengths up to the maximum counter value

since the count was specified to be a symbolic vector representing all possible counts.
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Since the test case should stop eventually for all case split values, by not allowing
unit propagation of stop, the entire search tree affecting the time step at which
the simulation stops will be enumerated. Unit propagation can still be done when
splitting on the fail condition. At the point that this is being split, the current time
step has been proven to be a valid stopping point. Thus, unit propagation of fail

cannot prevent the simulator from stopping in other time steps.

5.1.5 Analysis of Quasi-Symbolic Simulation

In system-level tests, control variables specify independent parameters such as request
types, delays between requests, and addresses. The lack of dependencies between
control variables means that little or no unit propagation occurs when performing
quasi-symbolic simulation on these cases. Consequently, Q(2") runs are required to
prove unsatisfiability for these cases where N is the number of control variables. For
satisfiable test cases, quasi-symbolic simulation can prove satisfiability of a test case
(find a bug) with the number of runs being linear in the number of variables that must
be made constant to sensitize the error in the best case; each of these runs requires
constant time. In the worst case, the number of runs required to prove satisfiability
is O(2") for N control variables.

The run time for BDD-based symbolic simulation has been observed to be in-
sensitive to whether the test is satisfiable or not, even when using approximate val-
ues. If the run time is exponential in the number of symbolic control variables for a
given circuit and test case using BDDs, this run time is independent of whether bugs
are present and how hard or easy the bugs may be to sensitize. Thus, BDD-based
symbolic simulation usually performs better on unsatisfiable test cases while quasi-
symbolic simulation can perform better on satisfiable test cases, especially for simple
bugs.

This section presents the results of two experiments using quasi-symbolic simu-

lation to illustrate the difference between BDD-based and quasi-symbolic simulation



CHAPTER 5. RELIABLE SYMBOLIC SIMULATION 94

ctrl. | quasi-symbolic exact BDD approx. BDD
vars | evals | time | BDD nodes | time | BDD nodes | time
6 57 191s 313K 2258 6.2K 10.6s
9 57 193s 526K 2214s 22K 80s
11 59 199s - - 48K 316s
19 68 432s - - 197K 1277s

28 72 430s - - - -
37 76 457s - - - -
46 79 486s - - - -
%) 82 o01s - - - -

Table 5.1: NI bug test case results for quasi-symbolic, exact BDD, and approximate
BDD-based symbolic simulation

on both satisfiable and unsatisfiable test cases. The first experiment compares quasi-
symbolic simulation to BDD-based symbolic simulation on the NI design (see Sec-
tion 3.5.5 on page 53). The second experiment uses a different design to demonstrate
the reliability of quasi-symbolic simulation in developing a test case to show that

quasi-symbolic simulation can find simple bugs quickly.

Experiment 1: A Satisfiable NI Test case

This experiment compares the execution time of quasi-symbolic simulation and BDD-
based symbolic simulation with approximate values on a test case that detects a bug.
One of the bugs found in this design causes certain words of a packet to be corrupted
whenever the frame length of the target packet is between 76 and 79 bytes. This is
independent of any other variable in the test. The target frame length is specified by
eight symbolic variables allowing packet lengths to range from 0 to 255 bytes. The
probability of this bug occurring in a binary directed or random test, therefore, is one
in 64. The variables specifying the frame length are sequential in the variable order
and appear as variables 51-59 in the order.

The experiment consisted of making the frame length variables symbolic and then
performing a number of runs, each with a larger number of additional control variables

set to symbolic values. Non-symbolic control variables were set to 0. Table 5.1 lists
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the results of performing these runs.? The first column in the table lists the total
number of symbolic control variables for each run. For quasi-symbolic simulation, the
number of evaluations (simulation runs) and time required before the bug was found
are given. For BDD-based symbolic simulation, the number of BDD nodes created
and the total simulation time are given, including any time required for approximation
improvement. Results are given for both exact values and approximate values using
Approximation Rule 1. For the runs using approximate BDD-based values, a variable
classification was supplied by the user and no improvement was necessary to produce
an exact result for any of the runs.

The results show that exact BDD-based symbolic simulation blows up quickly as
the number of symbolic control variables is increased. BDD-based symbolic simulation
with approximate values fares better, but still blows up quickly. Quasi-symbolic
simulation finds the bug with little variance in execution time as the number of
symbolic control variables is increased.

We can characterize the efficiency of finding a given bug using quasi-symbolic
simulation from analyzing this bug. The case splitting required to find this bug has
the following pattern. First, some number of control variables ordered ahead of the
frame length variables are split before the simulator starts splitting the frame length
variables. The simulator only needs to explore one path for these variables since they
don’t affect the sensitization of the bug. The simulator then has to enumerate 32 cases
of the six frame length variables before finally finding the failing branch. It then case
splits an additional 12 data variables along a single branch before producing an exact
satisfiable value. The variance in the number of evaluations for the test cases with
different numbers of symbolic control variables is due solely to the number of control
variables ordered ahead of the frame length variables that need to be split. Since
these only need to be split once, the number of evaluations is linear in the number of
symbolic control variables.

If the frame length variables are ordered ahead of all other control variables,
then the case splitting of other control variables would be eliminated, minimizing the

number of evaluations required. On the other hand, if the frame length variables are

2Simulations run on a Pentium III, 800MHz with 512Mbytes of memory.
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interleaved with the other control variables, then the amount of case splitting required
could be exponential in the total number of control variables. This is because for each
assignment to the frame length variables, for all variables interleaved with the frame
length variables, all assignments to these variables must be enumerated.

Thus, performance of quasi-symbolic simulation on satisfiable test cases is a func-
tion of the number of variables that a bug is sensitive to and the distance between
them in the variable order. A bug with few sensitizing variables close together will
require few runs and generally will require much less simulation time than BDD-based
symbolic simulation to find the same bug. A bug with many or widely spread sen-
sitizing variables will require many runs and will require more simulation time than

BDD-based symbolic simulation.

Experiment 2: MCU Test case Development

This experiment explores the performance of quasi-symbolic simulation in debugging
test cases. Test case bugs are more common than hardware bugs; for every hardware
bug found, there may be one or more test case bugs that must be found and debugged.
From the simulation algorithm’s point of view, test case bugs are no different than
hardware DUT bugs. Thus, being able to reliably detect test case bugs is an important
part of system-level testing.

A test case was written to find a known bug in an existing design. The design,
called the MCU [78], was taped out and a bug was subsequently found that escaped
detection during both simulation and bringup. This bug is considered to be an in-
stance of a hard bug. The test written was based on a loose description of the problem.
This test was run using quasi-symbolic simulation, then debugged and modified until
the hardware bug was found. Each test version had eight symbolic control variables,
four symbolic data variables, and between 411 and 1,334 symbolic don’t care vari-
ables. The run time of each version of the test case created as the test was debugged
was recorded. The results are summarized in Table 5.2.3

There were 51 versions of the test corresponding to 50 test case bugs found before

the hardware bug was found. Each version of the test is categorized into one of four

3Simulations run on a Sun Ultra-5, 271MHz with 128Mbytes of memory.
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| case | no. | evals | time(sec.) |

SAT | 19| 38 31.4
TIMEOUT | 22| 1.6 9.0
LEAK | 1] 78 863.0
UNSATS; 1 71
UNSATSk 53 392.3
UNSATIL 111 886.64
UNSAT23 111 | 1025.21
UNSAT?28 53 420.4
UNSAT27 53 1323
UNSAT32 37 352.0
UNSAT33 37 353.6
UNSAT34 15 1435

Table 5.2: MCU Test Case Development Performance

types. Tests which were satisfiable due to a test case bug are labelled SAT bugs. Test
cases that exceeded a specified simulated cycle limit are labelled TIMEOUT errors.
The test case that found the target hardware bug is labelled LEAK. Test cases that
were correct based on an interpretation of the bug description, but for which this
interpretation was wrong resulted in the test reporting no errors. These cases are
labelled UNSATzz. There is a much wider variance in execution time between the
UNSAT cases, so each of these is listed separately. For each class, the number of test
cases of that class is listed, along with the average number of evaluations and average
execution time.

The results show that the satisfiable test error cases uniformly require a small
number of case splits. Also, for these cases, no unsatisfiable branches were found;
the first exact value produced by case splitting detected a bug in all cases. The
hardware bug caused incorrect data to be transmitted through the chip. The effect
of this is that a large number of symbolic don’t care variables “leaked” through to
a checked output. A large number of case splits were required to resolve this to an
exact value. However, this represents only a single branch in the search tree. The
fact that symbolic simulation could definitively rule out incorrect interpretations of

an ambiguous specification was useful in finding the bug. The longer run times and
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wide variance of these cases shows the inefficiency of quasi-symbolic simulation in
proving tests unsatisfiable compared to using BDD-based symbolic simulation.

In summary, quasi-symbolic simulation can be effective when bugs are present
in either the test case or the DUT. It is potentially more scalable in the number of
control variables for satisfiable test cases than BDD-based symbolic simulation. For
unsatisfiable cases, in which no bug is present, quasi-symbolic simulation is gener-
ally less effective than BDD-based symbolic simulation. However, if memory blowup
occurs, BDD-based symbolic simulation cannot prove anything about the design.
Quasi-symbolic simulation can always produce a partial result. This means that it
meets our requirement for reliability. The next section will explore ways of combin-
ing SAT and BDD-based symbolic simulation in order to improve performance on

unsatisfiable cases while preserving sufficient reliability.

5.2 Combining SAT-Based and BDD-Based Sym-
bolic Simulation Methods

The difference between SAT and approximate BDD-based symbolic simulation is in
how each method handles a symbolic variable that has been identified as a care
variable. In approximate BDD-based symbolic simulation, variables marked as care
variables become BDD variables. In the SAT-based quasi-symbolic method, care
variables are case split such that two runs are performed, one for each setting of
the care variable to the constants 0 and 1. It is possible to combine these two
approaches by deciding on a variable-by-variable basis to either case split or create a
BDD variable.

This strategy is implemented by modifying algorithms we have already seen. There
are many ways to do this; exploring all the options is beyond the scope of this thesis.
Instead, this section will explore two options with the goal of improving the relia-
bility of unsatisfiable test cases. Both options require the same modifications to the
lower level algorithms presented in this thesis. The remainder of this section will

describe these necessary modifications before presenting the two high-level strategies
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Algorithm 12 ApPROX_APPLY_MO(f,g,(0p))

. if terminal_case(f, g, (op)) then

return handle_terminal_casef, g, (op));

1
2
3: end if

4: if cache_hit({f, g, (op))} then
3
6
7
8
9

return cache_lookup({f, g, (op)});

. end if

. top-var < min(var(f),var(g));
t fifs fese < cofactor(f, top_var);
L gif, Jeise < cofactor(g, top_var);
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

tif <= APPROX_APPLY_MO(fi, gir, (0p));
teise <= APPROX_APPLY _MO( feises Geises (0P));
if t,’f = Telse then
result < ti;
else if want_approzimate(top_var,t;f, tes.) then
result <— approzimate(top_var,t;s, tese);
else if unique_hit(top_var,t;, tese) then
result <— unique_lookup({top_var,t;s,teise});
else if BDD _no_memory_available() then
result < X;
else
result < create_node(top_var,t;s, teise);
unique_insert({top_var, tis, teise }, result);
end if
cache_insert({f, g, {op))}, result);
return result;

for combating memory explosion.

5.2.1 Memory Overflow Handling

We want the simulator to use a fixed amount of memory to create BDD nodes.

However, there is no a priori way of knowing exactly how much memory will be

required based on the number of BDD variables in the test. The only way to determine

this is to build BDD nodes and then detect when overflow occurs.

In order to not

throw away work already done, there must be a strategy for dealing with overflow

when it happens.
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Overflow occurs in the APPROX_APPLY algorithm when it tries to create a new
BDD node and there is no memory space available. A simple way of handling this
is to simply return X in this case. Thus, memory overflow is handled using another
approximation rule. Algorithm 12 shows a version of APPROX_APPLY that returns
an approximate value when memory overflow occurs. The only modification to this
algorithm is the addition of lines 18 and 19. The BDD package is assumed to have
a function which returns a flag indicating if there is sufficient memory available to
create a node. Normally this is implemented by allowing the user to set a threshold
for the maximum number of nodes that can be created. This function simply checks
that the current node count is less than the specified threshold.

The approzimate() function can create new BDD nodes. However, the memory
available check is done after the approximation check. Thus, it may be necessary
to lower the node threshold to account for these nodes. Because of the nature of
approximated nodes, this is only a small percentage of the total number of BDD
nodes when the number of nodes is near the maximum and usually does not cause a

problem.

5.2.2 Variable Selection Heuristic

If there is insufficient memory to create a new BDD node during simulation, AP-
PROX_APPLY_MO will return an approximate value. If the node is a don’t care node,
then it is still possible that the final result will be exact. If the node value for which
overflow occurred was a care value, then the final result will be approximate. Since
in symbolic system simulation there are many more don’t care values than care val-
ues usually, we don’t want the simulator to abort simply due to memory overflow.
Instead, each internal value that is approximated due to overflow is marked as an over-
flowed value. If the final satisfiability result returned by the simulator is marked as
an overflow value, the selected variable will be case split resulting in two simulations
with smaller BDDs.

A heuristic is needed to choose an appropriate care variable to be split when there

is insufficient memory to create a new node. This is done by modifying the variable



CHAPTER 5. RELIABLE SYMBOLIC SIMULATION 101

selection heuristic (Algorithm 7 on page 64) to propagate a case split candidate instead
of a re-classification candidate when overflow occurs during the creation of a node
value. To facilitate this, APPROX_APPLY_MO can be modified to return an overflow
indication and a case split candidate. A simple heuristic is to return top_var as the
case split candidate.

Algorithm 13 on page 109 illustrates a modified version of the Simple Variable
Selection heuristic that selects case split candidates when overflow occurs. The data
structure for a value expression is modified to add a flag, called ovflw, indicating that
the var field is a case split candidate due to overflow instead of a re-classification candi-
date. The overflow indication and case split variable returned by APPROX_APPLY_MO
are specified in global variables ovflw_flag and ovflw_var.

If overflow occurred in the current node, then SIMPLE_VAR_SELECT_MO sets the
overflow flag and sets the case split candidate to the overflowed variable returned by
APPROX_APPLY_MO (lines 2-4). Lines 5-16 are the normal cases when a constant
value is returned. Lines 17-29 are additional lines to handle the case that overflow
did not occur on this node, but did on one of the input values. Overflow values
have precedence over non-overflow values. If both inputs overflowed, then the lower
indexed variable is chosen (lines 17-23). Otherwise, if either input overflowed, that
value is chosen (lines 24-29). The remainder of the code is unmodified from the

original algorithm.

5.2.3 CD-MTBDDs

When using DP-based case splitting with C-sets and D-sets to implement unit prop-
agation, the value function for each node is extended to include a pointer to a C/D-
set. BDDs and C/D-sets can be combined. C/D-sets can be implemented using
approximate BDDs with an approximation rule that limits the possible BDDs to be
representations of C/D-sets only.

This approximation rule lies between the Data Approximation Rule and the Linear
Approximation Rule in the amount of approximation it creates. The if and else

branches represent either C-sets or D-sets. In the case that the AND function is
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being performed and the if and else branches represent C-sets, an exact result will
be returned, which is the same as that returned by the Linear Approximation Rule.
If both branches are D-sets, the value X would be returned which is the same as if
the Data Approximation Rule had been applied.

The ¢gsym program implements this approximation rule using a different approach.
Instead of implementing the approximation rule directly, terminal nodes represent C-
sets and D-sets. Thus, the approximation rule is implemented in the terminal node
handling functions. C-sets and D-sets are maintained in a canonical data structure
and the terminal node values are pointers to these data structures. The primary
advantage in using this method is that it allows the simpler C/D-set data structure

to be used if DP-based case splitting only is used.*

5.2.4 DP Based Search and BDD Based Symbolic Simulation

Given a design and a test case, a fixed amount of memory is required to perform scalar
simulation and DP-based approximation improvement. The basic idea in combining
DP and BDD-based symbolic simulation is that any remaining memory can be used to
create BDDs. This reduces the amount of case splitting exponentially in the number
of variables that are made BDD variables. From the simulator’s point of view, there
are now three types of variables: care BDD variables, care case split variables, and
don’t care variables.

There are two basic strategies that can be used in determining which variables to

case split and which to make BDD variables.

Option 1 Mark all discovered care variables as BDD variables and only re-mark

them as case split variables if memory overflow occurs.

Option 2 Mark all discovered care variables as case split variables. Variables are

then incrementally re-marked as BDD variables until memory overflow occurs.

In both cases, once the right number of BDD variables is found that just fits in the

available memory, case splitting will occur over the remaining care variables.

“The actual C/D-set data structure is a trie.
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Neither one of these algorithms is better than the other, but they work differently
in different circumstances. Option 1 works best when the number of BDD variables
that does not cause memory overflow is close to the total number of care variables.
This is because the number of simulation runs that require re-marking a variable is
equal to the difference between the total number of care variables and the number
of BDD variables that allow the simulation to complete without overflow. Option 2
requires a number of runs equal to the number of BDD variables.

For example, if there are 36 total care variables and 32 of them can be marked
as BDD variables without memory overflow, then Option 1 would require four re-
markings while Option 2 would require 32. On the other hand, if the total number of
care variables is much larger than the number of BDD variables that allow no overflow,
then Option 2 requires fewer re-markings. If there are 100 total care variables instead
of 36 for example, then Option 1 would require 68 simulation runs to re-mark variables
while Option 2 would still only require 32. Further, each re-marking run using Option
1 will not produce any coverage and will take the maximum simulation time. Option
2 will produce shorter re-marking runs and each run will provide some amount of
coverage which grows larger with time. Thus, Option 2 is the more reliable algorithm.

Option 1 can be implemented by using SEARCH_AND_SIMULATE as the evaluation
function for DPLL. In this case, SEARCH_AND_SIMULATE is modified to return im-
mediately if the final result is approximated due to overflow. DPLL will detect this
and case split the specified variable.

Option 2 is implemented by modifying DPLL. The evaluation routine is still
the basic symbolic simulation loop. Thus, DPLL gets the final result directly. As
variables are case split, no BDDs will be created until a leaf node of the search is
reached and backtracking occurs. Backtracking occurs one step at a time. At each
step, the variable that was backtracked is marked as a BDD variable. This results in
the entire sub-tree for the second case split value of each variable to be explored at
one time using BDDs. Each sub-tree that is explored as each variable is backtracked
adds one more BDD variable. If overflow occurs, the variable that is returned will be

case split.
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Execution Time vs. BDD Node Limit for NI Testcase
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Figure 5.3: Execution Time vs. BDD Node Limit for Unsatisfiable NI Test case

5.2.5 Analysis of Combined SAT and BDD-based Symbolic

Simulation

This section illustrates the effect of memory overflow handling in simulating an un-
satisfiable test case. In this experiment the NI design is used with an unsatisfiable
test case that has a fixed number of symbolic control variables. The BDD node limit
is then varied to simulate different overflow conditions. The execution time required
to prove the test unsatisfiable is plotted as a function of the BDD node limit. The
goal of this experiment is to show the graceful degradation of execution time when
there is insufficient memory for the test case and design being simulated.

This experiment implements Option 1 by using SEARCH_AND_SIMULATE as the
simulation loop for DPLL. The simulator uses CD-MTBDDs and the variable se-
lection selection routine modified for memory overflow as described above. The test
used a user supplied variable classification which did not need improvement in the

case that there was sufficient memory.
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A number of runs were performed in which the BDD node limit was set to different
values. The range of values was from 10,000 nodes to 200,000 nodes. The execution
time required to prove the test case unsatisfiable as a function of the node limit is
plotted in Figure 5.3. The maximum number of nodes needed with no overflow is
79,342 nodes. Below this number, BDD overflow occurred, but did not necessarily
affect the execution time of the test.

The simulator performs a garbage collection whenever overflow occurs. For cases
with node limits above 30,000 nodes, this usually resulted in a large number of nodes
being freed. Consequently, case splitting only occurred for these cases if overflow
occurred when computing a care value. This is the case for the small peak between
79,310 and 79,341 nodes in the graph. The randomness of whether overflow occurs on
a care or don’t care value causes the number of case splits required to vary randomly
as a function of the BDD node limit. This accounts for all of the non-monotonicity
in execution time seen in the graph.

Below a limit of 30,000 nodes, garbage collection frees few if any nodes. This
causes the amount of case splitting to increase inversely proportional to the node
limit and the number of BDD overflows to increase hyper-exponentially as the node
limit is reduced below 30,000 nodes. Since each overflow causes a garbage collection to
occur, the execution time comes to be dominated by the garbage collection time. This
means that this algorithm will be inefficient for those cases in which the node limit
is small compared to the node limit required for no overflow to occur. For contrast,
quasi-symbolic simulation requires 424 seconds and 60 evaluations to prove this test
case unsatisfiable using only 8,248 BDD nodes. This compares to 1,342 seconds using
BDDs with a node limit of 10,000 nodes.

5.3 Related Work

The idea in semi-formal verification is to make symbolic methods reliable. While sym-
bolic simulation tries to increase functional coverage, many other semi-formal methods
try to increase state coverage using automated methods. Typically, a three step pro-

cess is used. First, state machines are either extracted from the design [34, 65, 83] or
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are created manually [42], then symbolic methods are used to find all reachable states
and, finally, tests that visit each state or transition are generated. Another semi-
formal technique starts with existing binary tests and attempts to “expand” them
to increase state or transition coverage [44, 33]. These methods improve reliability
because reachability and test generation can be done incrementally. The reliance on
state exploration, however, limits scalability and does not provide sufficient reliability
to be a primary verification method, although they may work well for finding bugs.

Innologic’s commercial symbolic simulator has the ability to detect and handle
BDD overflow. Apparently, their method is to abort the simulation as soon as overflow
is detected on an internal node value. Their method then randomly sets one of the
input symbolic values to a constant value in order to reduce BDD sizes for the next
run. It is not clear that there is any attempt to make the method complete by
performing two simulations for each variable set to a constant. Even if this were the
case, since their method does not distinguish between care and don’t care variables,
a lot of don’t care variables may need to be set to constants before memory usage is
sufficiently reduced.

The application of SAT methods to verification has become common in recent
years. The methods described in this thesis directly incorporate the SAT decision
procedure into the simulator. Other SAT-based verification methods typically work
by generating a clausal formula that is fed to an off-the-shelf SAT checker. An
example of this is Bounded Model Checking (BMC) [6]. BMC requires the circuit to
be unrolled for however many cycles are being simulated, using memory proportional
to the product of design size and the number of cycles being unrolled. Performing
SAT solving directly in the simulator eliminates the need to perform explicit unrolling
and, thus, is more scalable.

Sequential ATPG [20] is similar to symbolic simulation in that it is trying to
produce a particular value on a particular output in a sequential circuit. Sequential
ATPG as a model checking algorithm has been studied [8]. Sequential ATPG has
been shown to be inefficient when there are few justifying states and may timeout
trying to justify a state and so does not meet our reliability goals.

Combining BDDs and SAT has also been a topic that has gained a lot of attention
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recently. Combining BDDs and SAT is most widely used in combinational equivalence
checking. Gupta and Ashar [40] describe a method that initially uses SAT solving
to compare nodes and then switches to using BDDs. The basic strategy is similar
to Option 2 described in the previous section. Instead of deciding on a variable-by-
variable basis whether to case split or use BDDs, their method decides on a node-by-
node basis. Nodes are partitioned into two halves, BDDs are used on one half and
SAT on the other. Reda and Salem [72] describe a similar method but use BDDs and
SAT on opposite sides of the partition than Gupta and Ashar. It is not clear if these

methods can be extended to work on sequential circuits.

5.4 Summary

The inability to produce useful results when memory overflow occurs is the primary
reliability feature lacking in BDD-based symbolic simulation. This chapter addressed
this problem using SAT-based methods. SAT-based methods were shown to be an
instance of using symbolic simulation with approximate values and approximation
improvement. The primary difference between SAT-based symbolic simulation and
BDD-based symbolic simulation with approximate values is in how each method han-
dles variables that have been re-classified as care variables. BDD-based symbolic
simulation marks the variable as a BDD variable and causes exact BDDs to be built.
SAT-based symbolic simulation case splits the variable, requiring multiple runs to
produce a result.

A symbolic simulation method called quasi-symbolic simulation which uses purely
SAT-based approximation improvement was described. This method was shown to
be effective when there were bugs present in the design. It was also shown to be more
scalable and reliable than BDD-based symbolic simulation for these cases. However,
it was shown to be inefficient compared to BDD-based symbolic simulation on unsat-
isfiable test cases.

Combining SAT-based and BDD-based approximation improvement resulted in
improved performance on unsatisfiable cases compared to quasi-symbolic simulation.

It also handles memory overflow in a reliable way. That is, if overflow occurs, it
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allows resorting to case splitting to maintain completeness of the simulation. This
also allows a partial result to be returned if memory overflow occurs and the coverage
obtained is proportional to the execution time. Thus, this method potentially meets
our reliability requirement.

There are tradeoffs involved in combining SAT and BDD-based symbolic simula-
tion. The amount of memory available versus the amount needed dictates the best
heuristics to use to get the best efficiency. There is still a lot of room left for research

in combining SAT and BDD-based methods to achieve optimal results.
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Algorithm 13 SIMPLE_VAR_SELECT_MO(f,g,node)

1:
2:
3:

node.ovflw < false;

if ovflw_flag then
node.ovflw < true;
node.var <— ovflw_var;

4
5: else if is_non_controlling(g.val) then
6:
7
8
9

node.var < f.var;

. else if is_non_controlling(f.val) then

node.var < g.var;

. else if is_controlling(f.val) then
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

node.var < f.var;

else if is_controlling(g.val) then
node.var < g.var;

else if g.var = {} then
node.var < f.var;

else if f.war = {} then
node.var < g.var;

else if f.ovflw A g.ovflw then
node.ovflw < true;
if g.var < f.var then

node.var <— g.var;
else
node.var < f.var;

end if

else if f.ovflw then
node.ovflw < true;
node.var < f.var;

else if g.ovflw then
node.ovflw < true;
node.var < g.var;

else if —is_care(g.var) A is_care(f.var) then
node.var <— g.var;

else if —is_care(g.var) A g.var < f.war) then
node.var < g.var;

else
node.var < f.var;

end if

return node;




Chapter 6
Conclusions

The verification process normally consists of two phases. The first phase, referred to
as the primary verification, systematically tests all the functionality in the design.
The second phase augments the primary verification using different methods with the
goal of finding bugs that were missed in the first phase. The primary methods of
finding bugs today are directed and random testing. Most conventional approaches
to improving verification try to find better ways of augmenting random and directed
testing. This thesis has argued that this does not provide sufficient gain to signif-
icantly improve the current verification bottleneck. Instead, this thesis has taken
the approach of trying to find a better method than directed or random testing for
primary verification.

Evaluating the success or failure of a primary verification method uses different
criteria than an augmenting method. The goal of methods that augment the primary
verification is to find bugs that were missed. Therefore, it is usually necessary to
show that a proposed augmenting method actually found a bug on a real design for
the method to be considered successful. For primary methods, however, the ability
to find bugs is a given. The success of a primary verification method is measured
by how much effort is required to execute the test plan in terms of both human and
computer time. It is assumed that successfully passing all tests in the plan entails
finding and fixing all bugs.

The effort in executing a test plan includes the time to write the test, CPU time

110
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to run the test, test debug time, and any time required to debug hardware bugs.
Symbolic simulation provides speedups over directed and random testing in both test
writing and debugging effort because of the symbolic encoding of multiple binary tests
into a single symbolic test and the deterministic nature of symbolic tests. The success
of a symbolic simulation tool, then, is measured by how much CPU time speedup it
has over binary simulation for running an equivalent set of tests. This speedup can
vary from a billion or more in the ideal case to zero in the case that the symbolic
simulation blows up due to memory limitations. Thus, a more important criteria is
the reliability of this speedup. We would rather have a lower best case speedup if the
symbolic simulator is no slower than binary simulation in the worst case.

Thus, the primary focus of this thesis has been on improving the reliability of
symbolic simulation. This is done using three primary ideas. First, the simulator is
given the ability to automatically approximate values on a node-by-node and cycle-by-
cycle basis. Approximation minimizes BDD sizes, increasing speed and lowering the
probability of BDD overflow. Second, variable classification is an effective heuristic
for determining which node values during simulation are don’t care values. Values
that the simulator knows to be don’t care values based on the variable classification
are set to X. Third, SAT-based case splitting can mitigate BDD overflow such that
some useful coverage is always obtained.

This produced a symbolic simulation method that had reliability characteristics
similar to directed and random testing. These reliability characteristics are not ex-
actly the same as random and directed testing. However, random and directed testing
do not have the same reliability characteristics either, yet they are both considered
to be primary verification methods capable of finding all bugs. Directed and random
testing are considered to complement each other very well. Using the methods in-
troduced in this thesis, symbolic simulation with approximate values potentially can
take its place as a third primary verification method that complements both random

and directed testing.
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6.1 Future Work

There is much work that can be done to follow-on from this thesis. There are three

main areas that need to be addressed.

e Improvements to SAT and BDD-based symbolic simulation with approximate

values.
e Coverage analysis of symbolic simulation.

e Methodology improvements to support symbolic simulation.

6.1.1 Improvements to Symbolic Simulation with Approxi-

mate Values

The first item simply is to carry forward the work of this thesis. Many of the algo-
rithms presented in this thesis are heuristics. There are certainly many variants of
these heuristics that need to be explored before knowing which is best.

In particular, the variable selection heuristic is very simplistic. The variable se-
lection heuristic is of primary importance when bugs are present to minimize the
amount of work needed to zero in on the bug.

Secondly, only a few options for combining SAT and BDD-based symbolic simu-
lation were explored. There is certainly more work that could be done here. It would
also be good to explore incorporating other SAT optimizations that are standard op-
timizations in off-the-shelf complete SAT solvers. Exploring how to incorporate local

search methods may also be fruitful.

6.1.2 Coverage Analysis

Symbolic simulation using classified variables opens up a range of coverage analysis
possibilities that is not possible with conventional binary simulation. In particular,
variable classification allows the detection of necessary conditions for bug sensitiza-

tion.
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In the system-level tests we are considering, a bug is detected when incorrect data
appears at a checked output. This incorrect data is often a don’t care value. Assume
the correct value was injected as a data value. If a bug occurs, then it must be the
case that, at some point, the don’t care value was propagated through the circuit
while the care value was blocked. Thus, data being blocked is a necessary condition
for a bug to occur.

Suppose the test passed, meaning that the data was correctly propagated through
the circuit. Suppose further that the data was blocked at some node in the circuit.
This implies that there is some other path in the circuit for this data to follow and
that this path is not being exercised by this test. In other words, there is a lack of
coverage.

Conventional metrics such as line coverage (including observability based coverage
[31]) and state coverage measure neither necessary nor sufficient conditions for bugs
to occur. Therefore, lack of coverage using these metrics can only be determined after
all tests have been written and passed, if at all. Measuring coverage of necessary bug
conditions can be done on each test case and, so, can find potential bugs earlier and

more completely.

6.1.3 Methodology Improvements

Experience using symbolic simulation with approximate values using the experimental
implementation gsym showed that this methodology required more work than normal
directed and random testing to setup and debug. This resulted in this method being
less efficient when finding bugs.

However, the primary culprit was the primitive user interface to the tool. gsym
required a gate level netlist instead of RTL simply because this greatly simplified the
coding of the tool. This made the turnaround time when changing RTL very long.
When a bug occurred, the primary debugging tool was gdb. Binary simulation enjoys
a plethora of support tools such as test bench automation tools, waveform viewers,
graphical debuggers, coverage analysis tools, and hardware accelerators. There is also

a lot of expertise and accumulated wisdom on the best methodologies for maximizing
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the efficiency of directed and random testing. There is very little accumulated wisdom
on using symbolic simulation, especially for doing system-level verification.
Symbolic simulation introduces problems in all of these peripheral areas. What is
the best way to write tests incorporating symbolic values? How are symbolic values
represented on a waveform viewer? What is the best way to debug a symbolic test?
It may be that during the early stages of verification when there are many bugs,
it is the process of writing and debugging a test that is the bottleneck in verification.
The actual verification engine may not be the bottleneck at all, no matter whether it
is a binary or symbolic engine. Thus, for symbolic simulation to succeed as a primary

verification method, it is vital to address these methodological issues.

6.2 Conclusion

This thesis has taken a different approach to solving the verification bottleneck. In-
stead of trying to augment existing binary simulation methods, the goal has been to
try to devise a better primary verification method. It is not clear if symbolic simu-
lation with approximate values is the ultimate solution given this approach. A lot of
work is required to build the necessary infrastructure to determine if these methods
are indeed capable of meeting their goals. However, it is my hope that other re-

searchers will take this same approach to trying to break the verification bottleneck.
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