
CONDITIONAL TECHNIQUES FOR STREAM

PROCESSING KERNELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ujval J. Kapasi

February 2003

c© Copyright by Ujval J. Kapasi 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

William J. Dally
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Mark Horowitz

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Christoforos Kozyrakis

Approved for the University Committee on Graduate Stud-

ies.

iii

Abstract

The stream programming model casts applications as a set of sequential data streams that

are operated on by data-parallel computation kernels. Previous work has shown that this

model is a powerful representation for media processing applications, such as image- and

signal-processing, because it captures the locality and concurrency inherent to an applica-

tion. This careful handling of important application properties results in kernels that are

compute-intensive—i.e., kernels that perform a large number of arithmetic operations per

unit of inter-kernel communication bandwidth. Furthermore, the stream model can be im-

plemented with efficient VLSI designs, such as the Imagine Programmable Stream Proces-

sor. The Imagine chip supports 48 ALUs on a single die, operating at over 200MHz. This

large number of ALUs provides a high peak performance, but makes efficiently executing

kernels with conditional code a challenge.

We will introduce two techniques for efficiently supporting kernel conditionals, such

as if-statements, case-statements, and while-loops: conditional routing and conditional

streams. Conditional routing is a code transformation that exploits the trade-off of increas-

ing inter-kernel communication in order to increase the performance of kernel inner-loops

containing conditional code. The second technique we will discuss is the use of a condi-

tional stream, which is a mechanism to reduce the amount of load-imbalance that arises

between parallel processing clusters on a single stream processor chip. Load-imbalance re-

sults when different conditional paths are taken on different processing clusters, and causes

one or more of the clusters to wait idle for the others to complete a kernel. We will also

present a case study of the impact of these techniques on a programmable polygon render-

ing pipeline that contains many unpredictable conditionals. We show that our techniques

improve the performance of this application by 1.9×.

iv

Acknowledgements

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Conditionals are Challenging . 2

1.2 Research Contributions . 2

1.3 Thesis Roadmap . 3

2 Stream Processing 5
2.1 Stream Programming Model . 7

2.1.1 Example Application . 7

2.1.2 Locality and Concurrency . 10

2.1.3 High-Level Stream Languages . 11

2.2 Programmable Stream Processors . 12

2.2.1 Instruction Set Architecture (ISA) 13

2.2.2 Micro-Architecture . 16

2.3 Kernel Conditionals . 20

2.3.1 Motivating Example: The geom rast Kernel 21

2.3.2 Challenges . 23

3 VLIW Scheduling with Conditional Routing 25
3.1 Motivation . 25

3.1.1 Existing Techniques: If-statements 26

vi

3.1.2 Existing Techniques: While-loops 30

3.2 Applying Conditional Routing to If-Statements 31

3.2.1 Performance . 36

3.2.2 Comparison to Other Techniques 41

3.2.3 Technique Selection . 49

3.2.4 SRF Allocation . 58

3.2.5 Conditional Routing Summary for If-Statements 59

3.3 Applying Conditional Routing to While-Loops 61

3.3.1 Expanded Conditional Routing . 62

3.3.2 Flattened Conditional Routing . 65

3.3.3 State-Unrolling . 68

3.3.4 Performance . 71

3.3.5 Ordering . 77

3.3.6 Conditional Routing Summary for While-Loops 83

3.4 RENDER Performance . 86

3.5 Dynamic Techniques . 90

4 SIMD Performance with Conditional Routing 91
4.1 Motivation . 92

4.2 Performance . 93

4.2.1 If-Statements . 94

4.2.2 While-Loops . 97

4.3 RENDER Performance . 98

4.3.1 MIMD Comparison . 99

4.4 Summary . 100

5 Load-balancing with Conditional Streams 102
5.1 Motivation . 102

5.2 Existing Techniques for Improving Load-Balance 103

5.3 Conditional Streams . 104

5.3.1 If-Statements . 105

5.3.2 While-Loops . 109

vii

5.4 Implementation . 109

5.4.1 Hardware Overview . 110

5.4.2 Hardware Details . 112

5.4.3 Scalability . 119

5.5 Performance . 126

5.5.1 If-statements . 127

5.5.2 While-loops . 129

5.5.3 Impact of SRF Communication 130

5.6 Other Uses of Conditional Streams . 132

5.7 RENDER Performance . 133

5.8 Summary . 136

6 Conclusions 137
6.1 Conditional Routing . 138

6.2 Conditional Streams . 139

6.3 A Compiler Framework . 140

A The IMAGINE Stream Processor 142
A.1 Conditional Streams Implementation on Imagine 144

Bibliography 148

viii

List of Tables

3.1 Summary of if-statement conditional techniques. 60

3.2 Summary of while-loop conditional techniques. 85

3.3 Impact of conditional routing on VLIW schedule of geom rast. 89

4.1 1 to 8 cluster speedup of existing techniques on geom rast. 92

4.2 8-cluster performance of existing techniques on geom rast. 93

4.3 Impact of conditional routing on eight-cluster performance of RENDER. . . 100

5.1 Instructions supported by the conditional stream unit. 114

5.2 Instruction sequences for executing conditional stream accesses. 115

5.3 Stream buffer specific state stored in the conditional stream unit. 117

5.4 Conditional stream unit instruction details. 118

5.5 Area impact of naı̈ve GEN CO STATE implementation. 123

5.6 Conditional stream speedup for while-loops. 130

5.7 Impact of conditional streams on SIMD performance of RENDER. 135

ix

List of Figures

2.1 Streams and a kernel from an MPEG-2 video encoder application. 8

2.2 MPEG-2 I-frame encoder mapped to streams and kernels. 10

2.3 A programmable stream processor. 13

2.4 Kernel execution unit (KEU) architecture 16

2.5 KEU organizations for multi-cluster execution models. 18

3.1 Applying conditional routing to a kernel containing an if-statement. 33

3.2 Impact of conditional routing for if-statements on application-level code. . . 34

3.3 The synthetic if benchmark. 39

3.4 Impact of conditional routing on execution time for synthetic if 41

3.5 Comparison of conditional routing and existing techniques for if-statements. 42

3.6 Results of conditional techniques on synthetic if else. 47

3.7 Results of conditional techniques on synthetic case. 48

3.8 Impact of number of operations in BODY on if-statement techniques. 51

3.9 Technique selection function for the synthetic if kernel. 52

3.10 Impact of SRF communication on CONDITIONAL ROUTING and PREDI-

CATION. 54

3.11 Impact of SRF communication on if-statement techniques. 55

3.12 iterative, an example kernel with a while-loop. 62

3.13 Expanding a while-loop. 63

3.14 Application-level pseudo-code for expanded conditional routing. 64

3.15 Loop-flattening the compute iterative kernel 67

3.16 Virtual processor view of state-unrolling. 69

3.17 Impact of conditional routing on synthetic while 73

x

3.18 PDFs used to study impact of correlation on while-loop performance 75

3.19 Impact of the distribution of iterations in the input set on synthetic while. . 76

3.20 Impact of sorting the output of synthetic while to retain original ordering. . 80

3.21 Performance of alternate methods for sorting the output of synthetic while. . 82

3.22 Polygon rendering application stream and kernel diagram. 87

3.23 Basic block diagram for the geom rast kernel. 88

4.1 Impact of SIMD execution model on if-statement techniques. 95

4.2 Comparison of if-statement techniques on an eight-cluster SIMD machine. . 96

4.3 Impact of SIMD execution model on while-loop techniques. 97

4.4 Comparison of while-loop techniques on an eight-cluster SIMD machine. . 99

5.1 Load-imbalance due to conditional routing on a SIMD architecture. 106

5.2 Eliminating load-imbalance using a conditional output stream. 107

5.3 Conditional stream implementation overview for a SIMD architecture. . . . 111

5.4 Conditional stream global logic details. 113

5.5 Naı̈ve GEN CO STATE implementation. 122

5.6 Improved GEN CO STATE implementation for large numbers of clusters. . 124

5.7 Log-time hardware search implementation for GEN CO STATE. 125

5.8 Conditional stream speedup for if-statements. 128

5.9 Conditional stream results for synthetic while. 131

5.10 Impact of SRF communication on conditional stream version of input. . . . 131

A.1 The Imagine Processor architecture block diagram and floor-plan. 143

A.2 Use of a buffer for conditional streams with Imagine-style SRF. 146

xi

List of Kernels

2.1 geom rast . 22

3.1 compute 1 . 35

3.2 compute 2 . 36

3.3 synthetic if . 40

3.4 synthetic if optimized using speculation. 44

3.5 synthetic if optimized using predication. 46

3.6 compute iterative after applying loop-flattening 68

3.7 compute iterative after applying loop-flattening and state-unrolling 70

3.8 synthetic while . 71

5.1 compute iterative with loop-flattening, updated for conditional input streams.119

xii

Chapter 1

Introduction

Recent research has shown that programmable stream processors efficiently support large

numbers of ALUs on a single chip to achieve a high sustained performance on media pro-

cessing applications, such as 2-D and 3-D graphics, image processing, and signal process-

ing [Kapasi et al., 2003; Khailany et al., 2001]. Furthermore, stream processors dissipate

considerably less power per operation than traditional programmable processors. For ex-

ample, the IMAGINE streaming media processor supports 48 ALUs on a single die in

a 0.15µm process. At the most power-efficient operating voltage of 1.2V, the processor

sustains between 1.4 and 2.2 GFLOPS at 1.9W on representative media processing appli-

cations.

It turns out that many media processing applications are very regular: they repetitively

perform the same set of operations on a large set of similar data elements. This can be

modeled as a sequence of computation kernels that operate on data streams, where each

kernel applies the same function to all the records in a stream. As we will see in the next

chapter, stream processors are optimized to exploit this regularity, and this is in part why

they are so efficient from a hardware perspective.

1

CHAPTER 1. INTRODUCTION 2

1.1 Conditionals are Challenging

However, the flip-side is that it is a challenge to efficiently execute conditionals, such as

if-then-else statements and while-loops, since they seem to break this regularity assump-

tion (Section 2.3 will discuss this in more detail). The end result is that the presence of

data-dependent conditionals in an application reduces the fraction of the peak processor

performance achieved. To address this, we will introduce new solutions that increase the

performance of applications with data-dependent conditionals on stream processors. For

example, the conditional techniques we introduce are able to speed up an OpenGL polygon

rendering pipeline 1.9x over an implementation that only uses other existing techniques,

such as speculation and predication. Furthermore, on IMAGINE, the additional hardware

dedicated to our new conditional techniques occupies only about 1% of the chip area.

We are concerned with media processing applications in this thesis, and in particular, we

will focus on a 3-D OpenGL polygon rendering pipeline. However, as stream processing

technology matures, we envision that the contributions in this thesis will apply to other

application domains as well. In fact, the techniques discussed here may become even

more important as we try to reap the benefits of efficient stream processing hardware on

increasingly difficult (i.e., irregular) applications.

1.2 Research Contributions

The primary contributions of this thesis to the fields of computer architecture and stream

processing are:

1. A kernel-level code transformation, conditional routing, that improves the perfor-

mance of kernels that contain conditional constructs, such as if- and case-statements

and while-loops. Conditional routing improves kernel schedules on VLIW clusters

by replacing conditional branches with conditional communication. Removing the

conditional branches also enables efficient execution on stream processors that are

built using a single-instruction multiple-data (SIMD) array of processing clusters.

CHAPTER 1. INTRODUCTION 3

2. A kernel-level code transformation, state unrolling, that improves the VLIW sched-

ules of while-loops inside kernel main loops. State-unrolling is especially important

when there is a long loop-carried dependency in the while-loop, rendering traditional

loop-unrolling or software-pipelining ineffective.

3. A new mechanism, called conditional streams, which improves the load-balance be-

tween parallel processing clusters during kernel execution.

4. A micro-architecture for accelerating the performance of conditional stream opera-

tions.

5. An evaluation of the impact of the newly introduced conditional techniques on the

performance of a 3-D polygon rendering application, which contains many condi-

tional statements in its kernels.

1.3 Thesis Roadmap

In Chapter 2 we will motivate why stream processors are an interesting class of machines

for the media processing domain, how they are built, and how they operate. In particu-

lar, we will show that stream processors can efficiently support a large number of ALUs

by using a SIMD array of processing clusters, where each processing cluster is a stati-

cally scheduled VLIW engine. While stream processors are great at executing very regular

codes, we will show that efficiently executing code with conditionals is a challenge on these

stream processors. We will discuss three specific challenges introduced by the presence of

conditionals: improving VLIW schedules, enabling efficient performance on the restric-

tive SIMD execution model, and reducing the load-imbalance between multiple processing

clusters. Each of the next three chapters is devoted to addressing each of these challenges

in turn.

Chapter 3 focuses on how one of our new techniques, conditional routing, addresses

the first challenge. We will show that compared to existing techniques, conditional routing

enables efficient VLIW schedules by converting conditional branches to conditional com-

munication. Conditional routing can be applied to both if-statements and while-loops. We

CHAPTER 1. INTRODUCTION 4

will also introduce another new technique, state unrolling, and show that it should be used

in conjunction with conditional routing in order to improve the performance of while-loops

even further.

The second challenge is addressed in Chapter 4. In this chapter we show that condi-

tional routing enables efficient performance on stream processors with an array of SIMD

processing clusters. The SIMD execution model is attractive because it enables simplified

hardware, but in return places restrictions on control-flow. We will show how the perfor-

mance of kernels implemented using conditional routing, unlike other techniques, is not

reduced by these control-flow restrictions.

We address the third and final challenge in Chapter 5. This chapter shows how condi-

tional streams reduce the load-imbalance between multiple clusters in a stream processor.

Since conditional streams require hardware acceleration for good performance, we will

present a micro-architecture to support them in this chapter.

Finally, we will present our conclusions in Chapter 6, and indicate fruitful areas for

further research based on these conclusions.

Chapter 2

Stream Processing

The complexity of modern media processing, including 3D graphics, image compression,

and signal processing, requires tens to hundreds of billions of computations per second.

To achieve these computation rates, current media processors use special-purpose architec-

tures tailored to one specific application. Such processors require significant design effort

and are thus difficult to change as media-processing applications and algorithms evolve.

The demand for flexibility in media processing motivates the use of programmable pro-

cessors. However, very large-scale integration constraints limit the performance of tradi-

tional programmable architectures. In modern VLSI technology, computation is relatively

cheap—thousands of arithmetic logic units (ALUs) that operate at multi-gigahertz rates can

fit on a modestly sized 1-cm2 die. The problem is that delivering instructions and data to

those ALUs is prohibitively expensive. For example, only 6.5 percent of the Itanium 2 die

is devoted to the 12 integer and two floating-point ALUs and their register files [Naffziger et

al., 2002]; communication, control, and storage overhead consume the remaining die area.

In contrast, the more efficient communication and control structures of a special-purpose

graphics chip, such as the Nvidia GeForce4 [Montrym and Moreton, 2002], enable the use

of many hundreds of floating-point and integer ALUs to render 3D images.

In part, such special-purpose media processors are successful because media applica-

tions have abundant parallelism—enabling thousands of computations to occur in parallel—

and require minimal global communication and storage—enabling data to pass directly

from one ALU to the next. A stream architecture exploits this locality and concurrency by

5

CHAPTER 2. STREAM PROCESSING 6

partitioning the communication and storage structures to support many ALUs efficiently:

• operands for arithmetic operations reside in local register files (LRFs) near the ALUs,

in much the same way that special-purpose architectures store and communicate data

locally;

• streams of data capture coarse-grained locality and are stored in a stream register

file (SRF), which can efficiently transfer data to and from the LRFs between major

computations; and

• global data is stored off-chip only when necessary.

These three explicit levels of storage form a data bandwidth hierarchy with the LRFs

providing an order of magnitude more bandwidth than the SRF and the SRF providing

an order of magnitude more bandwidth than off-chip storage. This bandwidth hierarchy

is well matched to the characteristics of modern VLSI technology, as each level provides

successively more storage and less bandwidth. By exploiting the locality inherent in media-

processing applications, this hierarchy stores the data at the appropriate level, enabling

hundreds of ALUs to operate at close to their peak rate. Moreover, a stream architecture

can support such a large number of ALUs in an area- and power-efficient manner. Modern

high-performance microprocessors and digital signal processors continue to rely on global

storage and communication structures to deliver data to the ALUs; these structures use

more area and consume more power per ALU than a stream processor.

An example of a stream processor is the IMAGINE Processor (Appendix A), which

targets the media processing application domain [Khailany et al., 2001; Rixner et al., 1998].

While retaining complete programmability, IMAGINE delivers roughly four times the peak

performance of TI’s high-performance floating-point DSP, the TMS320C6713 [TI, 2001],

and does so with roughly two-thirds the energy per operation, despite being implemented

in a CMOS process technology that is one generation older. Likewise, if compared to TI’s

fixed-point DSP, the TI C64x [Agarwala et al., 2002], and normalized to the same process

technology and operating voltage, IMAGINE sustains roughly 2.5× the peak performance

at roughly the same power-efficiency [Khailany, 2003], despite having the extra overhead

of floating-point arithmetic support. The next section describes the key characteristics of

CHAPTER 2. STREAM PROCESSING 7

the stream programming model and the following section describes stream processors in

more detail.

2.1 Stream Programming Model

The central idea behind stream processing is to organize an application into streams and

kernels to expose the inherent locality and concurrency in media-processing applications.

In most cases, not only do streams and kernels expose desirable properties of media ap-

plications, but they are also a natural way of expressing the application. This leads to an

intuitive programming model that maps directly to stream architectures with tens to hun-

dreds of ALUs.

2.1.1 Example Application

Figure 2.1 illustrates input and output streams and a kernel taken from a MPEG-2 video

encoder application. Figure 2.1a shows how a kernel operates on streams graphically, while

Figure 2.1b shows this process in a simplified form of StreamC, a stream programming

language.

Input Image is a stream that consists of image data from a camera. Elements of

Input Image are 16×16 pixel regions, or macroblocks, on which the convert kernel op-

erates. The kernel applies the same computation to the macroblocks in Input Image, de-

composing each one into six 8×8 blocks—four luminance blocks and two 4:1 sub-sampled

chrominance blocks—-and appends them to the Luminance and Chrominance output

streams, respectively.

Streams

As Figure 2.1a shows, streams contain a sequence of elements of the same type. Stream

elements can be simple, such as a single number, or complex, such as the coordinates of a

triangle in 3D space. Streams need not be the same length—for example, the Luminance

stream has four times as many elements as the input stream. Further, Input Image could

contain all of the macroblocks in an entire video frame, only a row of macroblocks from

CHAPTER 2. STREAM PROCESSING 8

Luminance

Chrominance

convert

stream < MACROBLOCK > struct BLOCK {
 int8 intensity[8][8];

}

stream < BLOCK >

Input_Image
while (! Input_Image.end()) {
 // input next macroblock
 in = Input_Image.pop();

 // generate Luminance and
 // Chrominance blocks
 outY[0..3] = gen_L_blocks(in);
 outC[0..1] = gen_C_blocks(in);

 // output new blocks
 Luminance.push(outY[0..3]);
 Chrominance.push(outC[0..1]);
}

struct MACROBLOCK {
 struct RGB_pixel {

 int8 r, g, b;
 }
 RGB_pixel pixels[16][16];

}

(a)

stream < MACROBLOCK > Input_Image(NUM_MB);
stream < BLOCK > Luminance(NUM_MB*4), Chrominance(NUM_MB*2);

Input_Image = Video_Feed.get_macroblocks(currpos, NUM_MB);
currpos += NUM_MB;
convert(Input_Image, Luminance, Chrominance);

(b)

Figure 2.1: Streams and a kernel from an MPEG-2 video encoder application. (a) The
convert kernel translates a stream of macroblocks containing RGB pixels into streams of
blocks containing luminance and chrominance pixels. (b) Textual expression of the flow
of streams through kernels. The syntax is similar to that of the StreamC language. The
datatype of each stream is specified within the angle brackets (< >). Kernel invocation
syntax is similar to that of a regular function call in “C”. The get macroblocks method
is assumed to be defined earlier; it simply returns a consecutive number of macroblocks
starting at the specified position in the stream.

CHAPTER 2. STREAM PROCESSING 9

the frame, or even a subset of a single row. In the stream code in Figure 2.1b, the value of

NUM MB controls the length of the input stream.

Kernels

The convert kernel consists of a loop that processes each element from the input stream.

The body of the loop first pops an element from its input stream, performs some compu-

tation on that element, and then pushes the results onto the two output streams. Kernels

can have one or more input and output streams and perform complex calculations ranging

from a few to thousands of operations per input element—one implementation of convert

requires 6,464 operations per input macroblock to produce the six output blocks. The only

external data that a kernel can access are its input and output streams. For example, convert

cannot directly access the data from the video feed; instead, the data must first be organized

into a stream.

Full application

A full application, such as the MPEG-2 encoder, is composed of multiple streams and

kernels. This application inputs a sequence of video images and compresses it into a single

bitstream consisting of three types of frames: intra-coded, predicted, and bidirectional. The

encoder compresses I-frames using only information contained in the current frame, and it

compresses P- and B-frames using information from the current frame as well as additional

reference frames. For example, Figure 2.2 shows one possible mapping of the portion of

the MPEG-2 encoder application that encodes only I-frames into the stream processing

model. Solid arrows represent data streams, and ovals represent computation kernels.

The encoder receives a stream of macroblocks (Input Image) from the video feed

as input, and the first kernel (convert) processes this input. The discrete cosine transform

(DCT) kernels then operate on the output streams produced by convert. Upon execution

of all the computation kernels, the application either transmits the compressed bitstream

over a network or saves it for later use. The application uses the two reference streams to

compress future frames.

CHAPTER 2. STREAM PROCESSING 10

convert

dctq

dctq

Input
Image

Luminance

Chrominance

Rate Control

Rate Control

Video
Stream

iqdct

iqdct

rle
(Run-level
Encoding)

vlc
(Variable Length

Coding)

Luminance
Reference

Stream

Compressed
Bits

Stream

Chrominance
Reference

Stream

Globalkernel
Stream Scalar

Figure 2.2: MPEG-2 I-frame encoder mapped to streams and kernels. The encoder re-
ceives a stream of macroblocks from a frame in the video feed as input, and the first kernel
(convert) processes these. The discrete cosine transform (DCT) kernels then operate on the
output streams produced by convert. Q=quantization; IQ=inverse quantization.

2.1.2 Locality and Concurrency

By making communication between computation kernels explicit, the stream-processing

model exposes both the locality and concurrency inherent in media-processing applications.

The model exposes locality by organizing communication into three distinct levels:

• Local. Temporary results that only need to be transferred between scalar operations

within a kernel use local communication mechanisms. For example, temporary val-

ues in gen L blocks are only referenced within convert. This type of communi-

cation cannot be used to transfer data between two different kernels.

• Stream. Data are communicated between computation kernels explicitly as data

streams. In the MPEG-2 encoder, for example, the Luminance and Chrominance

streams use this type of communication.

• Global. This level of communication is only for truly global data. This is necessary

for communicating data to and from I/O devices, as well as for data that must persist

throughout the application. For example, the MPEG-2 Iframe encoder uses this level

of communication for the original input data from a video feed and for the reference

CHAPTER 2. STREAM PROCESSING 11

frames, which must persist throughout the processing of multiple video frames in the

off-chip dynamic RAM (DRAM).

By requiring programmers to explicitly use the appropriate type of communication for

each data element, the stream model expresses the applications inherent locality. For ex-

ample, the model only uses streams to transfer data between kernels and does not burden

them with temporary values generated within kernels. Likewise, the model does not use

global communication for temporary streams.

The stream model also exposes concurrency in media-processing applications at multi-

ple levels:

• Instruction-level parallelism (ILP). As in traditional processing models, the stream

model can exploit parallelism between the scalar operations in a kernel function.

For example, the operations in gen L blocks and gen C blocks can occur in

parallel.

• Data parallelism. Because kernels apply the same computation to each element of an

input stream, the stream model can exploit data parallelism by operating on several

stream elements at the same time. For example, the model parallelizes the main loop

in convert so that multiple computation elements can each decompose a different

macroblock.

• Task parallelism. Multiple computation tasks, including kernel execution and stream

data transfers, can execute concurrently as long as they obey dependencies in the

stream graph. For example, in the MPEG-2 I-frame application, the two dctq kernels

could run in parallel.

2.1.3 High-Level Stream Languages

Stream languages are used to textually code applications in the stream programming model.

A language such as StreamC is used to code the flow of streams through kernels in an ap-

plication, while a language such as KernelC is used to code the individual kernels. Both

CHAPTER 2. STREAM PROCESSING 12

of these languages are specifically covered by [Mattson, 2001]. These languages are com-

piled using software tools designed specifically to both process stream languages and target

stream architectures [Kapasi et al., 2002b; Mattson et al., 2000; Mattson, 2001].

Examples of how several different applications map to the stream programming model

can be found in other references: Khailany et al. discuss the mapping of a stereo depth

extractor [Khailany et al., 2001; Kanade et al., 1996]; Owens et al. discuss the mapping of

a polygon rendering pipeline [Owens et al., 2000] and a REYES graphics pipeline [Owens

et al., 2002]; Rajagopal et al. discuss the mapping of a software defined radio [Rajagopal

et al., 2002]; Rajagopal also discusses the mapping of several other wireless receiver algo-

rithms [Rajagopal, 2004]; the mapping of the FFT algorithm is discussed in [Kapasi et al.,

2002a]; and, finally, the mapping of a network packet processing IPv4 stack is described in
[Rai, 2003].

2.2 Programmable Stream Processors

A programmable stream processor [Kapasi et al., 2003; Rixner, 2001] is designed to di-

rectly execute the stream programming model we have just described. A stream processor

can be implemented very efficiently by taking advantage of the locality and concurrency

exposed by the stream model. Stream and kernel programs are compiled directly to such a

stream processor. Figure 2.3 shows the architecture of a baseline programmable stream pro-

cessor, which consists of an application processor, a stream register file, and stream clients.

The SRF serves as a communication link by buffering data streams between clients, as

long as the data does not exceed its storage capacity. The two stream clients in the baseline

stream processor—a programmable kernel execution unit (KEU) and an off-chip DRAM

interface—either consume data streams from the SRF or produce data streams to the SRF.

The KEU executes kernels and provides local communication for operations within the

kernels, while the off-chip DRAM interface provides access to global data storage. We will

first present an ISA for this type of stream architecture, and then we will discuss the details

of how we can build one efficiently in VLSI technology.

CHAPTER 2. STREAM PROCESSING 13

Stream
Register

File

Application
Processor

Kernel
Execution Unit

DRAM
Interface

DRAM

Other Stream
Clients

Figure 2.3: A programmable stream processor. The SRF streams data between clients—in
this case the KEU, which is responsible for executing kernels and providing local com-
munication for operations within the kernels, and the off-chip DRAM interface, which
provides access to storage for global data.

2.2.1 Instruction Set Architecture (ISA)

The ISA of a stream processor is really composed of two unique ISAs: that of the appli-

cation processor and that of the kernel execution unit. We shall describe both in turn, and

then describe how they work together to execute a stream program.

Application Processor ISA

The application processor executes application code like that in Figure 2.1b. The appli-

cation processor’s RISC-like instruction set is augmented with stream-level instructions to

control the flow of data streams through the system. The application processor sequences

these instructions and issues them to the stream clients, including the DRAM interface and

the KEU. The DRAM interface supports two stream-level instructions—LOAD STREAM

and STORE STREAM—that transfer an entire stream between off-chip DRAM and the

SRF. Additional DRAM interface arguments also can specify non-contiguous access pat-

terns, such as non-unit strides and indirect access. The programmable KEU supports two

CHAPTER 2. STREAM PROCESSING 14

stream-level instructions as well. The LOAD KERNEL instruction loads a compiled kernel

function into local instruction storage within the KEU. This typically occurs only the first

time a kernel is executed; on subsequent kernel invocations, the code is already available

in the KEU. The RUN KERNEL instruction causes the KEU to start executing instructions

that are encoded in its own instruction-set architecture, which is distinct from the applica-

tion processor ISA.

Kernel Execution Unit ISA

Instructions in the KEU ISA control the functional units and register storage within the

KEU, similar to typical RISC instructions. However, unlike a RISC ISA,

• KEU instructions do not have access to arbitrary memory locations, as all external

data must be read from or written to streams, and

• special communication instructions explicitly handle data-dependencies between the

computations of different output elements.

The first constraint preserves locality, and the programmer ensures the constraint is met

when they structure the application as a set of kernels and streams. The communication

instructions make it easier to exploit concurrency on data-parallel processors, without the

need to reorganize data through the memory system. These two constraints of the kernel

ISA maximize stream architecture performance.

Stream ISA

The ISA of a stream processor, or stream ISA, encapsulates both the application processor

ISA and the KEU ISA. Accordingly, software tools translate high-level stream languages

such as StreamC and KernelC directly to the ISA of a stream processor. For example, the

convert kernel code shown in Figure 2.1a is compiled to the KEU ISA offline. Another

compiler then compiles the application-level code shown in Figure 2.1b to the application

processor ISA. The application processor executes this code and moves the precompiled

kernel code to the KEU instruction memory during execution.

CHAPTER 2. STREAM PROCESSING 15

Assuming that the portion of the video feed the processor is encoding currently resides

in DRAM memory, the three lines of application code in Figure 2.1b would result in the

following sequence of operations:

(ii = Input_Image, lum = Luminance, chrom = Chrominance)

load_stream ii_SRF_loc, video_DRAM_loc, LEN

add video_DRAM_loc, video_DRAM_loc, LEN

run_kernel convert_KEU_loc, ii_SRF_loc, LEN,

lum_SRF_loc, chrom_SRF_loc

The first instruction loads a portion of the raw video feed into the SRF. The second

instruction is a regular scalar operation that only updates local state in the application pro-

cessor. The final instruction causes the KEU to start executing the operations for the convert

kernel. Similar instructions are required to complete the rest of the MPEG-2 I-frame ap-

plication pipeline. Interestingly, a traditional compiler can only perform manipulations on

simple scalar operations that tend to benefit local performance only. A stream compiler,

on the other hand, can manipulate instructions that operate on entire streams, potentially

leading to greater performance benefits.

To be a good compiler target for high-level stream languages, the stream processor’s

ISA must express the original program’s locality and concurrency. To this end, three dis-

tinct address spaces in the stream ISA support the three types of communication that the

stream model uses. The ISA maps local communication within kernels to the address space

of the local registers within the KEU, stream communication to the SRF address space, and

global communication to the off-chip DRAM address space. To preserve the stream models

locality and concurrency, the processors ISA also exploits the three types of parallelism.

To exploit ILP, the processor provides multiple functional units within the KEU. Because

a kernel applies the same function to all stream elements, the compiler can exploit data

parallelism using loop unrolling and software pipelining on kernel code. The KEU can

exploit additional data parallelism using parallel hardware. To exploit task parallelism, the

processor supports multiple stream clients connected to the SRF.

CHAPTER 2. STREAM PROCESSING 16

PROCESSING CLUSTER

PROCESSING CLUSTER

MICRO-CONTROLLER

SRF BANK

SRF
Memory

Array

FIFO Stream
Buffers

SRF BANK

SRF
Memory

Array

FIFO Stream
Buffers

Figure 2.4: The architecture of an example kernel execution unit. There are several clusters
organized in a SIMD fashion. Each cluster consists of five symmetric ALUs—i.e., they can
all perform the exact same arithmetic operations. Also, there is a dedicated SRF bank for
each processing cluster.

2.2.2 Micro-Architecture

Since we are focusing on kernel performance in this dissertation, it is worthwhile dis-

cussing the architecture of the KEU and SRF in slightly more detail. In particular, we will

discuss several architectural optimizations we can apply that result in little to no perfor-

mance loss since they exploit properties exposed by the stream model. Figure 2.4 shows

the architecture of an example KEU.

CHAPTER 2. STREAM PROCESSING 17

Local Register Files (LRFs)

Each processing cluster is a VLIW engine that is built to take advantage of the ILP within

kernel functions. All the ALUs are the same, and each ALU supports every floating point

and fixed point arithmetic operation in the kernel ISA. Notice that our first optimization

is to split the register files into an SRF and cluster LRFs. This relieves the LRFs from

supporting the large capacity necessary for hiding memory latency. This maps well to

the stream model, which explicitly captures the locality of all the intermediate values in

a kernel. Also, each ALU has a register file dedicated to each of its inputs. The outputs

of the ALUs are connected to the inputs of the register files by a fully connected switch.

This distributed register file structure improves the VLSI implementation of a processing

cluster by providing small two-ported register files, instead of a single large register file

with ports for all the ALUs. [Rixner et al., 2000]. Not shown are additional specialized

functional units, that provide interfaces to modules such as a scratch-pad register file and

the inter-cluster communication switch.

Multiple SIMD clusters

As shown in Figure 2.4, we have split the ALUs on a stream processor into multiple clus-

ters, where each cluster operates on a different data element. When necessary, clusters

can communicate with each other via an inter-cluster switch (not shown in figure). This

might be required, for example, in order to obtain the data from neighboring clusters for a

FIR filter. This cluster partitioning is done largely because a monolithic VLIW processing

structure starts to become inefficient as we scale to higher numbers of ALUs [Khailany

et al., 2003]. Fortunately, the cluster partitioning doesn’t significantly impact performance

since data-parallelism is exposed by the stream model and is readily available in media pro-

cessing applications. For example, Rixner previously reported that over a range of media

processing kernels, an average speedup of 7.4× was achieved on eight parallel processing

clusters compared to a single cluster [Rixner et al., 1998].

There are several options for how the clusters on a stream processor are controlled.

The two extremes in the space are multiple-instruction multiple-data (MIMD) execution

and single-instruction multiple-data (SIMD) execution. The KEU organizations for these

CHAPTER 2. STREAM PROCESSING 18

In
te

r-
cl

u
st

er
 S

w
it

c
h

Cluster 1

Cluster 2

Cluster N

SRF 1

SRF 2

SRF N

VLIW Instruction Controller 1

VLIW Instruction Controller 2

VLIW Instruction Controller N

In
te

r-
cl

u
st

e
r

S
w

it
ch

VLIW Shared
Instruction Controller

Cluster 1

Cluster 2

Cluster N

SRF 1

SRF 2

SRF N

(a) (b)

Figure 2.5: This figure shows two ways to organize the KEU in a stream architecture. The
organization for the MIMD execution model is shown in (a), while the organization for the
SIMD execution model is shown in (b). Other modules such as the application processor
and memory system are not shown. In both organizations, each processing cluster operates
on a different batch of stream elements in parallel. Notice that we are assuming that the
SRF can be independently addressed by each cluster, even in the SIMD model.

two execution models are depicted graphically in Figure 2.5. In both models, every cluster

executes a kernel on its own local batch of data. The differentiating feature is the indepen-

dence of the VLIW instruction streams for each cluster. In the MIMD model every cluster

can be executing a different instruction and a different kernel at any given time. In the

SIMD model a single instruction controller issues exactly the same instructions to every

processing cluster. With only a single controller, there is only one instruction stream and

program counter (PC), and thus one control-flow. Therefore, the MIMD model is more

flexible when each cluster wants to execute a different control-flow, a situation that arises

due to kernel conditionals.

As shown in the figure, however, the MIMD model requires a separate VLIW instruc-

tion controller in return for this added flexibility. Furthermore, since large memory struc-

tures can only efficiently support a small set of independent ports, each kernel instruction

memory can only serve a small set of clusters (most likely only one cluster). The impact

of this extra hardware on the area of the KEU and SRF was evaluated using Khailany’s

CHAPTER 2. STREAM PROCESSING 19

analytical models [Khailany et al., 2003]. For an eight cluster machine with a layout simi-

lar to the IMAGINE processor (Appendix A), the models indicate that the area of the KEU

and SRF would be 1.6× larger for a MIMD organization compared to a SIMD one. Not

only does the MIMD option require more area, but it also increases the complexity in the

design of the processor. For example, to support the MIMD model we would have to

provide either multiple application processors (one per instruction controller), or burden a

single application processor with both issuing operations to all the instruction controllers

and synchronizing them.

Due to this area and complexity penalty, we would prefer to use a SIMD organization.

Fortunately, this choice would not degrade the performance of any kernels that do not use

conditionals. However, as we show in the next chapter, efficiently executing kernels with

conditionals on SIMD organizations has been a challenge historically. Our new solutions

will address this problem later in the thesis, thus allowing us to use the more area-efficient

SIMD model without much performance loss across a large variety of kernels.

SRF Banking

As explained in [Rixner et al., 2000], the architecture of the SRF incorporates two impor-

tant optimizations: banking and stream buffer FIFOs. Banking ensures that each processing

cluster connects only to its own local SRF bank in order to read and write stream elements.

This is done in order to reduce the number of access ports necessary for the SRF memory

array, which in turn reduces the number of internal communication paths in the SRF. This

partitioning matches the data-parallelism in stream programming model well, since each

cluster will operate on a different stream element. Therefore, during the execution of a

kernel each cluster processes the set of elements that are in its own local SRF. Any sharing

of stream elements between clusters, though, requires communication over the inter-cluster

switch.

CHAPTER 2. STREAM PROCESSING 20

Stream Buffers

The second optimization, stream buffers, are added to further reduce the number of ports

into the SRF memory arrays. The stream buffers are FIFOs that aggregate multiple ac-

cesses into one wide SRF memory array access. For example, consider an input stream,

which transfers data from the SRF to the clusters. First the SRF will transfer a wide word,

say 128 bits, from the SRF into the stream buffer FIFO. Then the processing cluster can

read out each 32-bit word one by one from the stream buffer without requiring any more

SRF memory array accesses. In this way, many stream buffers, each of which corresponds

to a different logical stream in the kernel program, can time-multiplex a single port into

the memory array. Like SRF banking, this also reduces the number of necessary internal

communication paths in the SRF. This optimization also matches the stream programming

model well, since kernels can only read or write streams in order, thereby providing suffi-

cient spatial locality for the stream buffers to exploit.

In summary, the architectural optimizations made to the KEU and SRF enable more

efficient hardware that occupies less silicon real-estate and operates with less power dissi-

pation. At the same time, there is little degradation in kernel performance due to these hard-

ware optimizations, since they match the properties of the stream programming model. For

example, data-parallelism exposed by the stream model is exploited by banking the SRF

and organizing the ALUs into many smaller VLIW engines (clusters), all controlled in

SIMD. The stream model also explicitly captures fine-grained (kernel) and coarse-grained

(stream) locality; the former allows us to use local register files in the KEU and the lat-

ter lets us use a software-managed SRF instead of a cache. Furthermore, by structuring

external data accesses in kernels into sequential streams, the SRF implementation can be

optimized via stream buffers. Further details on the VLSI-efficiency of stream processor

architectures can be found in [Khailany et al., 2001] and [Khailany, 2003].

2.3 Kernel Conditionals

As demonstrated in our discussion above, stream processors incorporate the main ideas

from other explicitly parallel architectures, such as SIMD, vector, and VLIW machines.

CHAPTER 2. STREAM PROCESSING 21

Unfortunately, even though all of these architectures have traditionally excelled on regular

data-parallel applications, the presence of conditionals can significantly degrade their per-

formance. Since stream processors combine ideas from all these architectures, the problem

is potentially even more serious for stream processors.

2.3.1 Motivating Example: The geom rast Kernel

In order to introduce a real example that requires conditionals, we will use a kernel from a

polygon rendering application. The kernel, geom rast, implements polygon mesh assem-

bly, vertex geometry and shading, triangle rasterization, and fragment shading. As seen

in Kernel 2.1, geom rast is typical in that it consists of an main-loop that reads an input

from a stream on every iteration. Unlike other more regular kernels, however, there are sev-

eral data-dependent conditionals embedded in the main-loop of geom rast. By conditional

statements, we are referring to if-statements, case-statements, and while-loops. In other

words, we are referring to high-level conditional constructs, and not arbitrary conditional

jumps.

The input stream is a sequence of points on a mesh. Each mesh starts with two points,

and then every additional point is combined with two previous points to form a triangle that

is on the surface of our model geometry. Since some points may be the first or second point

in a new mesh, not every loop iteration will generate a valid triangle. The first if-statement

in the kernel main-loop checks this condition. Further processing is only required if a valid

triangle has been generated, otherwise the loop is restarted and a new mesh point is read.

During the processing of a valid triangle, there are two more similar if-statements. One

checks if the triangle is completely off the viewable screen, and one checks if the triangle

is forward facing (and, hence, viewable). If a triangle meets these criteria, then a while-

loop is executed that generates a fragment for every pixel on the screen that is covered

by the current triangle. This operation is called rasterization. Note that the number of

iterations of the while loop that are executed for each triangle will vary with the size of

the triangle. The particular rasterization algorithm we used however does not necessarily

produce a valid fragment on each loop-iteration, and therefore there is a final if-statement

within the while-loop. All valid fragments for a triangle are written to the output stream.

CHAPTER 2. STREAM PROCESSING 22

Kernel 2.1 Pseudo-code for the geom rast kernel from the RENDER application. This
kernel contains five different conditional statements: four if-statements and one while-loop.
Note that all code outside the main-loop of the kernel is not shown. The horizontal lines
represent basic block boundaries, and the annotations represent the name of each basic
block.

loop over vtx stream begin —————————————————————–
v pop
←− vtx stream; // input: 8 words

v ← vertex shader(v);
tri , mesh state, valid tri ← assemble mesh (v, mesh state); mesh
if valid tri then ——————————————————————————–

clipped ← check clipping(tri); clip
if ¬clipped then —————————————————————————

tri ← viewport transform(tri);
interpolants ← generate interp(tri);
culled ← check backfacing(tri); viewport
if ¬culled then ———————————————————————–

rast tri ← raster prep(tri);
frags left ← true; rasterprep
while frags left do ——————————————————————

xyfrag, rast tri , frags left ← next pixel (rast tri);
valid frag ← inside tri(rast tri , xyfrag); updatexy
if valid frag then —————————————————————

bary coords ← baryprep(xyfrag);
new frag ← apply interps(xyfrag, interpolants, bary coords);
out frag ← fragment shader(new frag);

fragment stream push
←− out frag; // output: 6 words

genfrag
fi ————————————————————————————

check frags left
od ————————————————————————————

fi
fi

fi ——————————————————————————————
check stream empty

end ————————————————————————————————

CHAPTER 2. STREAM PROCESSING 23

2.3.2 Challenges

Fundamentally, conditionals in the main-loop of a kernel do not break the data-parallel

nature of the programming model, as demonstrated by the geom rast kernel. So, if stream

processors are built to exploit this data-parallelism very efficiently, why would conditionals

reduce performance so much? The reason is that, even though elements can be operated on

in parallel, the kernel will execute a different set of operations, and hence follow a different

control-flow path, for each element. This creates three challenges, which we discuss below.

1. Conditionals result in poor VLIW schedules (i.e., low achieved ILP).

Data-dependent branches represent barriers to code motion when statically schedul-

ing a kernel. For this reason, fewer operations can be combined together at com-

pile time in order to obtain higher ILP. For example, in geom rast the operations in

the CLIP basic block cannot be combined with those in the MESH block since it is

not guaranteed that CLIP will execute every time MESH executes. Worse, usually

the VLIW schedules are efficiently packed using standard optimizations that convert

data-parallelism to ILP, like software-pipelining and loop-unrolling. Because of the

branches, however, we will see that these optimizations don’t work well. The result is

low achieved ILP, which in turn results in performance that is a small fraction of the

peak. This problem is especially critical since stream processing clusters are built to

support a peak of 10–20 operations in flight concurrently (2–4 pipelined operations

in each of five parallel ALUs, for example).

2. Execution on SIMD hardware will require all clusters to execute the union of the

control-flow paths required by each cluster.

Consider the example of a while-loop within the main loop of the geom rast kernel.

Assume that the current triangle in one cluster requires 10 iterations of the while-

loop, whereas the triangles in the other clusters only require one or two loop itera-

tions. Unfortunately, all of the clusters will have to execute the loop 10 times in this

case because of the SIMD execution model. This directly reduces the efficiency of

the architecture since several clusters are wasting valuable ALU issue opportunities

while waiting for another cluster to finish processing its triangle.

CHAPTER 2. STREAM PROCESSING 24

3. Conditionals can result in load-imbalance between multiple processing clusters.

Consider what happens when the code that writes data to an output stream in a kernel

is inside of an if-statement (as is the case with fragment stream in geom rast).

Upon completion of this kernel, each cluster may have output a different number of

elements to their local SRF bank. The next kernel in the application pipeline that

processes this output stream will suffer from load-imbalance because each cluster

will have a different amount of input data to process. This causes the cluster with

few elements to process to waste otherwise useful ALU issue slots while waiting for

the cluster with the most work to finish.

Notice that even if we solved the SIMD problem (the second problem described

above), the geom rast kernel itself can still suffer from load-imbalance. For example,

even though each cluster starts with the same number of inputs in their SRF banks,

since each cluster will execute a different set of operations for each element, some

clusters can finish earlier than other clusters, causing the early clusters to idle. This

reduces the efficiency of the architecture as well.

Historically, highly parallel machines have not fared well on irregular applications con-

taining many conditional statements. At first glance, the same holds true for stream proces-

sors, and in fact the problem might be even more pressing since stream processors aggre-

gate so many parallel ALUs on a single chip. To guide our exploration of the problem and

its solutions, we illustrated three sources of inefficiencies that arise when we broaden our

application scope and start executing irregular applications on data-parallel stream proces-

sors. We did make the observation, however, that conditionals do not break the data-parallel

nature of kernels, they just cause each cluster to execute different sets of operations. So

we must look into ways that make the computation more regular between the clusters. The

remainder of the thesis will present and evaluate new solutions for improving the perfor-

mance of conditionals on stream processors.

Chapter 3

Improving VLIW Schedules with
Conditional Routing

The first major challenge we identified for kernels with conditionals is to achieve a good

VLIW schedule, by making sure that all ALUs are busy on each cycle. Let’s assume that we

have a processing cluster with five ALUs, where each ALU is the same and can perform

all arithmetic operations. Furthermore, assume that the ALUs are pipelined such that it

takes four cycles to execute a floating point addition or multiply, and that a new operation

can be started on each cycle. Then, there can be up to 20 operations executing in parallel

on such a cluster. The ILP in a kernel must be exploited in order to ensure that there are

20 useful operations in flight at any given time in the final VLIW schedule. However,

this is beyond the ILP inherent in most media processing kernels. Therefore, generally,

software-pipelining and/or loop unrolling are used to convert available data-parallelism

into available ILP. This allows most media processing kernels to come within 80%–90% of

the peak possible performance of such a VLIW processing cluster, if there are no branches

in the kernel.

3.1 Motivation

As soon as we introduce conditionals into the main loop of a kernel, basic software-

pipelining and loop-unrolling breaks down. These techniques rely on the assumption that

25

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 26

each stream element (and hence each iteration of the main-loop of a kernel) will execute

the exact same sequence of operations. This assumption is broken when you add a condi-

tional into the main-loop, and thus we cannot apply these techniques in the normal manner

any longer. This results in pretty poor overall performance. To illustrate the extent of the

problem, we will take the example of the geom rast kernel, introduced in Section 2.3.1.

Consider compiling this kernel to a simple processing cluster with only one unpipelined

ALU. Since this cluster can only support a single operation in flight at any time, the avail-

able ILP in the geom rast kernel will certainly ensure that almost all of the ALU issue slots

are occupied. Now, consider the speedup of the kernel when going from this simple cluster

to the one with five pipelined ALUs. For geom rast, without any further optimizations on

the beefier cluster the speedup is only 2.9×, compared to a peak possible speedup of 20×.

Clearly, there is a dire need for improving the performance on the larger cluster since the

base kernel schedule only utilizes less than 15% of the available ALU resources, whereas

up to 90% is typical of kernels without conditionals.

3.1.1 Existing Techniques: If-statements

There are existing methods for improving this performance, but they have limitations. Let’s

consider if-statements now, and we will discuss while-loops below. There are two types

of techniques for if-statements. First, there are those that extend the data-parallel tech-

niques, such as software-pipelining and loop-unrolling, to be compatible with if-statements.

Second, there are speculative techniques that improve ILP by combining blocks based on

guesses at compile time about which control-flow paths are the most common.

Data-parallel techniques

Let’s first discuss the techniques that take advantage of data-parallelism and convert it to

instruction-level parallelism. Loop-unrolling normally works by duplicating the body of

the main-loop in a kernel. If there is data-parallelism, the operations for one iteration (or

stream element) will not be data-dependent on the operations from the other iteration, and

hence the available ILP will increase. However, all the operations in the body of the main-

loop cannot be lumped together when conditionals are present, since each iteration may

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 27

execute a different subset of the operations. Only the basic blocks that deterministically

execute every iteration can be “unrolled” into a larger basic block. This is obviously not

very fruitful if most of the operations are within conditional statements. Incidentally, this

is the case for the geom rast kernel of Kernel 2.1, since only the MESH basic block is

deterministically executed every iteration.

Software pipelining also takes advantage of data-parallelism, by overlapping different

portions of the same loop body with each other in order to increase the available ILP. Each

such overlapping portion is called a stage of the pipeline. The concept can be extended

to handle conditionals as well. When a conditional block is present, say an if-then-else

statement, we have to generate two versions of the loop, one that overlaps the then-clause

with the rest of the stages in the pipeline and one that overlaps the else-clause with the rest

of the stages in the pipeline. This technique will work well for small conditionals, and is

the approach taken by several previous researchers [Ebcioglu and Nakatani, 1990; Lam,

1988; Warter et al., 1992; Stoodley and Lee, 1996]. However, the main problem with this

technique is that the number of different versions of the loop that are generated can be large.

This problem is referred to as code explosion. To see how the problem arises, consider what

happens when the number of operations in one or both clauses of the if-statement gets large.

In that case the operations from one of these clauses might span two or more software-

pipeline stages. However, for each extra stage spanned, the number of stream elements

that are concurrently executing the if-statement increases. Thus, the number of versions

of the loop that have to be scheduled multiplies for each extra stage spanned, because we

have to account for every possible simultaneous combination of path choices for the total

number of stream elements in the if-statement at any given time. For similar reasons, code

explosion also becomes a problem as the nesting of conditionals increases. Code explosion

can be problematic for stream architectures, since they have a limited amount of instruction

storage in the micro-controller, and for conventional architectures that rely on a fixed-size

cache for providing sustained instruction bandwidth.

In order to get around the issues with loop-unrolling and software-pipelining when

conditionals are present, we will instead turn to speculative techniques in order to increase

ILP.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 28

Speculative techniques: COMMON

The basic idea is to improve ALU utilization by speculatively executing operations. Spec-

ulation potentially increases the amount of ILP in a basic block by adding operations from

future basic blocks into the current basic block, assuming at compile time that the branches

delimiting the basic blocks will evaluate in a certain way. If some of the operations in the

future basic block are not dependent on results from the current basic block, they can be

scheduled in parallel with the existing operations and the ILP will increase.

We will classify the two types of techniques that use speculation as COMMON and

PREDICATION. They differ in how they decide which basic blocks to combine, and in how

they are implemented. COMMON (often referred to simply as speculation in the literature)

attempts to find the most commonly taken control-flow path through the code. All basic

blocks in this path are combined into a single block at compile time, potentially increasing

the available ILP in that block. Of course, at execution time, we wouldn’t know until the

end of the speculative block whether or not the current stream element actually wanted to

take the common path we optimized for. If the current stream element wanted to take a

different control-flow path, then certain results will have to be discarded, and perhaps the

computation may have to be restarted at an earlier point. The compiler must insert extra

code, commonly called fix-up code, for this task.

A good example of an existing compiler technology that employs speculative tech-

niques similar to COMMON is trace scheduling. Fisher introduced trace scheduling [Fisher,

1981], and later Ellis implemented it in a compiler [Ellis, 1986]. This technique develops

traces that span multiple branches and basic blocks, and optimizes each trace. Traces are

chosen for paths that are most commonly executed, and fix-up code is inserted into the

other paths to account for mispredictions. A more recent example of a compiler algorithm

that uses speculation is superblock scheduling [Hwu et al., 1993]. Two things reduce the

utility of speculation when elements start to stray from the common path. First, the spec-

ulative code was unnecessarily executed, and took up valuable ALU issue slots. Second,

executing the fix-up code can be quite expensive, since the compiler generally focuses all

effort on optimizing the common path and not the mispredict path.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 29

Speculative techniques: PREDICATION

The PREDICATION technique also executes basic blocks speculatively, however it uses a

different selection criteria to choose which blocks to speculate. First, PREDICATION spec-

ulatively executes basic blocks that are not necessarily on the most frequently executed

control-flow path.. This choice is beneficial, for instance, if the block only contains a small

number of operations, since the cost of possibly unnecessarily executing the small basic

block is usually minimal. The second difference between COMMON and PREDICATION is

that PREDICATION will speculatively execute multiple paths of control in the same block,

and then only select results from a single control-flow path at the end of the block.

In order to implement predication, special hardware ensures that only the results from

the correct control-flow path are retained. This can be implemented, for instance, by pro-

viding a boolean parameter to each operation that indicates whether or not the results from

that operation should be stored. The boolean conditions are calculated using the same

tests as the if-statements would have used. However, instead of using them as inputs to

a conditional branch instruction they are used as predicates for the operations that would

have been within the body of the if-statements. An example of a VLIW architecture that

supports predication in order to improve achieved ILP is the IA-64 architecture [Dulong,

1998]. Also, previous research has attacked the problem of automatically converting the

if-statement conditions into predicates, and has resulted in a compiler algorithm called if-

conversion [Towle, 1976; Allen et al., 1983]. A more recent compiler algorithm that uses

predication is Mahlke et al.’s hyperblock scheduling [Mahlke et al., 1992]. The formation

of a hyperblock is similar to that of a normal trace, except it also incorporates predication in

order to reduce the number of paths and exception cases. The researchers have found that

judicious use of this technique yields good speedups on architectures that support predica-

tion when many small conditional clauses are present in the main-loop.

However, while PREDICATION avoids the performance penalty due to fix-up code, it

still incurs the cost of executing code from extraneous control-flow paths. As a result, con-

ditional clauses that have many operations can be problematic. Furthermore, as the number

of control-flow paths in the kernel increase (due to nested conditionals, for example), the

utility of predication starts to decrease.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 30

So, the same problem remains for both COMMON and PREDICATION—at some point

we have to execute unnecessary operations. This might be due to mispeculation or because

we used predication to simultaneously follow multiple control-flow paths.

Combined techniques

In any case, even when you can very accurately predict the common control-flow path,

these speculative techniques only help marginally on their own. They can certainly im-

prove the ILP in a kernel main-loop, but can’t guarantee to continue increasing the ILP

until all ALU slots are busy. Instead, the most powerful existing techniques are those that

combine the data-parallel techniques with speculative ones. For example, speculation can

be combined with software-pipelining to generate a well pipelined schedule for the most

common control-flow path through the loop, and when less frequent paths are required,

control can jump out of the loop and handle the fix-up code. This tactic eliminates code-

explosion and packs the ALUs efficiently for the most common path, and is typified in the

Multiple-II Modulo Scheduling algorithm [Warter-Perez and Partamnian, 1995]. Another

possible approach is to use predication in order to remove all the conditionals in a loop,

after which the whole loop can be easily software-pipelined. This approach was first used

by the Cydra 5 compiler [Rau et al., 1989; Dehnert and Bratt, 1989]. Yet another option

is to combine speculation and loop-unrolling, by assuming that successive loop-iterations

will follow the same path. Instead of continuing to list all the possible combinations here,

we will leave further discussion to Section 3.2, where the performance of these combined

techniques will be compared to our new technique, conditional routing. We will see that

even though these combined techniques use data-parallelism to improve the achieved ILP,

they do not decrease the amount of unnecessary operations executed for extraneous control-

flow paths. In contrast, we will show that conditional routing is able to use data-parallelism

without having to execute operations from unnecessary control-flow paths.

3.1.2 Existing Techniques: While-loops

We will shift our focus now to the other type of conditional structure: a while-loop. It

turns out that for a while-loop, an effective way to improve the achieved ILP is to use

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 31

loop-unrolling to pack the operations in the deterministic blocks and then to use software-

pipelining to optimize the inner while-loop. Unfortunately, this doesn’t always help. Take

the geom rast kernel of Kernel 2.1 as an example again. First of all, only a small fraction

of the operations are in basic blocks that always execute every iteration, rendering loop-

unrolling ineffective. There are three if-statements outside the while-loop, which means

more advanced techniques will have to optimize those basic blocks. In any case, even if

we can optimize all the operations outside the while-loop well, software-pipelining will

not help the while-loop itself much because of two reasons. First, the resulting schedule is

constrained by a long loop-carried dependency. Second, the inner while-loop itself contains

an if-statement!

Another possibility for handling this loop is to increase ILP by executing the while-

loop for two stream elements at the same time. Since the two elements will not necessarily

execute the same number of loop iterations, there will be times that we execute more op-

erations than necessary. As before, this is not ideal, and we would like to come up with a

technique that packs the ALUs, but only does so with useful operations.

Let’s look at geom rast once more in order to summarize the main point of this section,

which is that the existing conditional techniques for increasing ILP are insufficient. The

best speedup we can achieve for geom rast after applying existing techniques for both if-

statements and while-loops is 1.8×.1 This brings us from 15% of peak ALU utilization to

only 26%. Clearly we still have much room for improvement. The rest of the chapter will

focus on a new technique, conditional routing, that can provide higher speedups.

3.2 Applying Conditional Routing to If-Statements

Conditional routing is a transformation that reorders the computation in a kernel containing

an if-statement by splitting it into multiple kernels. The new kernels contain no conditional

branches, which results in both good VLIW schedules and efficient execution on SIMD or-

ganizations. This section focuses on schedule improvements on a VLIW cluster for kernels

1These results were obtained by applying the existing techniques manually. Certainly, we might achieve
a slight improvement by using a compiler to apply these techniques more optimally. However, the same
improvement from using a complier can also be achieved for the new techniques we will introduce.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 32

with if-statements, and the next section, Section 3.3, will do the same for while-loops. We

will see, however, that the new kernels generated by the conditional routing optimization

buffer intermediate results in the SRF. Thus, we must consider the impact of this increased

SRF communication on overall performance, and whether reordering the work in the ker-

nels also reorders the data elements in the intermediate and final streams.

While stream processors are normally built with a set of SIMD processing clusters, we

are only considering the performance of one VLIW cluster throughout this chapter. We do

this in order to isolate the ILP benefits offered by conditional routing. Later, in Chapter 4,

we will add the extra dimension of multiple clusters controlled in SIMD. Essentially, we

are optimizing the individual unit of a cluster now, and in later chapters we will optimize

how several clusters operate together.

Figure 3.1(a) shows the original version of an example kernel, shapes, that contains

a conditional if-statement. This kernel processes a stream of shapes (lines, squares, and

circles) and executes the pseudo-code shown for each stream element, completing the pro-

cessing for one stream element before moving on to the next. In particular, for each stream

element: the operations in Compute 1() will be executed; then, only if the stream element

is a circle, the operations in Compute Circle() will be executed; and, finally, the operations

in Compute 2() will be executed, regardless of the shape of the stream element. This series

of steps is repeated for each stream element.

The result of applying the conditional routing transformation to this example is shown

in part (b) of Figure 3.1. The first thing to notice is that the code within the conditional

statement has been separated out into its own kernel. Doing this results in three new ker-

nels: compute 1, compute circle, and compute 2. Their names suggest which set of oper-

ations from the original kernel are in each new kernel. With this new set of kernels, the

operations in compute 1 are applied to every element in the input stream, before the re-

maining kernels are applied to any stream elements. Note that this is different from the

order which the original kernel executed its operations. This reordering of work is only

valid if the dependencies from element to element in the original kernel satisfy certain con-

straints. In particular, there should be no loop-carried dependencies in the original kernel

from Compute Circle() to Compute 1(), or from Compute 2() to either of the other two

functions.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 33

LOOP OVER shapes
{
 Compute_1 () ;
 IF (is_circle) {
 Compute_Circle () ;
 }
 Compute_2 () ;
}

shapes

in_data

(a)

LOOP OVER shapes
{
 Compute_1 () ;
}

TF

LOOP OVER shapes
{
 Compute_2 () ;
}

LOOP OVER shapes
{
 Compute_Circle () ;
}

F

compute_1 compute_circle compute_2

in_data

other_shapes

circles_only circles_only_2

is_circle_stream

(b)

Figure 3.1: Applying conditional routing to a kernel containing an if-statement. The origi-
nal kernel is shown in (a), while (b) shows the result of applying conditional routing.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 34

/* Original version */
shapes(in data, out data);

(a)

/* With conditional routing */
compute 1(in data, other shapes, circles only, is circle stream);
compute circle(circles only, circles only 2);
compute 2(other shapes, circles only 2 , is circle stream, out data);

(b)

Figure 3.2: Application-level code for (a) the original kernel and for (b) the new set of
kernels that use conditional routing to implement the if-statement.

The output streams of compute 1 are then passed to the remaining kernels. In order to

implement the semantics of the original conditional statement, the outputs of compute 1

are split into two streams of shapes: one contains only the circles and the other contains

only the other shapes. Furthermore, there is a third output stream, is circle stream

that keeps track of which of the two new streams each element of the original stream went

to. This third stream will be useful for combining the two split streams into one later on. At

this point, the compute circle kernel operates on the elements of the stream with only the

circles. Finally, the compute 2 kernel operates on both the stream containing the non-circles

that was generated by the first kernel, as well as on the circles output by compute circle.

All stream elements are output by compute 2 into a single stream. is circle stream is

used by compute 2 to recreate the original ordering of the stream elements. The case values

dictate which input stream the compute 2 kernel should read from to get the next input

element. With the use of this case stream, the compute 2 kernel can ensure that it inserts

results into out data in the same order as the original kernel in part (a) of Figure 3.1

would have. The application-level pseudo-code in Figure 3.2 illustrates the sequence of

kernel calls needed for conditional routing, and also shows the kernels’ inputs and outputs.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 35

Kernel 3.1 Pseudo-code for the compute 1 kernel showing the usage of the conditional
routing output primitive (“pushif”) for stream writes. Note that the stream names used
inside the kernel coincide with the names of the stream arguments in the kernel call in
Figure 3.2 only for clarity. These two sets of names can be completely different, and in
actual code the arguments and the variables in the kernel will be matched via their order
in the kernel header and their order in the kernel call, just as with a function call in the C
language.
loop over in data begin

In Shape pop
←− in data;

Shape, is circle ← Compute 1(In Shape);

/* The data structure Shape is only written to */
/* circles only if is circle is TRUE; */
/* otherwise circles only is unchanged */

circles only(is circle)
pushif
←− Shape;

other shapes(¬is circle)
pushif
←− Shape;

is circle stream push
←− is circle;

end

In order to implement the output routing for compute 1 and the input routing for com-

pute 2, we employ two conditional routing primitives. They each allow conditional ac-

cess to a stream based on a boolean case value. To illustrate how they are used, see Ker-

nel 3.1 for the pseudo-code for compute 1. In this kernel, the “pushif” operation is a condi-

tional routing primitive. Essentially, it will only append the Shape record to the stream if

is circle is true. This is implemented very easily in hardware as one atomic operation,

and hence does not require any conditional control-flow (i.e., branches) to implement. It

is scheduled like any other stream access, and thus has minimal impact on performance.2

The idea can easily be extended for the compute 2 kernel (Kernel 3.2), which requires the

second conditional routing primitive: “popif,” which only removes the head element from

a stream and only updates the target record variable if the specified boolean condition is

true. No conditional routing primitives were required by the compute circle kernel.

We have replaced data-dependent control-flow with data-dependent communication.

2Performance impact is minimal unless, as we show in Section 3.2.3, the record size of Shape is so large
that scheduling the SRF accesses, and not the arithmetic operations, limits the performance of the kernel.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 36

Kernel 3.2 Pseudo-code for the compute 2 kernel showing the usage of the conditional
routing input primitive (“popif”) for stream reads.
loop over is circle stream begin

is circle pop
←− is circle stream;

/* The data structure In Shape is */
/* only updated if the case condition */
/* is TRUE; otherwise it is unchanged. */

In Shape popif
←− circles only 2(is circle);

In Shape popif
←− other shapes(¬is circle);

Shape ← Compute 2(In Shape);

out data push
←− Shape;

end

Furthermore, since the new communication is implemented with conditional routing prim-

itives, and not with branches, there is no conditional control-flow in the kernel main-loops

anymore. Thus we can efficiently apply software-pipelining and loop-unrolling to increase

the ILP of each kernel. However, the important point about conditional routing is that it

only executes as many operations as is strictly required. On the other hand, predication

wastes valuable ALU slots because it executes multiple alternate paths anmd only keeps

the result from one path. Likewise, speculation wastes ALU slots whenever a stream ele-

ment strays from the common control-flow path. As we will see in the next section, this

difference will determine the relative performance of the techniques.

3.2.1 Performance

The previous example demonstrated the conditional routing technique and qualitatively

discussed its impact on performance. We will now quantitatively analyze the performance

of conditional routing. However, before we present the data, we will briefly discuss the

evaluation methodology and the software tools we used to obtain the data in this and future

chapters.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 37

Stream Processing Tools and Evaluation Methodology

In order to evaluate the performance of our proposed techniques on the stream processing

architecture we have been discussing so far, we will use the compilation and simulation

tools originally developed for the IMAGINE stream processor (Appendix A). All of the

IMAGINE tools are configurable via a common machine description (MD) file. This MD

file allows a developer to adjust the following properties (among others): the number of

SIMD processing clusters, the number of ALUs within a cluster, the mix of instructions

supported by each ALU, the size of the SRF, and the bandwidth between the SRF and

processing clusters. Therefore, even though the specific cluster and KEU architectures we

will evaluate in this thesis are slightly different from the IMAGINE architecture, the same

tools will seamlessly support our experiments through the use of the MD file.

Since we are focussing on kernel performance in this thesis, the results are obtained by

simulators that report performance based only on the lengths of the basic block schedules

output by the VLIW kernel scheduler. This is a reasonable approach since the performance

of kernels on a stream processor is very close to the predicted static schedule, since there are

very few variable latency operations. In particular, unpredictable DRAM access times are

avoided since kernels cannot access DRAM directly. There are two sources of inaccuracy

however, with this approach.

First, SRF accesses can stall since a stream buffer may be full or empty, but these types

of stalls do not occur often. For example, one study reports that across a set of media appli-

cations, kernel stalls accounted for less than 5% of application execution time [Ahn et al.,

2003]. The second inaccuracy is that using kernel loop performance doesn’t necessarily

translate to application performance. In general, memory and application processor bottle-

necks may impact performance. We will largely ignore these in this dissertation, however,

since our goal is to make kernel execution faster, regardless of how that kernel fits into the

greater application.

Finally since we are using the schedule lengths generated by the VLIW kernel scheduler

in order to evaluate the performance of conditionals in this thesis, we should mention what

the capabilities of the scheduler are in this regard. First of all, our scheduler can only

handle one conditional structure: a while-loop. All other conditional structures are built

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 38

out of this. For example, an if-statement is a while-loop that may execute only zero or one

times. This is slightly less efficient that supporting an if-statement directly, but does not

affect the final schedule very much, especially for compute-intensive kernels. Furthermore,

the current kernel scheduler does not automatically apply the optimizations we discuss in

this thesis. The only exceptions are that the scheduler can automatically software-pipeline

or unroll a loop—only if there are no conditionals nested in the loop. One of the goals of

this thesis, however, is to show that the techniques we introduce have enough utility that

they warrant further work to incorporate their application into a compiler.

If-Statement Synthetic Benchmark

We have used the methodology and tools we just described in order to do a more quanti-

tative analysis of the performance of conditional routing. Since we are relying on manual

conversion of code in order to implement the various conditional techniques, we have run

most of our experiments using a synthetic benchmark, synthetic if , shown in Figure 3.3.

This benchmark, and the others through the thesis, attempt to extract the basic building

blocks of conditional-statements. This allows us to run various experiments without chang-

ing large and complicated kernels by hand. The benchmark is similar in structure to the

example we studied above, and the pseudo-code is shown in Kernel 3.3. There is one

if-statement in the kernel, which splits the main loop of the kernel into three basic blocks:

INPUT (includes the operations in TEST()), BODY, and OUTPUT. The code within each of

these basic blocks is synthetically generated, and is guaranteed to satisfy certain properties.

In particular, there are no loop-carried dependencies from a basic block to any basic block

above it (i.e., from BODY to INPUT or from OUTPUT to either of the other two blocks).

Also, the length of the VLIW schedule for each basic block is limited by the critical path

formed by dependencies between the operations, and not by the number of ALUs in the

VLIW cluster (which is five for our target architecture).

The parameters of the benchmark that we will vary at first are the number of opera-

tions in the basic block BODY (Wbody), the fraction of stream elements for which BODY is

executed (p), and the amount of live state that needs to be passed to and from each basic

block (S). We will assume that branch decisions are independent from one stream element

to the next. Also, unless otherwise stated, the results assume infinitely long streams and

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 39

synthetic_if

p

(1-p)
S words

BODY

ops = WBODY

OUTPUT

ops = WOUTPUT

INPUT

ops = WINPUT

S words

Figure 3.3: Basic block diagram of the synthetic if benchmark. When illustrating basic
block diagrams for kernels in this dissertation, only the flow for the main loop will be
shown. Furthermore, the backward branch for the main loop is implicit and will not be
indicated on the diagram. Finally, boxes with two vertical lines on either side represent the
main loops of kernels, and boxes with single lines represent basic blocks. The parameters of
the benchmark that we will vary throughout this chapter are illustrated: p is the probability
that the if-statement evaluates to TRUE; WXYZ is the number of arithmetic operations in
the basic block XYZ; and S is the number of words of internal state that must be passed
from one basic block to the next.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 40

Kernel 3.3 Pseudo-code for the synthetic if benchmark. The simple kernel has a single
conditional block. The variables whose first letter is capitalized are multi-word structures.
Furthermore, all functions are in-lined into the kernel, and do not update their input param-
eters. The horizontal lines delineate basic block boundaries.
loop over in stream begin ——————————————————————-

In state pop
←− in stream;

State ← INPUT(In state);
cond ← TEST(State);

INPUT
if cond then ———————————————————————————-

State ← BODY(State); BODY
fi ———————————————————————————————–

Out state ← OUTPUT(State);

out stream push
←− Out state; OUTPUT

end ————————————————————————————————

hence only depend on the schedule produced for code in the main loop of the kernel. We

will relax this assumption later in the chapter to study the effect of non-main-loop code and

software-pipelining setup and tear-down.

Conditional Routing Performance

Conditional routing is applied to the synthetic if kernel in exactly the same way as the

example in the previous section, yielding three kernels, one for each basic block. Figure 3.4

shows the impact of conditional routing on this benchmark. The graph shows the execution

times for Wbody = 32 operations, Winput = Woutput = 17 operations, and S = 2 words.

The original kernel schedule is between 300% to 340% longer than the ideal schedule

execution time over the range p = {0 . . . 1}. The number of cycles to execute IDEAL

is generated by simply dividing the number of arithmetic operations by the number of

ALUs. ORIGINAL is so much slower than IDEAL because the schedules for the three basic

blocks are limited by the critical path of each block, since there is not enough ILP to

pack the VLIW schedules for the five-ALU cluster. Applying conditional routing improves

the schedule because the three new kernels can all be software pipelined efficiently, since

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 41

0.0 0.2 0.4 0.6 0.8 1.0
Fraction true, p

0

1

2

3

4

5
A

ve
ra

ge
 E

xe
cu

tio
n

T
im

e
pe

r
St

re
am

 E
le

m
en

t
(N

or
m

al
iz

ed
 to

 Id
ea

l E
xe

cu
tio

n
T

im
e)

Original
Conditional Routing
Ideal

Figure 3.4: Impact of conditional routing on execution time for synthetic if . The execution
times are shown normalized to IDEAL. Wbody = 32 operations; Winput = Woutput = 17
operations; S = 2 words.

none of them contain any conditional control-flow. In fact, the effective execution time per

stream element is within 16%–21% of the ideal. This relatively small overhead is due to the

extra operations that are required to implement the routing of the stream elements between

the kernels and to ensure that the order of the final output stream is correct.

3.2.2 Comparison to Other Techniques

While the previous section shows that conditional routing demonstrates good absolute per-

formance over a range of values of p, we must still compare its performance to existing

techniques. As we discussed in Section 3.1.1, the best existing techniques for handling

if-statements combine speculation and predication with data-parallel techniques, such as

loop-unrolling and software-pipelining. This section will demonstrate that conditional

routing is the only technique that works well over the whole range of values of p. Fur-

thermore, we will show that the magnitude of the advantage of conditional routing can be

even more dramatic when we consider more complicated benchmarks (synthetic if else and

synthetic case, Section 3.2.2).

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 42

0.0 0.2 0.4 0.6 0.8 1.0
Fraction true, p

0

1

2

3

4

5
A

ve
ra

ge
 E

xe
cu

tio
n

T
im

e
pe

r
St

re
am

 E
le

m
en

t
(N

or
m

al
iz

ed
 to

 Id
ea

l E
xe

cu
tio

n
T

im
e)

* * * * * * * * * * *

Original
COMMON (TRUE)
COMMON (FALSE)

* COMMON (SAME)
Predication
Conditional Routing
Ideal

Figure 3.5: Comparison of execution times for existing techniques and conditional routing
for the synthetic if kernel. The execution times are shown normalized to IDEAL. Wbody =
32 operations; Winput = Woutput = 17 operations; S = 2 words.

Performance Comparison for Different Values of p

The particular techniques we will compare against below are: COMMON (TRUE), COMMON

(FALSE), COMMON (SAME), and PREDICATION. Results for all techniques on synthetic if

are shown in Figure 3.5. The superior results for conditional routing illustrate that it does

not need to execute unnecesary operations, unlike speculation and predication.

Speculation generates a more efficient schedule for the common control-flow path, at

the expense of the less frequent paths. However, to generate enough available ILP to fully

utilize five pipelined ALUS, speculation must be combined with loop-unrolling. While this

makes the common case more efficient, it also tends to make the performance penalty in-

crease for mispeculation. This sensitivity to mispeculation is the main problem with these

techniques, and only make them useful when we can really accurately predict the control-

flow statically. We demonstrate this with three performance curves, each one optimized for

a different common case. COMMON (TRUE) is optimized for the case when most elements

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 43

execute the if-statement (cond is TRUE). COMMON (FALSE) is optimized for the case

when most elements do not enter the body of the if-statement (cond is FALSE). Finally,

COMMON (SAME) is optmized for the case when the evaluation of the if-statement doesn’t

necessarily tend to lean one way or the other on average, but when successive stream ele-

ments tend to follow the same path (i.e., the value of cond is highly correlated from one

stream element to the next).

To illustrate how to generate schedules for this technique, we have implemented COM-

MON (TRUE) as a source code transformation and shown the pseudo-code in Kernel 3.4.

The advantage of this code is that when the if-statement conditions evaluate to TRUE, per-

formance is not degraded by a poor schedule for BODY. The operations for BODY are com-

bined with operations in other basic blocks via speculation, and with operations in BODY

from other iterations via loop-unrolling. Notice that operations were chosen for speculative

execution without any regard to exceptions that could be raised. This is because we are as-

suming that our stream processor architecture does not support the trapping of exceptions

in hardware—instead exceptions must be checked manually and the code must be inserted

by the programmer. For this benchmark we assume that exceptions are not important and

do not need to be checked in software.3 So, the only restriction on executing operations

speculatively, is that the operation does not modify any persistent state; and if it does, the

modification needs to be undone in the code that handles mispredictions.

3This is actually the case for most kernels we have implemented to date, so it is a reasonable assumption
to make.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 44

Kernel 3.4 Pseudo-code for the synthetic if benchmark with speculative code inserted that
optimizes the resulting schedule for the case where the if-statement condition evaluates to
TRUE. The code is also loop-unrolled so that two iterations are executed every trip through
the loop.
loop over in stream begin

In state pop
←− in stream;

StateA1 ← INPUT(In state);
cond1 ← TEST(StateA1);

In state pop
←− in stream;

StateA2 ← INPUT(In state);
cond2 ← TEST(StateA2);

StateB1 ← BODY(StateA1) // Speculatively execute BODY()
StateB2 ← BODY(StateA2)

if ¬cond1 ∨ ¬cond2 then // Fix-up code
if ¬cond1 then StateB1 ← StateA1 fi
if ¬cond2 then StateB2 ← StateA2 fi

fi

Out state ← OUTPUT(StateB1);

out stream push
←− Out state;

Out state ← OUTPUT(StateB2);

out stream push
←− Out state;

end

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 45

The COMMON (TRUE) line in Figure 3.5 is only 18% slower than IDEAL when p = 1.0,

which is the case it is optimized for. However, as p decreases, the mispeculation penalty

increases. In particular, executing BODY when it is not necessary and executing the less

efficient fix-up code causes the performance when p = 0.0 to be even worse than the plain

unoptimized schedule (ORIGINAL). Even by p = 0.9 the performance of COMMON (TRUE)

is worse than CONDITIONAL ROUTING. Thus, this particular version of the schedule is

only useful if we know p is very close to 1. The COMMON (FALSE) curve shows similar

properties to COMMON (TRUE). It performs well in the case it is optimized for (p ≈ 0.0),

but pays a mispeculation penalty as p deviates from this value. COMMON (SAME) actually

performs well when p = 0.0 and when p = 1.0 because there is a high correlation between

successive stream elements at those points. However, the mispeculation penalty even for

COMMON (SAME) makes it perform worse than CONDITIONAL ROUTING for most values

of p.

Besides mispeculation penalties, another problem with this technique is that loop-

unrolling can lead to an increase in the size of the scheduled kernel code. For synthetic if ,

the COMMON (TRUE), COMMON (FALSE), and COMMON (SAME) schedules were 205,

258, and 171 VLIW instructions long, whereas the three kernels for CONDITIONAL ROUT-

ING totaled to 70 instructions and PREDICATION was only 19 instructions long. If the

instruction storage in the micro-controller is insufficient to hold the working set of ker-

nels in an application, then kernels have to be swapped in and out dynamically. This can

increase the demands on DRAM bandwidth and SRF capacity.

Predication makes a different trade-off. Instead of only executing the common path

and executing expensive fix-up code when another path is required, predication executes

multiple paths and then selects the correct results. The important effect of predication is

to remove conditional branches from the schedule. The result is that software-pipelining

and loop-unrolling are very effective in increasing the achieved ILP. So, this technique is

useful when the increased performance due to the improved schedule quality outweighs the

overhead of executing the operations from multiple control-flow paths. This can happen, for

instance, when the most commonly taken control-flow path contains many more operations

than the other control-flow paths.

On our target architecture, instead of augmenting every supported operation type in the

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 46

Kernel 3.5 Pseudo-code for the synthetic if kernel after optimizing it using predication.
Instead of using a full set of predicated operations, the only predicated operation used by
this version is a hardware SELECT operation.
loop over in stream begin

In state pop
←− in stream;

State ← INPUT(In state);

cond ← TEST(State);

/* Execute BODY() whether or not we actually need to */
State tmp ← BODY(State);

/* Choose the correct version of State based on cond */
State ← select(cond , State tmp, State);

Out state ← OUTPUT(State);

out stream push
←− Out state;

end

kernel ISA with the ability to be predicated, we will only provide one predicated operation,

namely the SELECT operation. This operation essentially mimics the C “?:” operator, and

is similar to the one supported in the Multiflow compiler and hardware [Lowney et al.,

1993]. Kernel 3.5 illustrates how to implement the synthetic if kernel using predication

and how the SELECT operation is used.

The absolute execution time of the predication technique does not depend on how often

each control-flow path is taken. This means that the execution time normalized to IDEAL

will deteriorate with decreasing p since IDEAL gets faster. However, notice that while the

performance at p = 0.0 is much worse than CONDITIONAL ROUTING, it is not as bad

as COMMON (TRUE). This is because predication handles choosing the right results with

SELECT operations, and it does not need to execute inefficient fix-up code to handle the

cond = TRUE case.

The conclusion from this analysis is that the performance of conditional routing is the

least affected by the value of p, since it does not execute any potentially unnecessary oper-

ations from speculative control-flow paths.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 47

0.0 0.2 0.4 0.6 0.8 1.0
Fraction true, p

0

1

2

3

4

5
A

ve
ra

ge
 E

xe
cu

tio
n

T
im

e
pe

r
St

re
am

 E
le

m
en

t
(N

or
m

al
iz

ed
 to

 Id
ea

l E
xe

cu
tio

n
T

im
e)

Original
Block-Unrolling (4x)
COMMON (TRUE)
COMMON (FALSE)
Predication
Conditional Routing
Ideal

Figure 3.6: This graph shows the results for various conditional techniques on the syn-
thetic if else benchmark. The execution times are normalized to IDEAL. Wif = Welse = 32
operations, Winput = Woutput = 17 operations, S = 2 words.

Performance Comparison for Generalized If- and Case-Statements

It turns out that the benefits of conditional routing translate from our simple if-then bench-

mark to more complicated conditional statements. In fact, the benefits of conditional

routing are even more pronounced for these cases. If-statements with an else-clause and

perhaps many elseif-clauses can appear in kernel inner loops. A similar construct, the

case-statement, can also appear. Conditional routing handles these types of statements

by allocating a separate intermediate stream and a new kernel to each clause of the if-

statement, or case of the case-statement. Figure 3.6 shows results for synthetic if else, a

micro-benchmark very similar to synthetic if , except that it also contains an else-clause.

As before, the value of p indicates how often the then-clause is taken. Also, Figure 3.7

shows results for synthetic case, which contains an eight-way case statement. The value

of p in this case indicates how often the first case is taken; the other seven are taken with

equal probability.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 48

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of elements
that take Case 1, p

0

1

2

3

4

5

6

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

pe
r

St
re

am
 E

le
m

en
t

(N
or

m
al

iz
ed

 to
 Id

ea
l E

xe
cu

tio
n

T
im

e)

Original
Block-Unrolling (4x)
COMMON (CASE 1)
Predication
Conditional Routing
Ideal

Figure 3.7: This graph shows the results for various conditional techniques on the syn-
thetic case benchmark. The execution times are normalized to IDEAL. The value of p
in this case indicates how often the first case is taken; the other seven are taken an equal
amount of times. Wcase = 32 operations, Winput = Woutput = 17 operations, S = 2 words.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 49

For both of these kernels, it is clear that conditional routing is superior for almost

all values of p. This is despite the fact that, for synthetic case, there is still almost a 2x

slowdown compared to IDEAL. This slowdown occurs because as the number of clauses

increases, the amount of overhead for doing the conditional input and output routing in-

creases. For example, since the architecture we used only supports a total of eight streams

for both the input and output, we had to insert extra kernels to do the input and output

routing in two stages for synthetic case. Also notice that PREDICATION is never better than

CONDITIONAL ROUTING for synthetic if else and is never better than either CONDITIONAL

ROUTING or COMMON for synthetic case. This is because the advantages of PREDICATION

start to diminish as the number of possible control-flow paths increase, since this increases

the number of unnecessary basic blocks that are executed for each stream element.

3.2.3 Technique Selection

So far we have only looked at a particular version of the synthetic if benchmark, and con-

cluded that conditional routing offered advantages for this kernel. However, kernels come

in all different sizes and shapes, and conditional routing may not be the best choice for

every kernel. Thus we must understand how to choose which which is best in each situa-

tion, a problem which we will refer to as technique selection. In this section we will show

that the important parameters that affect technique selection are basic block size and the

amount of live state in the kernel. Furthermore, we will generalize our knowledge of how

to optimize simple conditionals in order to optimize more complicated conditionals, such

as nested if-then-else statements. As a side note, the results and discussion in this sec-

tion is information that is critical for implementing automatic translation of control-flow

constructs in a compiler.

Block-Size

Figure 3.8 shows what happens when we vary the number operations in the basic block

BODY. The first thing to notice is that the execution times increase relative to IDEAL, as

Wbody increases, for the following: COMMON (TRUE) when p = 0.1 and for COMMON

(FALSE) when p = 0.9. This is because the mispeculation penalty and fix-up code get

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 50

increasingly expensive as Wbody increases. For a similar reason, the exceution time of

PREDICATION increases as Wbody increases for all three graphs (but at a faster rate for

lower p). However, the curves for CONDITIONAL ROUTING are all fairly constant as Wbody

increases for all values of p, again because CONDITIONAL ROUTING never speculatively

executes BODY.

The above information is interesting because it highlights the magnitude of the advan-

tage CONDITIONAL ROUTING provides at larger Wbody. However, we would like to look

at the information in a slightly different format in order to learn how to pick the best per-

forming technique for a particular size of BODY.

For the case of the synthetic if kernel, as we can see from Figure 3.8, either PREDI-

CATION or CONDITIONAL ROUTING is generally the best of the four techniques shown.4

So, for the synthetic if kernel, given any number of operations in BODY, we can choose

the optimal technique by selecting one of these two. Clearly, from what we have seen,

this selection function should require p and Wbody as inputs. Figure 3.9 shows what this

selection function looks like as a function of these two inputs. Essentially, PREDICATION

performs better when p is high and Wbody is small. In fact, when Wbody is less than roughly

eight operations, PREDICATION is always the better choice. Once the block size increases,

however, CONDITIONAL ROUTING is the optimal technique unless p ≈ 1.

While the value of Wbody is known at the time of compilation, often the value of p is

not known. The selection function in Figure 3.9 can still be used to guide the technique

selection process even in this situation. Let us look at two different scenarios, with each

one subjecting the selection decision to different optimization constraints. Assuming that

the value of p is completely random, with a uniform probability over the range 0.0 to 1.0,

here is how one would attack each scenario.

1. Real-time scenario: minimize the worst-case execution time. In this case we want to

choose the technique that minimizes the maximum possible execution time. In this

case, the maximum for both techniques we are considering occurs when p = 1.0.

Furthermore, the maximum is always less for PREDICATION, so this is the technique

one would choose in a real-time scenario where the worst-case execution time is
4The slight ripple in the curve is due to noise that stems from the fact that the kernel scheduler does not

always find the optimal schedule, but is generally anywhere within 0%–10% of the optimal.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 51

1 10 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(a) p = 0.1

1 10 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

pe
r

St
re

am
 E

le
m

en
t (

N
or

m
al

iz
ed

 to
 Id

ea
l E

xe
cu

tio
n

T
im

e)

(b) p = 0.5

COMMON (FALSE)
COMMON (TRUE)
Predication
Conditional Routing

1 10 100

 Wbody: Size of BODY (operations)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(c) p = 0.9

Figure 3.8: These graphs show the impact of varying the number of operations in the basic
block BODY on the execution time for the various if-statement techniques on the synthetic if
kernel. Winput = Woutput = 17 operations, S = 2 words.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 52

0 16 32 48 64 80 96 112 128
IF-block size (ALU operations)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

Conditional Routing

Predication

Figure 3.9: This graph illustrates the technique selection function for synthetic if , based
on two input parameters: p and Wbody. The graph can be interpreted as a phase diagram,
where each region corresponds to a technique. The extent of the region indicates the range
of parameter values for which the corresponding technique is optimal. The slight ripple
in the curve is not due to anything systemic, and the magnitude of the anomaly is within
the noise. The noise stems from the fact that the kernel scheduler does not always find
the optimal schedule, but is generally anywhere within 0%–10% of the optimal. Winput =
Woutput = 17 operations; S = 2 words.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 53

important.

2. No external constraints. A reasonable thing to do in this situation would be to try to

reduce the selection error over the range of p, where the selection error for a value of

p is measured as the difference between the execution time of the technique selected

and the execution time of the optimal technique for that value of p. Because the

execution times of both PREDICATION and CONDITIONAL ROUTING are linear with

respect to p, it is easy to show that the correct thing to do is to make a selection

assuming that p = 0.5. Thus for Wbody < 16 operations, PREDICATION is the

better choice in this situation, while CONDITIONAL ROUTING makes more sense

when Wbody > 16 operations.

We’ve only looked at the size of the BODY block so far, and not of INPUT and OUTPUT.

It turns out that Winput and Woutput only affect the difference in performance between CON-

DITIONAL ROUTING and PREDICATION and not the crossover point at which we would

select one over the other. As Winput and Woutput decrease, we would expect the difference

between PREDICATION and CONDITIONAL ROUTING to increase. This is because the ra-

tio of Wbody/(Winput + Woutput) determines how much the unnecessary operations impact

the performance of PREDICATION. Therefore, as the ratio increases, so does the potential

performance benefit that CONDITIONAL ROUTING offers at low values of p. However, the-

oretically, Winput and Woutput shouldn’t affect the crossover point between PREDICATION

and CONDITIONAL ROUTING at a given Wbody, except when the block sizes get smaller

than a few operations.5 This is because the crossover point only depends on the number of

unnecessary operations executed by PREDICATION, and hence only on Wbody.

Impact of SRF Communication

The other parameter that affects technique selection is the number of words of state that are

live at the input and output of the BODY block. This is because the amount of live state de-

termines the amount of extra SRF communication that is necessary with the CONDITIONAL

ROUTING technique. It turns out that, CONDITIONAL ROUTING is affected more adversely

5When the block sizes are too small, it is not very efficient to schedule them as separate kernels. This
would cause PREDICATION to be more attractive.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 54

0 16 32 48 64 80 96 112 128
IF-block size (ALU operations)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

S = 2 words
S = 4 words
S = 8 words

Figure 3.10: This graph shows how the crossover point between where CONDITIONAL

ROUTING is better and where PREDICATION is better changes with the amount of live
state in the kernel. (PREDICATION is better to the left of the line.) This happens because
the performance of CONDITIONAL ROUTING deteriorates faster than the performance of
PREDICATION as S increases. For reference, Figure 3.3 shows how value of S affects
the kernel structure. This graph uses the same values of kernel parameters as Figure 3.9.
Wbody = 32 operations, Winput = Woutput = 17 operations.

by increasing S than either COMMON or PREDICATION. Figure 3.10 shows clearly the im-

pact of this on technique selection, since PREDICATION becomes the better technique for

a larger fraction of kernels compared to CONDITIONAL ROUTING as S increases. So, in

order to complete our study of technique selection, we must delve deeper into the impact of

S on performance. To this end, Figure 3.11 shows the results of increasing the amount of

SRF communication required on the normalized execution time of the various techniques

on the synthetic if kernel. Notice that we increased the number of operations in each basic

block for this graph in order to vary S over a wide range of values.

The normalized execution time of each method increases as the amount of live state

increases in the benchmark (the ideal execution time is unaffected by the size of the live

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 55

0 8 16 24 32 40 48
0.0

0.5

1.0

1.5

2.0

2.5

(a) p = 0.1

0 8 16 24 32 40 48
0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

pe
r

St
re

am
 E

le
m

en
t (

N
or

m
al

iz
ed

 to
 Id

ea
l E

xe
cu

tio
n

T
im

e)

(b) p = 0.5

COMMON (FALSE)
Predication
Conditional Routing

0 8 16 24 32 40 48

S: Live state (words)

0.0

0.5

1.0

1.5

2.0

2.5

(c) p = 0.9

Figure 3.11: These graphs show the impact of increasing the amount of live state, S, in the
synthetic if kernel on the execution time for the various if-statement techniques. Wbody =
128 operations, Winput = Woutput = 65 operations.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 56

state in the kernel). The execution time of COMMON (FALSE) increases slightly because

of a property of the synthetic benchmark that causes the length of the dependency chain

to slightly increase when S is increased. The normalized execution time of PREDICATION

increases because of the extra SELECT operations that are added into the schedule. The

normalized execution time of CONDITIONAL ROUTING, however, increases at a faster rate

than the other methods with increasing S. This is because there is an additive effect of the

increase in execution time of all three kernels.

• The schedule lengths for the input and body kernels increase because the scheduler

we used inserts pass-through instructions to communicate the result of an ALU op-

eration to the SRF output stream. These are necessary because the ALU operations

that produce the different fields of the output record don’t always get scheduled in

the same order as the data needs to be output to the stream (fields within a record

are output to streams in a strict order that all kernels obey in order to exchange data

from one to another). Since there is no buffering specifically for the output streams,

the record fields are stored in the ALU register files as they are produced. Even-

tually, each pass-through operation will require an ALU instruction slot in order to

communicate the record field from its register file to the output stream buffer.

• The schedule length for the output kernel increases with increasing live state because

it needs to add SELECT operations, which are needed to implement the “popif”

operator, used in the compute 2 kernel (Kernel 3.2). These SELECT operations are

essentially used to control whether the target variable is updated or not with the result

of the “popif” operator.

These cumulative effect of the increase in all three kernels causes the performance of

CONDITIONAL ROUTING to deteriorate faster with larger live state sizes than the other

techniques. For this kernel, though, CONDITIONAL ROUTING is still the best technique for

p = 0.5 up to a record size of 32 words. However, as block sizes get smaller, especially for

the INPUT and OUTPUT basic blocks, the effect of the SRF communication will be even

larger and CONDITIONAL ROUTING will be more adversely affected.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 57

Complex Conditional Structures

Unlike the simple if-statements we have been considering up until now, more complex

conditional statements need not necessarily be implemented entirely using only one tech-

nique. The observation we will make is that each clause of a complex if-statement or

case-statement can be written as an independent simple if-statement of the type in the syn-

thetic if kernel. We can then independently apply the best algorithm for each new simple

if-statement. As we have come to conclude, there are three main factors in deciding what

type of optimization to apply to a simple if-statement: p, Wbody, and S. Each clause of the

more complex conditional statement may have a different characteristic triplet of values,

and hence may require a different technique for best results.

We can even extend this idea to nested if-statements. Nested if-statements can be flat-

tened so that each clause of every level of every if-statement can be re-written as a simple

top-level if-statement, whose entry condition is a union of all the conditions for all the

if-statements it was originally embedded within, and whose execution frequency (p) is the

product of the execution frequencies of all the if-statements it was embedded within. These

new if-statements can be optimized as we just discussed above.

However, while reducing the more complex situations to a series of simple if-statements

seems like a viable solution that could improve performance, it seems like we might be

throwing away some information about the structure of the control-flow. More sophisti-

cated algorithms might not consider each clause absolutely independently, and might capi-

talize on global information to perhaps optimize the method selection further. For example,

if the same subset of live state is needed by two different clauses, it might make sense to

group them together regardless of their individual values of p and Wbody. We leave it as an

open compiler problem to develop the best set of heuristics for automatically compiling a

set of complex if-statements with arbitrary nesting.

Technique Selection Summary

Speculative techniques (COMMON and PREDICATION) improve VLIW schedules by filling

ALU slots with operations that are potentially unecessary. Therefore, larger conditional

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 58

block sizes affect these techniques detrimentally. However, on the other hand CONDI-

TIONAL ROUTING uses data communication in order to organize data such that we can

process them in a more regular fashion. Hence, CONDITIONAL ROUTING was affected

detrimentally by larger amounts of live state within a kernel, which corresponds to a larger

amount of necessary SRF communication.

We also discussed options for implementing more complicated conditional structures,

and made the observation that different techniques may have to be used in conjunction for

optimal results. We presented a simple technique, which flattens all nested conditionals,

and handles all resulting top-level conditional clauses independently. We have left the

investigation of more sophisticated technique selection algorithms for future work.

3.2.4 SRF Allocation

So far, our discussions have only only focused on kernel-level issues. One application-level

issue that is important is the increased demand on SRF capacity required by conditional

routing, due to the intermediate streams it generates when splitting a kernel. The impact of

this extra demand manifests itself in several ways. First, it may require a smaller overall

batch size, which in turn can increase the overhead due to short stream effects, as discussed

earlier. Second, in more extreme cases, the stream scheduler may have to insert stream

spills to off-chip DRAM and stream restores in order to make room for the intermediate

streams. The impact of these spills and restores on performance depends on how memory

limited the overall application is. Third, these streams can place extra burden on other

processor resources, such as the stream descriptor register file, which can generate extra

stream instructions to make sure the necessary information is cached at any given time.

These extra instructions can burden the application processor with extra work as well. The

performance impact of these effects will not be studied further in this thesis, and must be

evaluated on a case by case basis.

There have been a couple of proposed ideas to reduce the capacity necessary for inter-

mediate streams by alleviating fragmentation in the SRF. In the worst case, the intermediate

stream for each path will require its own storage for up to the number of elements in the

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 59

input stream. Thus, in the worst case an if-then-else statement will require 2N words of in-

termediate storage if the input stream contains N words, which is a fragmentation overhead

of 2x. One possible optimization would be to allow a method for storing more than one

stream in a contiguous area of the SRF, if the maximum of the sum of the stream lengths

is known. One way to implement this would be to store one stream starting at one end of

the SRF buffer, and to store the other stream starting at the opposite end of the buffer and

advancing the storage pointer in reverse order. For more than two streams, one could inter-

leave streams at the granularity of a SRF block, assuming the necessary hardware support

was available for keeping track of the next block in any particular logical stream. For n

streams that sum to a total of N words, this would require N + n(B/C − 1) words instead

of nN words, where B is the block size of the SRF and C is the number of clusters. With a

more flexible SRF access method, such as an in-lane indexable-SRF [Jayasena et al., 2004],

we could forgo the extra hardware for keeping track of the next-block and instead manage

the necessary free list in software.

3.2.5 Conditional Routing Summary for If-Statements

Existing methods for achieving close to the peak efficiency of a VLIW cluster for kernels

with if-statements rely mainly on speculatively executing operations. These techniques

work well when the number of operations that need to be speculatively executed are small,

or when the predictions of the control-flow path are accurate. Conditional routing helps fill

the void by enabling a stream processing VLIW cluster to reach close to the peak ILP even

when these conditions don’t hold. Conditional routing accomplishes this by displaying

good levels of efficiency over a wide range of values of p and Wbody. However, we did see

that the performance of conditional routing is sensitive to the number of words of live state

that are transferred into and out of the conditional statements.

Furthermore, blindly applying conditional routing isn’t always the best choice. We

studied how technique selection is affected by different parameters. Large basic-block

sizes deteriorate the performance of speculative techniques. Large amounts of SRF com-

munication for intermediate streams deteriorate conditional routing performance. Hence,

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 60

kernels that stand to gain the most from CONDITIONAL ROUTING are those with condi-

tional blocks that require a lot of processing, and at the same time have relatively small

record sizes.

Table 3.1 Summary of parameter sensitivities for if-statement conditional techniques. The
first three apply to simple if-statement clauses, while the last applies to more complex
statements, such as if-then-else and case-statements.

CONDITIONAL

ROUTING
PREDICATION COMMON

p
Good all round, even
when unpredictable

Good when high
Good when
predictable

Wbody Better when large Good when small
Not affected very

much, if p is
predicted correctly

S Bad when large
Slightly worse when

large
Slightly worse when

large

Number of
elsif-

clauses (or
cases)

Small degradation
when high, due to

extra routing

Large degradation
when high, due to

increased number of
unnecessary

control-flow paths

Large degradation
when high, due to
potentially greater
unpredictability

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 61

3.3 Applying Conditional Routing to While-Loops

This section will demonstrate how conditional routing can be applied to while-loops, in

addition to the if-statements we discussed above. There are two methods of applying

conditional routing to while-loops: expanded conditional routing and flattened conditional

routing. These techniques solve the main problem, which is increasing ILP even when the

while-loop contains a long loop-carried dependency. In addition, conditional routing also

works well even when each while-loop is only executed for a small number of iterations,

or when the number of iterations is highly variable from one stream element to the next.

A simple example of a kernel with a while-loop is shown in Figure 3.12. This type of

kernel might be necessary, for instance, if a numerical algorithm required iterating until a

certain accuracy or precision was achieved, and the number of iterations required to do so

was potentially different for each stream element. In this example, the while loop executes

at least once per stream element, but as we will show later, this is not a necessary condi-

tion. Also, just as we did for the original example kernel for if-statements, we will assume

that there are no loop-carried dependencies from COMPUTE ITERATIVE() to COM-

PUTE 1() or from COMPUTE 2() to either COMPUTE 1() or COMPUTE ITERATIVE(),

although often there is a loop-carried dependency within the processing of a stream element

from one iteration to the next of the inner while-loop.

The first problem with scheduling kernels like the one in Figure 3.12, is that often the

inner while-loop schedule is limited by a long critical-path that updates the loop-carried

state in the while-loop, preventing effective software-pipelining or loop-unrolling. Further-

more, since a while-loop may execute many times per stream element, a higher fraction

of the execution time can potentially be devoted to the while-loop basic block, making

its poor schedule impact performance even more than it did for an if-statement. Second,

even if the while-loop software-pipelines well, if it only executes a small number of itera-

tions per stream element, the overhead of priming the software pipeline will impact overall

performance.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 62

done = COMPUTE_ITERATIVE ()

done == TRUE

COMPUTE_1 ()

COMPUTE_2 ()

iterative

done == FALSE

Figure 3.12: An example of a kernel, iterative, that contains a while-loop.

3.3.1 Expanded Conditional Routing

As we did with if-statements, conditional routing can be used to reorder the work in a kernel

containing a while-loop. The goal is to schedule the while-loop basic block as a separate

kernel which can be scheduled efficiently. However, unlike the case with an if-statement,

the schedule for a new kernel that is formed by simply transplanting the while-loop will

still be limited by the loop-carried dependency in the while-loop. In order to overcome

this problem, we can think of expanding the while-loop as a series of if-statements and

then apply conditional routing to each of these if-statements. Figure 3.13 illustrates this

concept.

If we converted the control-flow diagram shown in the figure using conditional routing,

each of the basic blocks (i.e., each box in the figure) would become a separate kernel call,

and each kernel would finish processing all stream elements before the execution of the

next kernel began. This is shown explicitly in Figure 3.14, which lists the application-level

pseudo-code for implementing expanded conditional routing on this example. At the outset,

the compute 1 kernel would process all the input stream elements, generating a stream of

intermediate results. Then, the compute iterative kernel executes the first iteration of the

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 63

COMPUTE_ITERATIVE ()

COMPUTE_ITERATIVE ()

COMPUTE_ITERATIVE ()

done == FALSE

COMPUTE_1 ()

COMPUTE_2 ()

iterative

d
o

n
e

==
 T

R
U

E

done == FALSE

Figure 3.13: Expanding the control-flow diagram for a kernel with a while-loop using a
series of if-statements.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 64

/* Original: iterative(in data, out data); */
compute 1(in data, not done);
done data.clear();
while not done.length () > 0 do

compute iterative(not done, tmp not done, new done data);
done data.append (new done data);
not done = tmp not done;

od
compute 2(done data, out data);

Figure 3.14: Application-level pseudo-code for expanded conditional routing.

while-loop on this intermediate stream, generating two new streams: one with elements

that needed to execute only one iteration of the while-loop (the new done data stream), and

another with the remaining stream elements. The same compute iterative kernel is invoked

with the latter stream as input, this time executing the second iteration of the while-loop.

It generates two streams itself. The first is appended to done data, and the other is left as

input for the next kernel invocation. This process is continued until the stream element(s)

that require the maximum number of iterations have been processed, and all the computed

outputs are in the done data stream.

There are two performance advantages with this new set of kernels over the original.

First, since the compute iterative kernel only executes one iteration of the while-loop on

each stream element, the loop-carried dependencies in the original while-loop will not

limit the kernel from being software-pipelined. And second, for cases where most stream

elements require only a small number of iterations, the overhead to prime the software-

pipelines will not be incurred for each element.

On the other hand, there are potential drawbacks as well. For example, one detail we

glossed over in the above explanation is that all the loop-carried state in the while-loop

must be output for each stream element, after each iteration. As we saw in our discussion

of if-statements, if this is a large amount of state, it could increase the SRF communica-

tion to a level where it significantly decreases the performance advantages of conditional

routing. The extra overhead from this state could also reduce the strip-size in the SRF, in-

creasing short-stream effects in the overall application. Another drawback depends on the

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 65

distribution of the number of loop iterations required for the stream elements. Consider the

case when there is only a small minority of stream elements that require a large number of

iterations, while most stream elements only require a much smaller number of iterations.

Then short-stream effects arise from calling the compute iterative kernel many times on

only a small number of elements. Finally, notice that the ordering of the final out data

stream is not necessarily the same as the ordering of the output stream from the original

kernel. This could be handled by performing a sort on the out data stream, but this will

eat away at the performance benefits offered by the method.

In summary, the expanded conditional routing technique is an extreme point in terms

of SRF capacity and bandwidth requirements: loop state is written to the SRF on every

iteration for every stream element. Furthermore, expanded conditional routing places de-

mands at the application-level, which may degrade overall performance. For example, this

technique can significantly increase the number of stream-level instructions. Also, a while-

loop is now introduced into the application-level code, making scheduling of stream-level

instructions more challenging. Note, however, that the results presented in this chapter were

obtained using kernel performance only, and hence will not include these application-level

effects. In any case, the next section will discuss a different algorithm, flattened conditional

routing, that makes more moderate demands on the SRF and application processor.

3.3.2 Flattened Conditional Routing

To recap, the two main problems with while-loops are that loop-carried dependencies

within the loop limit its schedule quality, and small numbers of iterations per stream el-

ement increase the overhead due to software-pipelining the loop even if the loop-carried

dependency is insignificant. Another way to address the problem, while avoiding the ex-

treme SRF requirements of expanded conditional routing, is to use a combination of con-

ditional routing and loop-flattening [von Hanxleden and Kennedy, 1992].

We begin by splitting the original kernel into three separate ones. As usual, the in-

termediate results produced by the compute 1 kernel will be stored to the SRF, and the

intermediate results after executing all the while-loops will be stored to the SRF as well.

However, unlike expanded conditional routing, we will not buffer intermediate loop state

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 66

between while-loop iterations in the SRF—instead we will process the entire while-loop

for each stream element until completion before starting to process the next element.

The structure of the main-loop in the new compute iterative kernel will look like the

original kernel, except the code before and after the while-loop will only contain stream

input and output operations (see Figure 3.15a). Applying loop-flattening to this kernel

hoists the code in the while-loop, i.e., the code in COMPUTE ITERATIVE(), into the

main-loop. The result of loop-flattening is shown in Figure 3.15b. Essentially, the code in

COMPUTE ITERATIVE() is run every iteration of the main loop. However, the code that

reads in new data and writes out the results are embedded in if-statements and only execute

if the current stream element has completed the requisite number of while-loop iterations.

Assuming done is initialized correctly in the preamble to the kernel loop (the preamble is

not shown in the figure), and that the loop condition is modified to wait for the last stream

element and the last while-loop iteration for that element, then this new singly-nested kernel

loop is functionally exactly the same as the original doubly-nested loop.

Of course, we eliminated one control-flow construct, namely the while-loop, and intro-

duced two others, namely the if-statements. Fortunately, the only code in the if-statements

are stream accesses, so we can easily replace the entire if-statements with conditional rout-

ing primitives. This results in a kernel with a main-loop with only one basic-block, and is

illustrated in Kernel 3.6. Since the first iteration of a new stream element will follow just

as seamlessly as another iteration for the same stream element, there is no need to pay a

penalty every time we start processing a new stream element. Thus, even if stream elements

only execute a small number of iterations, the performance of flattened conditional routing

will not significantly degrade. Finally, notice, that unlike expanded conditional routing, the

output of the final kernel, out data, will be in the same order as the original kernel.

Now, we can try to software-pipeline or loop-unroll the kernel normally. Unfortunately,

however, in general the software-pipelining and loop-unrolling optimization will not always

work well on the new kernel. This is because any loop-carried dependencies between each

iteration that might limit the ILP are still problematic. Not only are these loop-carried

dependencies from the original while-loop still present, but we have introduced a new one

in the form of the done variable. For this reason, we will introduce state-unrolling to

increase the achieved ILP in spite of any loop-carried dependencies.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 67

done = COMPUTE_ITERATIVE ()

done == TRUE

READ_INPUT ()

WRITE_OUTPUT ()

compute_iterative

done == FALSE

done = COMPUTE_ITERATIVE ()

READ_INPUT ()

WRITE_OUTPUT ()

compute_iterative

done == TRUE

done == FALSE
CHECK_DONE ()

done == FALSE

done == TRUE

(a) (b)

Figure 3.15: Control-flow diagram for the compute iterative kernel (a) before and (b) after
applying loop-flattening.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 68

Kernel 3.6 Pseudo-code for the compute iterative kernel after applying loop-flattening.
In general, the data structure that is input from the SRF will not be the same as the data
structure that is written out to the SRF. They are the same here for simplicity.

done ← true;
loop while ¬in stream.empty() ∨ ¬done begin

State popif
←− in stream(done);

State, done ← COMPUTE ITERATIVE(State);

out stream(done)
pushif
←− State;

end

3.3.3 State-Unrolling

While software-pipelining and loop-unrolling try to execute multiple consecutive iterations

of the while-loop for the same stream element in parallel, applying the state-unrolling trans-

formation to a flattened loop causes multiple loop iterations for different stream elements

to be scheduled together. A good way to think about this is that there are two virtual pro-

cessors, each with their own private loop-state. When one of the virtual processors, say

VP1, finishes the last iteration for its stream element, it sets its private done variable. Then,

only the results for VP1 will be written to the SRF and new inputs read in. The situation

is illustrated in Figure 3.16. In contrast to expanded conditional routing, which had to

keep alive the intermediate loop state for every stream element, state-unrolling only needs

to keep track of the live state for a small fixed number of elements. So, while expanded

conditional routing needed to buffer the loop state in the SRF, state-unrolling can keep the

live state at any point in time in the LRFs.

In order to implement this scenario on a single cluster, we duplicate the loop code and

loop state for each virtual processor. Since we are assuming there are no dependencies

from one basic block to a previous basic block in the original kernel, then each new copy

of the loop code will be independent and can be scheduled together to increase the avail-

able instruction parallelism. The final version of the code for the compute iterative kernel

after applying loop-flattening and state-unrolling is shown in Kernel 3.7. Notice that some

extra logic is necessary for handling the slightly more complex control. In particular, the

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 69

a b… h g f e d c b a
Iteration 1 of 1 for element ‘b’
Iteration 1 of 3 for element ‘a’

VP0 VP1

a c… h g f e d c
Iteration 1 of 2 for element ‘c’
Iteration 2 of 3 for element ‘a’

VP0 VP1

a c… h g f e d
Iteration 2 of 2 for element ‘c’
Iteration 3 of 3 for element ‘a’

VP0 VP1

d e… h g f e d
Iteration 1 of 4 for element ‘e’
Iteration 1 of 2 for element ‘d’

VP0 VP1

Input Stream

Input Stream

Input Stream

Input Stream

Figure 3.16: Two virtual processors executing the same while-loop, but on different stream
elements. This scenario is implemented on a single cluster using loop-flattening and state-
unrolling, where the latter duplicates the loop code and loop state for each virtual processor.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 70

Kernel 3.7 Pseudo-code for the compute iterative kernel after applying loop-flattening and
state-unrolling (for a total of two sets of loop states).

done 1 ← true;
done 2 ← true;
loop while ¬in stream.empty() ∨ ¬done 1 ∨ ¬done 2 begin
/* Virtual Processor 1 */
waiting for VP2 ← done 1 ∧ in stream.empty();

State 1 popif
←− in stream(done 1 ∧ ¬waiting for VP2);

State 1 , done 1 ← COMPUTE ITERATIVE(State 1);
done 1 ← select(waiting for VP2 , true, done 1);

out stream(done 1 ∧ ¬waiting for VP2)
pushif
←− State 1 ;

/* Virtual Processor 2 */
waiting for VP1 ← done 2 ∧ in stream.empty();

State 2 popif
←− in stream(done 2 ∧ ¬waiting for VP1);

State 2 , done 2 ← COMPUTE ITERATIVE(State 2);
done 2 ← select(waiting for VP1 , true, done 2);

out stream(done 2 ∧ ¬waiting for VP1)
pushif
←− State 2 ;

end

logic for the waiting for VPn variables is new. Notice that we could have implemented

some of this new control logic using if-statements. For example, the subset of operations

within COMPUTE ITERATIVE() to calculate done 1 do not need to be executed if wait-

ing for VP2 is true. However, since this conditional only arises rarely, namely for the last

few iterations of the kernel, and since we cannot apply conditional routing anyway because

of dependencies within the main loop, we chose to implement the logic using predication.

Notice that using flattened conditional routing with state unrolling will produce a final

output that is ordered differently than the output of the original kernel. We will discuss how

to handle this in a future section.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 71

Kernel 3.8 Pseudo-code for the synthetic while benchmark. The kernel contains a while-
loop whose body will execute zero or more times for each stream element. Also, the kernel
will generate an output every iteration of the while-loop to a second output stream.

loop over in stream begin ——————————————————————-
In state pop

←− in stream;
State, done ← INPUT(In state);

INPUT: 17 arithmetic operations
while ¬done do ——————————————————————————

State, done ← BODY(State);

out stream2 push
←− State BODY: 68 arithmetic operations

od ———————————————————————————————–

Out state ← OUTPUT(State);

out stream push
←− Out state; OUTPUT: 17 arithmetic operations

end ————————————————————————————————

3.3.4 Performance

As we did with our optimizations for if-statements, we will use a synthetic benchmark

to evaluate the performance of the techniques we have introduced. Kernel 3.8 lists the

pseudo-code for the synthetic while kernel. It is a little more general in its structure as

compared to the example kernel, iterative, that we have been studying so far. In particular,

the while-loop in synthetic while may be executed zero times for a stream element, which

will introduce extra control logic into the kernel. Additionally, there is a stream output

generated every iteration of the while-loop as well as at the completion of the while-loop.

Finally, we have made the kernel configurable so that we can change the length of the

critical path in the basic block BODY without changing the number of operations in that

basic block.

The speedups of the conditional routing techniques on the synthetic while benchmark

are shown in Figure 3.17. The speedups are compared to the first existing technique we

will consider: the SWP technique. To apply this technique, we first unrolled the main-loop

four times in order to efficiently schedule the operations in INPUT and OUTPUT. Then we

software-pipelined each of the four inner while-loops. For all graphs, the IDEAL results

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 72

show what the speedup would be if there were no software-pipelining priming overheads,

and if the operations could be perfectly scheduled (i.e., ignoring any loop-carried depen-

dencies).

Impact of the Length of Loop-Carried Dependencies

The difference between the top and bottom set of graphs is the length of the longest loop-

carried dependency in the while-loop. The version of the loop that produced the top set of

graphs has a relatively short loop-carried dependency chain, enabling software-pipelining

to achieve near optimal schedules. The other version of the kernel, however, has a rel-

atively long loop-carried dependency that renders software-pipelining and loop-unrolling

optimizations fairly ineffective. As a comparison, simply software-pipelining the loop with

the short dependency chain produced a schedule that was 15 cycles long, whereas the loop

with the longer loop-carried dependency was scheduled in 33 cycles despite having the ex-

act same number of arithmetic operations. Thus, for each method, the increase in speedup,

going from a graph on top to the graph directly below it, is due to the ability of that method

to increase the achieved ILP in spite of a long dependency. Expanded conditional routing

(EXCR) and flattened conditional routing with state unrolling (FLCRSU) are particularly

good at this. Without state-unrolling however, simple flattened conditional routing (FLCR)

doesn’t do anything special to circumvent the long dependency—in fact, it adds a small

number of cycles to the dependency chain in order to calculate the loop condition, done.

The benefit of using state-unrolling in addition to flattened conditional routing, therefore,

can be clearly seen by the increased speedup of FLCRSU over FLCR on the bottom set of

graphs.

Impact of the Number of While-Loop Iterations Executed

The difference between the left set of graphs and the right set of graphs is the number of

iterations of the while-loop each stream element executes. For SWP, the primary overhead

is the cost of priming the software-pipeline for each stream element. This effect however,

becomes insignificant as the number of iterations increase, as is demonstrated by the reduc-

tion in speedup of IDEAL from roughly 3.5× for 2 iterations per stream element, to roughly

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 73

EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

ov
er

 S
W

P
2 Iterations,

Short loop-carried dependency

(a)
EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Short loop-carried dependency

(b)

EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

ov
er

 S
W

P

2 Iterations,
Long loop-carried dependency

(c)
EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Long loop-carried dependency

(d)

Figure 3.17: These four graphs show the speedup of the conditional routing techniques on
the synthetic while benchmark compared to the SWP technique, which simply software-
pipelines the while-loop. The speedups are shown for the cases where there are an average
of 2 (a,c) and 20 (b,d) iterations of the while-loop per stream element (none of the elements
required zero iterations). The graphs also show results for two different while-loops. In the
top two graphs (a,b), the software-pipelined schedule for the while-loop is resource limited
(i.e., it has enough ILP to keep all the ALUs busy) because the loop has only relatively short
loop-carried dependency chains. In the bottom two (c,d) graphs the software-pipelined
schedule is limited by a long loop-carried dependency chain. EXCR = Expanded Condi-
tional Routing; FLCR = Flattened Conditional Routing; FLCRSU = Flattened Conditional
Routing with State Unrolling (4 virtual processors).

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 74

2.5× for 20 iterations per stream element. Notice that the speedup of all three conditional

routing methods increase when going from a graph on the right to the left, indicating that

they are all effective at reducing the impact of this overhead.

Impact of the Distribution of Loop-Iterations Over Stream Elements

Another important factor that affects the performance of these while-loop methods is the

distribution of loop-iterations over the stream elements. For example, Figure 3.18 shows

four different cases, all with the same average number of iterations per stream element. The

previous graphs shown in Figure 3.17 used an input set with no variance, i.e., an input set

whose distribution was similar to Figure 3.18(a). The graph in Figure 3.19, however, shows

the impact of changing the distribution of iterations on the performance of the techniques

we have been discussing (using the same version of the kernel as in Figure 3.17(d)). For

reference, we used a batch size of 128 for the results shown in the graph. The speedups,

as before, are compared to the SWP technique. Note that the performance of SWP, FLCR,

and IDEAL will be the same for each dataset since they are unaffected by variations in the

number of iterations per stream element.

The first set of speedups is shown for the other existing while-loop technique we men-

tioned in Section 3.1.2. We will refer to the technique as simple state-unrolling (SSU),

in order to highlight the similarity to our state-unrolling technique. SSU applies state-

unrolling without flattening the loop first. This technique simply makes each basic block,

even the while-loop basic block, operate on four stream elements at once. This technique

will achieve good ILP because of the parallelism between the four element being pro-

cessed concurrently. Extra control code is added to the inner while-loop to make sure the

loop runs as many times as is necessary to complete the maximum number of iterations

that is required by the four elements the loop is currently processing. However, unlike

FLCRSU, the loop must execute until all virtual processors have finished processing their

element. Thus, variance in the number of iterations per stream element can cause perfor-

mance to degrade sharply. Comparing SSU to FLCRSU is interesting because it shows the

overhead of loop-flattening when there is no variance in the input data set, and when the

variance increases, the comparison shows the advantage of using loop-flattening to avoid

synchronizing at the end of every set of elements the virtual processors operate on.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 75

0 20 40
loop iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty
 d

en
si

ty

(a) Zero-Variance PDF
Standard Deviation = 0.0 iterations

1.0

0 20 40
loop iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(b) Uniform PDF
Standard Deviation = 5.5 iterations

0 20 40 100
loop iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty
 d

en
si

ty

(c) Spread PDF
Standard Deviation = 11.1 iterations

0 20 40 600
loop iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(d) Bimodal PDF
Standard Deviation = 38.1 iterations

Figure 3.18: These probability density functions correspond to the four sets of inputs used
to study the impact of varying the number of iterations of the while-loop that each stream
element executes. In each case, the average number of iterations per stream element is 20
iterations; the variability, however, is different for each case.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 76

SSU EXCR FLCR FLCRSU IDEAL0.5

1.0

1.5

2.0

2.5

3.0
Sp

ee
du

p
ov

er
 S

W
P

Zero-Variance
Uniform
Spread
Bimodal

Figure 3.19: This graph shows the performance of various implementations of syn-
thetic while for four different distributions of iterations over the input stream elements
(as shown in Figure 3.18). As before, the speedups are shown compared to ORIGINAL.
Batch sizes of 128 stream elements were used as input to the various versions of the ker-
nels. EXCR = Expanded Conditional Routing; FLCR = Flattened Conditional Routing;
FLCRSU = Flattened Conditional Routing with State Unrolling (4 virtual processors); SSU
= Simple State-Unrolling (i.e., applying state-unrolling without flattening the loop first).

The EXCR method has a significant degradation in performance for the “Bimodal”

case. This is because it is affected by an overhead that increases with the maximum number

of iterations required by any stream element in the input dataset. Since the kernel has to

be called once for each iteration of the while-loop, the overhead of priming the software-

pipeline for the main-loop of the kernel can be large if only a small number of elements

require a large number iterations. The FLCRSU technique, on the other hand, suffers from

fewer overheads with increasing variance in the distribution. The only overhead it incurs

is due to the fact that all virtual processors may not finish processing their last element at

exactly the same time. Note that the overheads for EXCR and FLCRSU that are due to

variation in the input set will increase with decreasing batch size, and vice versa.

Performance Summary for Applying Conditional Routing to While-Loops

EXCR on average comes within 87% of the not-to-be-exceeded speedup of IDEAL, and

FLCRSU comes within 76%, for the four cases shown in Figure 3.17. When we consider

varying distributions of loop-iterations over different stream elements, then we see that

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 77

FLCRSU is more impervious to the variance. The performance of SSU is the most suscep-

tible on the other hand, and the performance of EXCR is also quite susceptible to variance.

For this benchmark, FLCRSU seems to have the best all-round performance.

For the experiments in this section, four virtual processors were used to perform the

state-unrolling. We empirically determined that four was the least we could use while still

providing enough ILP to pack the ALU slots efficiently. In general, when selecting the

proper number of unrollings to use there is a balance between better packing of the VLIW

schedule and increased susceptibility to variance in the dataset. If specific information on

the run-time distribution of loop-iterations is known at compile-time, it may be profitable to

limit the amount of state-unrolling in favor of more consistent performance across a variety

of dataset distributions. Furthermore, the amount of state-unrolling can affect the final

code-size of the the kernels, and for that reason we may want to limit the amount of state-

unrolling as well. For synthetic while, the code-sizes for the different techniques were:

SWP, 184 VLIW instructions; SSU, 118 VLIW instructions; EXCR, 50 VLIW instructions;

FLCR, 76 VLIW instructions; FLCRSU, 108 VLIW instructions. The methods with state-

unrolling (SSU and FLCRSU) had a high number of instructions. SWP also had a high

number of instructions because the INPUT and OUTPUT basic blocks which come before

and after the while-loop, needed to be unrolled. Only EXCR didn’t require any unrolling,

and as a result it was compiled to less than half the number of VLIW instructions as any of

the other methods.

3.3.5 Ordering

As we noted earlier in the chapter, both the EXCR and FLCRSU techniques reorder the

final outputs of the kernel. Therefore, for applications that require that the elements in

the stream must be kept in a strict order between kernels, we must consider the added

overhead of reordering elements in addition to the raw kernel performance. Thus, EXCR

and FLCRSU are only useful when either the order that the output stream is produced is

not dictated by application requirements, or when the cost of restoring the order of the

output stream elements is small enough that it does not negate the performance benefits

of the optimizations. As an example, the graphics pipeline application that the geom rast

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 78

kernel is part of, does not require that the output elements generated by geom rast be kept

in any strict order. On the other hand, compression and decompression algorithms require

strict ordering of elements at certain points in the application pipeline—hence if a kernel

used these techniques we might have to reorder the output elements at some point after the

kernel.

This section will explore the different options for reordering the output elements such

that the stream is in the same order as if we ran the kernel with no optimizations. We will

account for sorting the elements in both out stream and out stream2 from the syn-

thetic while kernel. We will first analyze an implemention that executes a full sort on the

resulting output streams. We will show that in most cases this reduces the overall perfor-

mance of the conditional routing techniques considerably. Therefore, in order to combat

this performance degradation, we will consider some alternate methods for restoring order.

Preliminaries

Before we delve into the performance of the different sorting techniques, we need to handle

a couple of preliminaries. Firstly, there are two output streams in the synthetic while kernel,

each one producing a different number of elements. One of the streams, out stream,

will contain a single output per input stream element. The second stream, out stream2,

will contain an output per iteration of the while-loop, and hence multiple ouputs per input-

stream element. We shall call the former a per-element output stream, and the latter a

per-iteration output stream.

Secondly, in order to sort the elements, one field of each data record must be able to

act as a key in the sort; if not, then an extra field has to be added by the kernel with the

while-loop. One simple way to do that is to keep a counter that is incremented and inserted

into each output record. Since we may not know the total number of per-iteration outputs

a stream element will generate a priori, we may need to sort per-iteration output streams

using two keys: the position of the original stream element within the input stream, and the

position of this per-iteration output relative to all the outputs generated only by the original

stream element.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 79

Full sort technique

The simplest way to maintain ordering is to run the output stream through another kernel,

or series of kernels, that will perform a full sort on the output data. Two factors determine

how much impact the cost of the sort will have on performance: 1) the number of while-

loop iterations per stream element; and, 2) whether we have to sort the per-element output

stream and/or the per-iteration output stream. The effect of these two factors on the overall

performance of synthetic while is shown in Figure 3.20. We used a batch size of 128 to

generate the graph. In order to sort the output streams, we used a merge-sort algorithm.

We should note that the cost of the sort varies as O(N log N), and hence will get relatively

more expensive as the batch size increases.

When each stream element executes an average of only two iterations of the while-loop,

the cost of sorting out stream reduces the speedup of the conditional routing techniques

to roughly 1.4x–1.5x (Figure 3.20(a)). However, with 20 iterations per stream element

(Figure 3.20(b)), the cost of the sort is amortized over a larger number of while-loop itera-

tions, and the speedups increase for EXCR and FLCRSU to close to the speedups achieved

without the sort. If we have to sort out stream2 as well, EXCR and FLCRSU are

slower than even SWP, regardless of the number of iterations per stream element (Fig-

ure 3.20(c,d)). FLCR however, is unaffected by the ordering constraint since it does not

reorder the contents of either output stream.

Split-merge technique

It turns out that if we employ state-unrolling, however, we can avoid the prohibitive cost

of a full sort by taking advantage of our knowledge of the specific pattern of reordering

that takes place. A possible technique for restoring order without a full sort is to provide

separate output streams for each virtual processor, and then merge these streams after the

kernel ends. This technique, which we shall call split-merge, works well because each

virtual processor produces an output stream which will be in order. Thus, recreating the

original ordering simply requires only lg Pv merge passes through the streams, where Pv

is the number of virtual processors that were used. This works for both the per-element

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 80

EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

ov
er

 S
W

P

2 Iterations,
Sort per-Element stream only

(a)

EXCR FLCR FLCRSU IDEAL

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Sort per-Element stream only

(b)

EXCR FLCR FLCRSU IDEAL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

ov
er

 S
W

P

2 Iterations,
Sort per-Element stream and

per-Iteration stream

(c)

EXCR FLCR FLCRSU IDEAL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Sort per-Element stream and

per-Iteration stream

(d)

Figure 3.20: These graphs show the impact of having to perform a brute-force sort on
the output stream(s) of the synthetic while kernel in order to maintain ordering. We used
a batch size of 128 elements, and a merge-sort algorithm to implement the sort. EXCR
= Expanded Conditional Routing; FLCR = Flattened Conditional Routing; FLCRSU =
Flattened Conditional Routing with State Unrolling (4 virtual processors).

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 81

and per-iteration output streams. The performance of the split-merge technique for state-

unrolled kernels is shown in Figure 3.21 for FLCRSU. The graphs show that the split-merge

technique improves performance over the full sort, but still leaves a lot of room for im-

provement compared to IDEAL. Additionally, it still causes FLCRSU to have a slowdown

compared to the SWP technique for the 20-iteration case with per-iteration stream sort-

ing. Remember, our kernel was state-unrolled four times. Less unrollings will require less

overhead for the split-merge technique, and more unrollings will require more overhead.

Indexable-SRF (ISRF) technique

By providing more flexible addressing in the SRF, we can improve the performance of

FLCRSU even further, and unlike split-merge, also improve the performance of EXCR.

Instead of the strictly sequential stream access provided by our baseline SRF, an in-lane

indexable-SRF [Jayasena et al., 2004] allows random access into streams, at the cost of

potentially lower access bandwidth. In other words, with an indexable-SRF we can ac-

cess streams using an arbitrary pointer into the stream, instead of being limited to the

push or pop accessors. Implementing ordering for a per-element stream is simple with

an indexable-SRF. Since we can know exactly the position of every output within a per-

element output stream, we can simply write each output element to its correct location

once we have finished processing it. This works for both EXCR and FLCRSU.

The indexable-SRF can be used in the same way to store the elements of a per-iteration

output stream directly to their sorted location, as well. However, this only works if the

number of iterations each stream element requires is known at the start of the loop. This

may not be the case for many interesting kernels, however. We can still deal with this

harder case, but it will take a couple of extra passes and keeping track of some extra state.

In particular, instead of storing the outputs directly to their correct location, a stream is

generated that records the number of per-iteration elements produced by each input stream

element once it completes the while-loop. We will refer to this stream as count stream.

We use the indexable capability so that count stream is in order at the end of the kernel,

just as we would do with the per-element outputs. After completing the original kernel and

generating count stream, a running sum is calculated by a second kernel and stored

to sum stream. This new stream gives us the location in the final per-iteration output

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 82

NONE
FULL

IS
RF

NONE
FULL

SM
IS

RF

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

2 Iterations,
Sort per-Element stream only

(a)

EXCR FLCRSU IDEAL

NONE
FULL

IS
RF

NONE
FULL

SM
IS

RF

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Sort per-Element stream only

(b)

EXCR FLCRSU IDEAL

NONE
FULL

IS
RF

NONE
FULL

SM
IS

RF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

2 Iterations,
Sort per-Element stream and

per-Iteration stream

(c)
EXCR FLCRSU IDEAL

NONE
FULL

IS
RF

NONE
FULL

SM
IS

RF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20 Iterations,
Sort per-Element stream and

per-Iteration stream

(d)
EXCR FLCRSU IDEAL

Figure 3.21: These graphs show the results of having to maintain ordering for syn-
thetic while, but using more efficient techniques than a brute-force sort. EXCR = Expanded
Conditional Routing; FLCR = Flattened Conditional Routing; FLCRSU = Flattened Con-
ditional Routing with State Unrolling (4 virtual processors); NONE = no sorting of any
output streams; FULL = output stream(s) are sorted using a brute-force full sort; SM =
uses split-merge technique for sorting; ISRF = uses an indexable-SRF for sorting. Note
that the ISRF results for (c,d) are only valid if we can determine the number of iterations
required for each stream element before we start the while-loop.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 83

stream of the first output of each input stream element. Then sorting simply requires a pass

over all the per-iteration outputs, using the first key as a lookup into sum stream. A third

kernel then adds the value of the second key to the value read from sum stream in order

to obtain the final position of the element in the output stream.

According to the graphs in Figure 3.21, if we have an indexable-SRF available on the

architecture, then the speedups achieved are quite close to the speedups without sorts for

both EXCR and FLCRSU across the board. Of course, the main disadvantage is the cost of

the extra hardware. Jayasena, et al. reported that this type of SRF indexing increased the

area of the SRF by 11%, and the area of an entire eight-cluster processor by 1.5%. Their

study, however, found that most of the additional area was not due to the extra control logic,

but instead for the extra addressing logic required for accessing individual words instead of

entire four-word lines from each SRF bank. So, if we wanted to reduce the area overhead

of an indexable SRF, we could instead read a whole line even when only a single word is

requested. This would eliminate almost all the extra addressing logic, but would reduce the

achieved random access bandwidth of the SRF significantly. We used this lower bandwidth

version for our results.

Sorting via the memory system

A final possibility is to sort streams through the memory system. The performance impact

of doing this varies from application to application, depending on how burdened the mem-

ory system is to begin with, and depending on how well the application can tolerate the

latency of sending the stream to memory and having to potentially load it again for the next

kernel. We do not analyze the performance of this sorting technique here.

3.3.6 Conditional Routing Summary for While-Loops

SWP is an efficient way to implement while-loops within the kernel main loop only if both

of these conditions hold true: the number of iterations per stream element is not small,

and the loop schedule is not limited by a long loop-carried dependency. Thus, if either

or both of these conditions do not hold, then the techniques we have introduced in this

chapter are important in order to improve the ILP of the kernel schedules. In particular, we

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 84

introduced expanded conditional routing (EXCR), flattened conditional routing (FLCR),

and state-unrolling (FLCRSU). We found that the best performing options were EXCR

and FLCRSU. However, both expanded conditional routing and state-unrolling produce

an output stream that can be in a different order than the original version of the loop.

We showed that if ordering is a necessary constraint imposed by the application, then the

addition of an indexable-SRF can eliminate much of the overhead of restoring the proper

order of the output stream.

A summary of all the techniques studied in this chapter is provided in Table 3.2.

C
H

A
PTE

R
3.

V
L

IW
SC

H
E

D
U

LIN
G

W
IT

H
C

O
N

D
IT

IO
N

A
L

R
O

U
T

IN
G

85

Table
3.2

Sum
m

ary
of

w
hile-loop

conditionaltechniques.
E

ach
colum

n
is

dedicated
to

a
particular

property
of

the
kernel

or
application,

and
each

row
indicates

how
a

technique
handles

each
property.

Small number of
iterations per

stream element

Long loop-carried
dependency in

while-loop

High variance in
number of

iterations per
stream element

Ordering of the output
stream must be

preserved

SWP

Overhead for
priming

software-
pipeline

Decreases
performance

Does not affect
performance

No additional
processing is

necessary

SSU
No extra
overhead

Does not significantly
affect performance

Poor
performance on

“Bimodal”
distribution

Can use full sort,
split-merge, or
indexable-SRF

EXCR
No extra
overhead

Does not significantly
affect performance

Poor
performance on

“Bimodal”
distribution

Can use full sort, or
indexable-SRF

FLCR
No extra
overhead

Decreases
performance

Does not affect
performance

No additional
processing is

necessary

FLCRSU
No extra
overhead

Does not significantly
affect performance

Performance is
fairly resistant to

variance

Can use full sort,
split-merge, or
indexable-SRF

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 86

3.4 RENDER Performance

In order to study the effects of the new techniques in this and future chapters on a real

kernel and application, instead of just on synthetic benchmarks, we will use the RENDER

application. RENDER generates the first frame of the SPECviewperf 6.1.1 advanced visu-

alizer benchmark with lighting and blending disabled and all textures point-sampled from

a 512×512 texture map. The image was rendered into a 720×720 framebuffer window.

In particular, we will focus on the first kernel in this application, geom rast, which we in-

troduced earlier in Section 2.3.1. Figure 3.22 shows a stream and kernel diagram of the

entire RENDER application, and illustrates how the geom rast kernel fits into the applica-

tion. We will give performance results for the entire application, but will not discuss the

details here; instead we will only go into depth for the geom rast kernel in order to keep the

discussion focused. More details on the entire RENDER application can be found in other

references [Owens et al., 2000; 2002; Owens, 2002]. Also, while the RENDER application

does contain conditionals in kernels other than geom rast [Kapasi et al., 2000], we will not

be experimenting with them in this thesis.

In order to zoom in on the geom rast kernel, a graphical view of its control-flow is

shown in Figure 3.23. This basic block diagram also indicates the values of some of the

parameters of the kernel that we have identified are important in deciding which condi-

tional technique is the most appropriate and efficient for each conditional statement. These

include the average probability that each if-statement is taken or the average number of

iterations that the while-loop executes, the number of operations in each basic block, and

the number of words of live state that are transferred into and out of the basic blocks. Note,

we have not indicated those pieces of live state, such as constants, that are invariant across

all iterations of the main-loop. Also, the average branch percentages and loop-iteration

numbers are only for the particular scene which we rendered; a different scene or different

viewpoint of the same scene would have different values.

In order to assess the impact of conditional routing on the VLIW schedule of geom rast,

in Table 3.3 we show the execution times of for ORIGINAL, COMMON, PREDICATION,

and CONDITIONAL ROUTING. The COMMON implementation optimizes the kernel for

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 87

Geometry &
Rasterization

hash

zcompare

compact

merge-
sort

Figure 3.22: Polygon rendering application stream and kernel diagram. We will be apply-
ing the conditional techniques we have studied in this dissertation to the first kernel, which
performs the geometry and rasterization work for the pipeline. We will refer to this kernel
as geom rast.

the branch statistics shown in Figure 3.23 using a combination of speculation and loop-

unrolling, and improves the kernel execution time by 1.8×. We manually searched the

space for the best basic blocks to speculatively execute, and the amount of unrolling to

use. PREDICATION is a combination of predication and software-pipelining. It eliminates

all the conditional branches from within the kernel schedule, by speculatively executing

all control flow paths (for while-loops, this amounts to using loop-flattening). However,

with so many nested conditionals, and especially with a while-loop nested so deeply, this

technique is bound to be slow. This is because even though it can efficiently software-

pipeline the resulting schedule, there are so many unnecessary operations that are executing

every loop iteration. As a result, for this kernel, PREDICATION actually does worse than

the original, unoptimized kernel. The CONDITIONAL ROUTING result uses a combination

of predication, conditional routing, and software-pipelining to gain the best speedup of

2.3×. For CONDITIONAL ROUTING, we implemented conditional routing and predication

to the various conditional blocks using the technique selection guidelines we outlined in

the Section 3.2.3. The while-loop was implemented with FLCRSU.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 88

geom_rast

p = 0.41
S = 21 words

mesh

92 ops

clip

69 ops

viewport

74 ops

rasterprep

113 ops

p = 1.00
S = 21 words

p = 0.47
S = 29 words

updatexy

84 ops

S = 20 words

genfrag

85 ops

check_frags_left

p = 0.77
S = 15 words

5.9
iterations

S = 0 words

check_stream_empty

Figure 3.23: Basic block diagram for the geom rast kernel. The basic block names corre-
spond to those used in Kernel 2.1. Indicated on the diagram are the number of arithmetic
operations in each basic block, the amount of live state that is transferred along each control
flow path, as well as the probability that each control flow path is taken.

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 89

Table 3.3 Performance of conditional techniques for the geom rast kernel and the entire
RENDER application on a VLIW processing cluster.

geom rast RENDER

Method Cycles Speedup Cycles Speedup

ORIGINAL 14,707,868 1.0 19,781,539 1.0

COMMON 8,204,487 1.8 13,278,158 1.5

PREDICATION 19,654,392 0.75 24,728,063 0.8

CONDITIONAL ROUTING 6,499,555 2.3 11,601,738 1.7

The difference in relative execution times are less, however, when you take into ac-

count all of the kernels in the application, since there are not as many conditionals that

stand to benefit from conditional routing. For the entire application, the speedup due to

CONDITIONAL ROUTING is 1.7×. Interestingly, the input batch size we could handle with

CONDITIONAL ROUTING didn’t decrease, despite the additional intermediate streams that

need to be allocated in the SRF. This is because the SRF allocation was almost entirely

determined by the number of fragments, which are generated by geom rast and used by

all the following kernels in RENDER. Thus the smaller intermediate streams didn’t impact

the overall possible batch size. Also, code size for the different versions of the kernels

matches what we would expect. ORIGINAL (320 instructions) and COMMON (371 instruc-

tions) are large, while PREDICATION (157 instructions) and CONDITIONAL ROUTING (221

instructions) are smaller. This is because ORIGINAL has very poor ILP which lengthens

the schedule and resulting code size. COMMON increases ILP via speculation and more

loop-unrolling. This fills in some of the empty ALU slots, but at the expense of larger

code size because of extra fix-up code and extra iterations of unrolling. PREDICATION uses

software-pipelining only and hence has the smallest code size. CONDITIONAL ROUTING

uses software-pipelining as well as selective use of loop-unrolling, and as a result has a

code size in the middle of the range.

In summary, CONDITIONAL ROUTING achieves the best schedule on our five-ALU

VLIW cluster out of all the techniques. It is instructive to circle back to the result we

presented as motivation at the start of the chapter. We showed that existing techniques

CHAPTER 3. VLIW SCHEDULING WITH CONDITIONAL ROUTING 90

were only able to achieve about 26% of peak utilization of the ALUs in our VLIW process-

ing cluster. Conditional routing increased this utilization for geom rast to 33%. While this

represents a 1.25× speedup, clearly there is still room for much improvement in order to

reach the 80%–90% utilization that kernels without conditionals achieve. We will consider

suggest possibilities for further improvements in Chapter 6.

3.5 Dynamic Techniques

It is worthwhile to contrast our treatment of static conditional techniques in this chapter

with dynamic techniques. There have been a myriad of dynamic techniques proposed, and

many are commonplace in general purpose processors today. The most important ones fall

under the category of branch prediction. The idea behind branch prediction is essentially

to predict which way a branch will evaluate to allow the instructions from the predicted

control-flow path to be scheduled before the branch direction is known for sure. Good

introductions to dynamic branch prediction are provided in [Smith, 1981] and [McFarling

and Hennessy, 1986]. Some more recent schemes are described in [Yeh and Patt, 1991],
[Eden and Mudge, 1998], and [Seznec et al., 2002]. These techniques are useful only

when combined with dynamic instruction issue techniques. However, the combination

of dynamic issue logic (as opposed to static VLIW) and dynamic branch predictors can

add a significant amount of area and power to a design. The reason that general purpose

processors need to use these techniques is because they are targetting applications that do

not have the data-parallel nature that media processing applications have. Our goal in this

chapter has been to avoid these options in an effort to keep the stream processing cluster

small and cool.

Chapter 4

Improving SIMD Performance with
Conditional Routing

The previous chapter explored the benefits of conditional routing for for a single VLIW

processing cluster. In this chapter we will extend our analysis to explore the performance

of kernels with conditional statements running on stream processors with multiple clusters,

under SIMD control. Earlier, in Section 2.2.2, we motivated the use of the SIMD execu-

tion model via three main points: 1) SIMD hardware is more efficient; 2) the SIMD model

is simpler; and 3) many applications are regular enough that the restrictions made by the

SIMD model do not affect their performance. However, we alluded to the fact that kernels

with conditionals suffer large efficiency losses on SIMD machines. In this chapter we will

study how to remedy this. In particular, we will show that the COMMON technique performs

quite poorly on SIMD machines, but that PREDICATION and CONDITIONAL ROUTING both

are unaffected by the restricted SIMD model of execution. However, when combined with

the advantages in VLIW efficiency from last chapter, especially as compared to PREDICA-

TION, CONDITIONAL ROUTING has a clear advantage over the other techniques on a SIMD

machine.

91

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 92

Table 4.1 1 to 8 cluster speedups existing conditional techniques for the geom rast kernel
on a stream processor with SIMD clusters.

Method 1 to 8 Cluster Speedup

ORIGINAL 2.5

COMMON 3.3

PREDICATION 4.2

4.1 Motivation

The problem with executing conditionals on SIMD machines is that every cluster has to

follow the union of the control-flow paths required by each cluster. This inefficiency limits

the possible speedup of an eight-cluster SIMD machine over a single-cluster machine on

kernels with conditionals. We would expect this speedup for a data-parallel kernel such

as geom rast to be close to 8×. However, the actual speedups, shown in Table 4.1, are

much lower in reality. ORIGINAL only improves by 2.5×. COMMON improves by only

3.3×, which is less than half of the maximum possible. Statistical differences between the

required processing for the element in each cluster causes the performance to be so poor for

these two methods. Essentially, the amount of time to process each element is lengthened

by the time spent executing unnecessary basic-blocks that other clusters need to execute.

On the other hand, PREDICATION completely removes all the branches in the kernel so

that all clusters always follow the same control-flow path through the main loop. This is

perfectly suited for SIMD execution. The performance of PREDICATION is still degraded

though, unfortunately, because each element will require a different number of iterations

after loop-flattening, and hence some clusters will finish their entire batch before others.

However, there are more elements over which to average out these statistical differences in

PREDICATION compared to the other techniques—i.e., over an entire batch instead over a

single element. So, if we assume the required control-flow is independent from one element

to the next, by the law of large numbers we would expect the impact on performance to be

smaller for PREDICATION. While the independence assumption is not exactly accurate for

the input dataset we used for the geom rast kernel, the speedup of PREDICATION is still

higher, at 4.2×. As a side-note, we will attack the problem of reducing the impact of the

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 93

Table 4.2 Comparison of existing conditional techniques for the geom rast kernel on a
stream processor with eight SIMD clusters.

Method Speedup over ORIGINAL

COMMON 2.4

PREDICATION 1.3

load-imbalance across an entire batch of elements in the next chapter.

While the SIMD speedup is better for PREDICATION, if we remember back to the last

chapter, we showed that the efficiency on each individual VLIW processing cluster for

geom rast is quite low for PREDICATION. In fact it was lower than that of ORIGINAL. Thus

the absolute performance on an eight cluster machine is actually still almost two times

slower for PREDICATION than for COMMON, as is seen in Table 4.2. In summary, we

are in the unfortunate position that COMMON can produce reasonably well-packed VLIW

schedules (within 25% of the best achieved by CONDITIONAL ROUTING for geom rast), but

does not offer good efficiency on multiple SIMD clusters. On the other hand, PREDICATION

offers better global SIMD speedup when adding more clusters, but this is not very useful

because the base performance on each individual VLIW cluster is poor. This motivates us

to find a better a solution; we will show in the rest of the chapter that conditional routing is

such a solution.

4.2 Performance

This section will analyze the performance of our if-statement and while-loop benchmarks

(synthetic if and synthetic while) with a two-step approach. For each benchmark, we will

first compare the speedup of each technique when going from a single-cluster machine to

an eight-cluster SIMD machine. This will show that conditional routing is not adversely

affected by the restricted (lock-step) execution model of a SIMD machine. Second, we will

compare the overall performance of conditional routing on an eight-cluster SIMD machine.

This comparison will roll-up the impact of efficient ALU packing on each VLIW cluster

and the impact of good performance with SIMD control into one number.

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 94

4.2.1 If-Statements

As we saw earlier with geom rast, the performance of both the ORIGINAL and COMMON

techniques on synthetic if scales dismally from a single cluster to eight SIMD clusters

(Figure 4.1). The scaling for the COMMON techniques is particularly bad because mis-

peculation causing every cluster to execute the fix-up code, not just the original offending

cluster. The penalty is bad for synthetic if , but it gets even worse on synthetic case. In

fact, the COMMON technique only has a speedup of around 4× for almost all values of p on

synthetic case.

Predication has been the time-honored method to counter the problem exhibited by

ORIGINAL and COMMON. Its use in this regard dates back to the Solomon machine [Slot-

nick et al., 1962]. Another notable machine with hardware predication support is the Cydra

5 supercomputer [Rau et al., 1989], although they called it directed-dataflow execution.

Also, almost all vector processors since the Cray-1 [Russell, 1978] support predication via

masked operations for the same purpose. The superior performance of PREDICATION is

indicated by an 8× speedup across the board for both benchmarks.

CONDITIONAL ROUTING however does almost as well. Small performance degrada-

tions are caused by load-imbalance across the entire dataset, since each cluster may not

have the exact same number of elements that need to execute the body of the if-statement

due to statistical variations. However, these slight performance degradations become in-

significant when we compare overall performance in Figure 4.2.

As expected, the performance of ORIGINAL and the variants of COMMON are quite

poor on the eight-cluster SIMD machine. We can see why PREDICATION has been the

technique of choice on SIMD processors. For example, compare the graphs Figure 3.7 and

Figure 4.2(b). PREDICATION is the worst technique for synthetic case on a single-cluster

machine. However, the performance of the other techniques has decreased sufficiently (as

indicated in Figure 4.1) that PREDICATION is now the superior existing technique for a

large fraction of the values of p on the same kernel. However, CONDITIONAL ROUTING is

able to combine good VLIW schedules with good SIMD scaling, and as a result executes

as fast or faster than PREDICATION for almost all values of p on both graphs. For these

benchmarks, CONDITIONAL ROUTING is clearly a solution to the problem we introduced

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 95

0.0 0.2 0.4 0.6 0.8 1.0

Fraction true, p

0
1
2
3
4
5
6
7
8
9

10

1
to

 8
 C

lu
st

er
 S

pe
ed

up

(a) synthetic_if

Original
COMMON (TRUE)
COMMON (FALSE)
Predication
Conditional Routing

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of elements
that take Case 1, p

0
1
2
3
4
5
6
7
8
9

10

(b) synthetic_case

Original
COMMON (CASE 1)
Predication
Conditional Routing

Figure 4.1: Impact of SIMD execution model on if-statement techniques. The graph shows
the speedup going from a single-cluster to an eight-cluster SIMD machine. The elements
within an input batch were independently and randomly generated (while satisfying the
constraint on the value of p). Wbody = Wcase = 32 operations; Winput = Woutput = 17
operations; S = 2 words.

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 96

0.0 0.2 0.4 0.6 0.8 1.0

Fraction true, p

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

pe
r

St
re

am
 E

le
m

en
N

or
m

al
iz

ed
 to

 ID
E

A
L

(a) synthetic_if

Original
COMMON (TRUE)
COMMON (FALSE)
Predication
Conditional Routing
Ideal

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of elements
that take Case 1, p

0
1
2
3
4
5
6
7
8
9

10
11

(b) synthetic_case

Original
COMMON (CASE 1)
Predication
Conditional Routing
Ideal

Figure 4.2: Comparison of if-statement techniques on an eight-cluster SIMD machine. The
elements within a batch were independently and randomly chosen (while satisfying the
constraint on the value of p). Wbody = Wcase = 32 operations; Winput = Woutput = 17
operations; S = 2 words.

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 97

SWP EXCR FL FLCRSU
0

1

2

3

4

5

6

7

8

9

10

1
to

 8
 C

lu
st

er
 S

pe
ed

up

Zero-Variance
Uniform
Spread
Bimodal

Figure 4.3: Impact of SIMD execution model on while-loop techniques. The graph shows
the speedup going from a single-cluster to an eight-cluster SIMD machine. The version
of the kernel used is the same as in Figure 3.17(d), while the four probability distributions
used are the same as in Figure 3.18.

at the beginning of the chapter.

4.2.2 While-Loops

The SIMD execution model degrades the performance of while-loops because all clusters

must execute a while-loop as long as any cluster still has not exited the loop. With the

SWP technique, which we discussed in Section 3.3, every stream element will require early

clusters to idle while the cluster with the largest element finishes. As shown in Figure 4.3,

this limits the speedup of SWP to only about 2× for the “Bimodal” distribution.

In order to get around this problem, previous researchers have employed the loop-

flattening (FL) technique. As we discussed earlier, loop-flattening allows many SIMD

processors to execute while-loops on their local set of data without requiring a synchroniza-

tion between all the processors at the beginning and end of every element. Loop-flattening

achieves its goal by transforming a nested loop into a single loop that allows every proces-

sor (or cluster) to execute the same code, regardless of whether they were starting the first

iteration for a new element or whether they were starting another iteration for an old stream

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 98

element. Statistical variations are then averaged over the whole batch, which reduces the

amount of idling for clusters. The benefits of loop-flattening were first demonstrated in
[Sherryl and Pappas, 1990]. They applied it to the calculation of the Mandlebrot Set on a

MasPar MP-1 processor. Van Hanxleden, et al. generalized this technique, and also coined

the term “loop-flattening” [von Hanxleden and Kennedy, 1992]. On our benchmark, the

benefits of loop-flattening are clear since it achieves a speedup of at least 7× on all dis-

tributions except “Bimodal,” on which it achieves a speedup of 5×. Our new techniques

(EXCR and FLCRSU) also achieve similar speedups, indicating that they are well suited

for the SIMD execution model as well.

However, a clear difference between the original loop-flattening technique and our new

techniques arises when we look at the combined effect of VLIW efficiency and SIMD

efficiency. In Figure 4.4, the EXCR and FLCRSU techniques, as expected, combine their

superior single cluster performance and superior SIMD scaling to achieve speedups roughly

between 2×–5×. Simple loop-flattening (FL), however, never achieves a speedup of more

than 2×. By comparing the results for simple loop-flattening (FL) and flattened conditional

routing with state-unrolling (FLCRSU) in the two graphs in Figure 4.3 and Figure 4.4,

we can see that loop-flattening provides FLCRSU with good SIMD performance, while

our additions of conditional routing and state-unrolling provide it with efficient VLIW

schedules.

4.3 RENDER Performance

If we circle back to the geom rast kernel, Table 4.3 combines the results for existing tech-

niques which we showed at the start of the chapter, and also adds the new results for CON-

DITIONAL ROUTING. We can see from the table that CONDITIONAL ROUTING does as well

as PREDICATION in terms of speedup from one to eight clusters. Also, from last chapter

(Section 3.4) we remember that CONDITIONAL ROUTING did better than COMMON on a

single VLIW cluster. Therefore, conditional routing is our solution to combining the best of

both worlds, providing a 1.6× speedup over the next best existing technique on geom rast

on an eight-cluster SIMD machine.

There is still much room for improvement, though, since CONDITIONAL ROUTING is

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 99

EXCR FL FLCRSU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

ov
er

 S
W

P

Zero-Variance
Uniform
Spread
Bimodal

Figure 4.4: Comparison of if-statement techniques on an eight-cluster SIMD machine.
The version of the kernel used is the same as in Figure 3.17(d), while the four probability
distributions used are the same as in Figure 3.18.

still only achieving half the maximum speedup possible with eight clusters instead of one.

As we will see in the next chapter, the one to eight cluster speedups of both geom rast

and the entire RENDER application can be improved by distributing work across all the

clusters so as to evenly balance the load.

4.3.1 MIMD Comparison

Earlier we motivated the use for a SIMD execution model because it is more hardware effi-

cient and because it is less complex. However we noted that MIMD organizations did have

a performance advantage, since SIMD control flow limited performance: either clusters

were forced to all follow the union of all required control-flow paths, or extra operations

diluted ALU efficiency if we used predication instead. It turns out that, for geom rast, a

MIMD solution would have a speedup of 36% over the best existing algorithm (COMMON

in Table 4.3).1

1The kernel immediately following geom rast requires synchronization between all the clusters, so we
assumed that all clusters would synchronize at the end of geom rast. Hence the MIMD version still suf-
fered from load-imbalance since some clusters finished executing geom rast on their local batch before other
clusters. This is why its one-to-eight cluster speedup is only 4.5× instead of 8×.

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 100

Table 4.3 Performance of conditional techniques for the geom rast kernel and the entire
RENDER application on a stream processor with eight clusters.

1 to 8 Cluster Normalized

Speedup Comparison

Method
Machine

type
geom rast RENDER geom rast RENDER

ORIGINAL SIMD 2.5 2.7 1.0 1.0

COMMON SIMD 3.3 3.4 2.4 1.9

PREDICATION SIMD 4.2 4.1 1.3 1.2

CONDITIONAL

ROUTING
SIMD 4.2 3.8 3.8 2.4

COMMON MIMD 4.5 4.0 3.2 2.2

CONDITIONAL

ROUTING
MIMD 4.2 3.8 3.8 2.4

However, we now have a new alternative: conditional routing. It is interesting to see that

CONDITIONAL ROUTING actually performs better than the best existing MIMD solution.

Since CONDITIONAL ROUTING has the same performance on both the SIMD and MIMD

machines, there is actually no benefit anymore to adding the MIMD hardware, for this

application at least.

4.4 Summary

The restricted control-flow of the SIMD execution model affects any conditional techniques

that do not remove all branch instructions from the loop body, such as speculation for

if-statements, and software-pipelining for while-loops. While predication does eliminate

branches, we have previously shown that it can be inefficient when the block size is large

or when p is small. Conditional routing was the only technique that performed well under

SIMD control without suffering the overhead of executing extraneous control-flow paths.

However, conditionals still cause a problem for every technique we have discussed on ma-

chines with multiple clusters. In particular, each cluster has a different amount of work

to do in their SRF bank, and hence some clusters may have to idle while others are still

CHAPTER 4. SIMD PERFORMANCE WITH CONDITIONAL ROUTING 101

processing. The next chapter addresses this problem.

Chapter 5

Improving Load-balance with
Conditional Streams

In the last chapter we saw that conditional routing is an important technique for achieving

efficient performance on a stream architecture with SIMD clusters. However, we noted that

after applying conditional routing, there was still load-imbalance between the clusters. This

is because there is a different amount of work to process the entire input data stream in each

cluster for each kernel. Conditional streams, which we will propose and evaluate in this

chapter, are a mechanism for reducing the cost of this load-imbalance. The performance

results will show that the conditional stream mechanism can improve the performance of

the conditional routing technique up to 1.5x on the worst case situations for our set of

micro-benchmarks.

5.1 Motivation

In order to motivate our efforts to improve load-imbalance, let’s look back at the geom rast

kernel again. In the last chapter, we saw that even though the PREDICATION and CON-

DITIONAL ROUTING techniques don’t suffer any slowdowns due to the restricted control-

flow of SIMD, the speedup of geom rast was only 4.2× when going from a single-cluster

to an eight-cluster machine. This is in comparison to between 6×–8× for kernels with-

out conditionals [Rixner et al., 1998; Kapasi et al., 2002a]. The difference comes from

102

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 103

load-imbalance in the dataset in each cluster’s SRF bank. Even worse, since geom rast

produces a data-dependent number of outputs in each cluster, this causes load-imbalance

further down the application pipeline as well. As a result, the remainder of the kernels in

the RENDER application only had a speedup of around 4× for these two methods, instead

of closer to 8× which is what we would expect. Thus, the problem we are attacking in this

chapter is to improve the efficiency of applications with conditionals by distributing the

workload among all the clusters, a process which is referred to as load-balancing.

5.2 Existing Techniques for Improving Load-Balance

This type of load-balancing can sometimes be achieved on a case by case basis via manual

programmer intervention. Furthermore, intelligent partitioning at compile time might also

improve load-balance. However, we would like to find a more general solution, that adapts

dynamically so that it can successfully distribute the load for any set of input elements,

even if the exact distribution is not known until run-time.

One such general technique is a global task-queue. Processing clusters must access a

global data structure in order to obtain more work, and then must transfer the data from the

global queue to their local memory. A notable technique that falls into this class of load-

balancing is self-scheduling [Tang and Yew, 1986; Fang et al., 1990]. While this clearly

solves the load-imbalance issue, it does raise some other problems.

The most important issue is how to implement the global data structure using the banked

SRF of a stream processor. We could implement the SRF as a global memory that is

accessible by any cluster instead of banking it, but that would reduce its efficiency too

much. Instead we would like to keep the SRF banked in order to retain its high bandwidth.

Our solution is to stripe the queue across the banks, in order to allow consecutive accesses

to the queue to be served by different SRF banks. We will show how to manage such a

load-balancing scheme in this chapter.

Another important question stems from that fact that for the best load-balancing, the

clusters should access the global data queue frequently (i.e., the granularity of work as-

signed to each requesting cluster should be small). However, this results in a high over-

head, because too much time will be spent in the software routines that arbitrate who gets

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 104

access to the queue and when. On a SIMD machine, this overhead can be particularly bad,

because due to the lockstep execution model, many clusters may try to access the queue

all at the same time. Previous researchers have suggested ways to combat the high access

overhead by reducing the frequency with which clusters must access the global task queue.

The basic idea is to find a way to allow each cluster to grab more work each time it ac-

cesses the queue, but without significantly affecting the load-imbalance. A good example

is guided self-scheduling [Polychronopoulos and Kuck, 1987]. However, in this chapter,

we present a different option that utilizes a hardware mechanism to access the global task

queue. The idea is that using a hardware mechanism instead of a software routine to access

the queue will reduce the overhead of accessing the queue. If the overhead is small enough,

then the clusters can access the queue at a granularity of a single stream element, which

gives the best load-balancing results.

The next section will first present the operation of the conditional streams mechanism—

i.e., how the global task queue is striped across the clusters. Conditional streams are de-

signed to be used in conjunction with conditional routing, and so the following example

will show that combination. However, conditional streams can also be applied to other

techniques as well, and we will analyze the performance of such combinations later. Af-

ter we describe how they reduce load-imbalance, we will describe the hardware used to

support conditional streams as well as their performance.

5.3 Conditional Streams

The main reason conditional routing causes load-imbalance between clusters is that streams

are produced or consumed using conditional routing primitives. As we recall (Section 3.2),

these conditional routing primitives are stream accessors that are modified to accept a case

variable, whose value is determined locally in each cluster. In their basic form, this prim-

itive will allow a cluster to produce or consume a stream in its own local SRF bank at a

different rate from other clusters. Load-imbalance arises for a kernel when, for example,

its input stream was produced by a previous kernel that used conditional output primitives,

and each cluster had generated a different number of values in the stream in their local SRF

bank.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 105

This situation is depicted in Figure 5.1, which shows the first two kernels from the

original shapes example we used to illustrate conditional routing in Section 3.2. Notice that

for the example dataset shown in the figure, it will take the second kernel, compute circle,

four loop iterations to process its input set, while it will take less for the other clusters.

All clusters have to wait for the second cluster however. Ideally it would only take two

loop iterations for all four clusters to process the eight circles. Thus, this dataset results

in a 2x overhead for load-imbalance (ignoring kernel startup overhead). The remainder of

this section presents how the conditional stream mechanism can eliminate the overhead of

load-imbalance for kernels with if-statements (like the example we just discussed) and for

kernels with while-loops.

5.3.1 If-Statements

Conditional streams address this problem by using inter-cluster communication to load-

balance work between the clusters. They achieve this by modifying the conditional routing

primitives to ensure that the stream lengths remain balanced among all the clusters at all

times (both during stream production and consumption). Instead of just reading a piece

of data from the local SRF bank, the conditional stream mechanism does a global analy-

sis between all the clusters to determine the best assignment of stream data to requesting

clusters. In order to simulate a single large global task queue, the elements are ordered by

striping them across the SRF. This ordering of stream elements and the process of load-

balancing using conditional streams is illustrated in Figure 5.2, for the same example as in

the previous figure.

On the first loop iteration, (a), only one cluster has a circle to output to the stream.

The element, initially in the second cluster, is sent to the SRF bank of the first cluster

over the inter-cluster switch. On the second iteration, (b), all four clusters have circles to

output to the stream. Even though, in this case, each cluster could just output each element

straight into their SRF bank without affecting the final load-imbalance, the conditional

stream mechanism still sends them to SRF banks in different clusters. This is because the

conditional stream mechanism imposes a specific ordering on clusters and stream elements:

• Clusters are ordered according to cluster number (that is, their cluster ID is also their

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 106

LOOP OVER shapes
{
 Compute_1 () ;
}

TF

LOOP OVER shapes
{
 Compute_2 () ;
}

LOOP OVER shapes
{
 Compute_Circle () ;
}

F

compute_1 compute_circle compute_2

in_data

other_shapes

circles_only circles_only_2

is_circle_stream

(a)

8 416 12 8

11 7 315 711

14 210 6 10 2614

5 1913 5
Cluster 0

Cluster 1

Cluster 2

Cluster 3
compute_1

compute_1

compute_1

compute_1
Cluster 0

Cluster 1

Cluster 2

Cluster 3

compute_circle

compute_circle

compute_circle

compute_circle

(b)

Figure 5.1: Load-imbalance due to conditional routing on a SIMD architecture. The exam-
ple is based on a portion of the original shapes kernel from Section 3.2. Part (a) highlights
the portion of the original example which we will focus on in this section. Part (b) shows
the execution of the highlighted portion on a SIMD stream machine with four clusters. An
example input dataset is given, as well as the results for that dataset.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 107

Iteration 0 Iteration 1

2

11

14 210

5

6

7

8

1

3

9

416

13

15

12

8 2

5

6

7

11

14 10

5

6

7

8

9

16

13

15

12

(a) (b)

Iteration 2 Iteration 3

8 2

5

6

7

10

1111

14 10

9

16

13

15

12

8 2

5

6

7

10

11

14

14

16

13

15

(c) (d)

Figure 5.2: This series of figures shows how using a conditional output stream can eliminate
load-imbalance for the same example as in Figure 5.1. (a)-(d) shows all four iterations of
compute 1, after which the data are balanced between the four SRF banks.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 108

ordinal number). Elements are read from or written to the clusters in this order.

• Stream elements are hierarchically ordered first according to their position within

their local SRF bank, and then elements at the same position in different SRF banks

are are ordered according to cluster number. Thus, if a stream element is identi-

fied by its (SRF position, SRF Bank #) tuple, then elements are ordered as such:

(0, 0), . . . , (0, C − 1), (1, 0), . . . , (1, C − 1), Elements are read from and written

to the SRF in this order when using conditional streams.

Based on this ordering, when multiple clusters want to transfer a data record to/from

a conditional stream (i.e., when the case variable is true in more than one cluster), the

elements are transferred such that the record from the first cluster among the requesters

will be transferred to/from the first stream location that has not been filled/read yet.

The next two loop iterations, (c) and (d), proceed in the same fashion as we have de-

scribed. Eventually, due to the use of the conditional output stream, there are exactly two

circle elements in the SRF bank of each cluster. Executing the next kernel, compute circle,

will only require two iterations, or one-half as many iterations required without the use of

conditional streams. In general, the only remaining load-imbalance that can arise when

executing compute circle would be due to the fact that the number of circles in the input

dataset may not be an exact multiple of the number of clusters. Hence, some clusters might

execute a maximum of one extra loop iteration of the kernel.

The example so far has focused on the conditional output stream mechanism required

for the compute 1 kernel (Kernel 3.1). The process, however, is quite similar for input

conditional streams. For example, the compute 2 kernel (Kernel 3.2) uses the conditional

input routing primitive (“popif”) in order to restore the ordering in the original kernel. It

turns out that when we apply the conditional input stream mechanism using the ordering

we described earlier, it will cause the input elements from the circles only 2 and

other shapes streams to be distributed to the clusters in such a way that the original

ordering is restored. That is, the compute 2 kernel will produce the elements of the final

output stream, out data, in the same order as would have been produced had we not used

conditional streams. Furthermore, notice that the intermediate streams circles only 2

and other shapes are also produced and processed in order.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 109

5.3.2 While-Loops

Conditional streams can be used in conjunction with any of the methods we introduced

for while-loops as well, and in particular with expanded conditional routing (EXCR) and

flattened conditional routing with state-unrolling (FLCRSU). As we discussed earlier, ex-

panded conditional routing simply considers a while-loop as a series of if-statements. It

runs a separate kernel for each iteration of the while-loop, and for each iteration creates a

new stream of elements that needs continued processing and appends the others to a stream

of finished elements. Recall that even the original expanded conditional routing method

does not maintain the ordering of the output stream. Thus we do not have to address order-

ing here. The benefit that conditional streams provide to expanded conditional routing is

to load-balance each iteration of the while-loop. That is, for each iteration of the original

while-loop, the stream of elements that require further processing will be equally spread

out in the SRF banks of all the clusters. The only load-imbalance that can arise is because

the number of elements remaining to be processed for any iteration of the while-loop is not

a multiple of the number of clusters.

FLCRSU uses conditional routing in order to load-balance on the input side of the

kernel. That is, even though each cluster may start out with the same number of elements in

their SRF bank, there can still be load-imbalance because each cluster consumes their data

elements at a different rate. These techniques use a conditional input stream mechanism

to deliver the next element(s) in the SRF banks to the next cluster(s) that have finished

processing their previous stream element. Conditional streams will reduce the total load-

imbalance between the clusters, but some imbalance may remain. This imbalance would

be due to the fact that all clusters may not finish their final elements at the same time. This

could be expensive, especially if an element that required a large number of iterations was

one of the last elements in the stream.

5.4 Implementation

So far in this chapter we have discussed how conditional streams work and how they are

used by the various conditional routing techniques. Now, before we analyze the impact

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 110

on performance, we will focus on how to implement the conditional stream mechanism.

Implementing conditional streams requires intercepting the cluster request signals (i.e., the

signals that cause a SRF bank to push or pop an element) from each cluster, and processing

them globally. These signals are set to the case value in each cluster. If the local case

value is TRUE in x clusters (i.e., there are x requesters), we need to figure out which of

the x SRF banks (out of the C total banks) to access in order to service that particular

conditional stream access. After the conditional stream hardware figures out the mapping

from requesting clusters to servicing SRF banks, data values must be transferred across

a switch to get them from the correct cluster to SRF bank, or vice versa. First we will

present a solution to do this on a stream architecture. Then we will discuss the scalability

of conditional stream hardware to configurations with large numbers of clusters.

5.4.1 Hardware Overview

The basic organization of top level hardware required for inserting the conditional stream

unit into a stream processor is shown in Figure 5.3. The diagram shows the case for C

clusters and S stream buffers (i.e., a maximum of S logical streams). Essentially, the con-

ditional stream unit intercepts signals that go between a cluster and its local SRF bank. This

new unit, however, is monolithic and not segregated into banks because it needs to com-

bine information from all the clusters (the case values) and transfer data between clusters.

As is shown on the bottom portion of the diagram, normal stream transfers occur without

modification. To clarify, if cstream is set to FALSE, then the data and control signals

pass through the multiplexers directly between the SRF banks and their associated clusters

without intervention. Conditional stream logic only intervenes when the one of the stream

accesses is a conditional stream access, indicated via the cstream signal. Individual sig-

nals in the cstream array could be set, for instance, by a micro-controller instruction that

is issued at the start of the kernel indicating that a particular logical stream will be accessed

as a conditional stream for the remainder of the execution of the kernel.

When cstream is set to TRUE, the case values are sent to the global conditional stream

logic. This logic is shown in detail in Figure 5.4. Essentially there are four main blocks.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 111

DATA_IN_SRF [C-1][S-1],
SRF_EOS [C-1][S-1]

Cluster
0

Cluster
C-1

Conditional Stream Unit

VLIW Microcontroller

Cluster
control

Conditional Stream
Select (i.e., SBUF #)

DATA_IN_CLUST [C-1][S-1],
CLUST_REQ [C-1][S-1]

cstream [S-1]

To/From Conditional Stream Global Logic

1
0

1
0

Conditional
Stream Instruction

SRF_EOS [0][0]
DATA_SRF [0][0]

SRF_REQ [0][0]

SRF_EOS [0][S-1]
DATA_SRF [0][S-1]

SRF_REQ [0][S-1]

SRF_EOS [C-1][0]
DATA_SRF [C-1][0]

SRF_REQ [C-1][0]

CLUST_EOS [0][0]
DATA_CLUST [0][0]

CLUST_REQ [0][0]

CLUST_EOS [0][S-1]
DATA_CLUST [0][S-1]

CLUST_REQ [0][S-1]

CLUST_EOS [C-1][0]
DATA_CLUST [C-1][0]

CLUST_REQ [C-1][0]

DATA_OUT_SRF [C-1][S-1],
SRF_REQ [C-1][S-1]

DATA_OUT_CLUST [C-1][S-1],
CLUST_EOS [C-1][S-1]

data_out [C-1],
srf_req [C-1]

data_out [C-1],
eos [C-1]

SBuf 0

SBuf S-1

SBuf 0

SBuf S-1

Conditional Stream
Global Logic

Figure 5.3: Conditional stream implementation overview for a SIMD architecture. The
interface between the clusters, stream buffers, and conditional stream logic is shown. EOS
= end of stream. The conditional stream logic is shown in more detail in Figure 5.4.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 112

• The central controller receives the case values from the clusters and responds to in-

structions from the micro-controller.

• The second main block is a set of state registers for each stream buffer, which can be

read and written to by the central controller.

• The third block is a data switch, which can transfer data values from a processing

cluster to any SRF bank. The switch is assumed to be a full crossbar, and can thus

handle arbitrary communication permutations between the clusters and SRF banks.

• Finally, the fourth block is a set of multiplexers in front of the switch inputs that can

be configured to let the switch handle data flowing from the SRF banks back to the

clusters or vice versa. There are also multiplexers that select one of S stream buffers

for each input port of the switch.

5.4.2 Hardware Details

We will now delve a little deeper into the details of the hardware implementation. The goal

of this section is two-fold. The first is to serve as a reference example of how to integrate

the conditional streams hardware functions into the kernel ISA of a stream processor. The

second goal is to serve as a primer to the following section on the scalability of the hardware

that implements the conditional streams instructions. We will first present an ISA for the

conditional streams unit, and then go through the instruction sequences required for both

a conditional input and conditional output stream access. Readers interested less in the

conditional streams hardware and more interested in their performance may wish to skip

directly to Section 5.5.

The instructions that are needed to successfully execute a conditional stream access

are shown in Table 5.1. The CLEAR CS STATE and INIT CX STATE instructions are

used to indicate which streams are accessed using conditional streams, and to initialize the

state for those streams. The GEN CX STATE instructions read the clust req signals

for the stream buffer being accessed (the stream buffer number is provided by the micro-

controller along with the instruction). These instructions will process the request signals to

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 113

Conditional streams
controller

Data Switch

perm_config

srf_reqC

sbuf_state[S-1]

sbuf_state[0]

cstream [0..S-1]

eosC
S x C

S

S

DATA_IN_CLUST [0][0]

DATA_IN_CLUST [0][S-1]

1

0

1

S-1

1

S-1

DATA_IN_SRF [0][0]

DATA_IN_SRF [0][S-1]

DATA_IN_CLUST [C-1][0]

DATA_IN_CLUST [C-1][S-1] 1

0

1

S-1

1

S-1

DATA_IN_SRF [C-1][0]

DATA_IN_SRF [C-1][S-1]

dir_select

S x C

SBUF_NUM from uC

INSTR from uC

CLUST_REQ

EOS

data_out [0]

data_out [C-1]

Figure 5.4: Conditional stream global logic details.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 114

Table 5.1 Instructions supported by the conditional streams unit.

Instruction(s) Description

CLEAR CS STATE
Resets all streams to default to a non-conditional stream.
Generally this instruction is issued automatically by the
micro-controller at the outset of every kernel.

INIT CI STATE
INIT CO STATE

Initializes state for a conditional stream. These instruc-
tions are run once at the start of a kernel for every input or
output conditional stream needed by that kernel (after the
CLEAR CS STATE operation).

GEN CI STATE
GEN CO STATE

Generates signals for the next SRF data transfer. These in-
structions accept the case values from each cluster and com-
bine them in order to generate all necessary control signals to
read or write the data records associated with the case values.

GET CS EOS

Returns end of stream signals after applying the correct SRF
bank to cluster mapping for the current conditional stream
access. This instruction must be called after GEN CI STATE
and before the COND DATA IN operation(s) for each indi-
vidual record access.

COND DATA OUT
COND DATA IN

Transfer a data word to or from the SRF. These instructions
actually transfers a word of data between the cluster banks
and the SRF banks. Must be executed once for each word in
a data record.

compute the proper SRF bank to cluster mapping, taking into account the current state of

the stream buffer in sbuf state. Based on this mapping, the instructions generate the

permutation for transferring the data, as well as the request signals for the SRF banks. It

stores updated state back into the sbuf state register. The GET CS EOS instruction

returns the proper stream empty condition to each cluster by applying the necessary SRF

bank to cluster mapping computed by the GEN CI STATE operation. The COND DATA X

operations use the results of the GEN CX STATE instructions in order to actually perform

the data transfers. These instructions must be called once for each word in a data record.

Table 5.2 shows the sequence of operations that must be executed in order to access a record

using a conditional input and conditional output stream.

Checking whether an input stream is empty when using conditional streams requires

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 115

Table 5.2 Instruction sequences for executing conditional stream accesses. Both the in-
structions required to execute once per kernel, and those required for each conditional
access stream are shown. The code assumes that there are two data words per input record
and three data words per output record.

Code to execute once at the start of a kernel
INSTR SBUF NUM

CLEAR CS STATE —

INIT CI STATE 0

INIT CO STATE 1

Operation sequence to execute for each conditional input stream access
INSTR SBUF NUM

GEN CI STATE 0

GET CS EOS 0

COND DATA IN 0

COND DATA IN 0

Operation sequence to execute for each conditional output stream access
INSTR SBUF NUM

GEN CO STATE 1

COND DATA OUT 1

COND DATA OUT 1

COND DATA OUT 1

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 116

some changes. We can no longer use the empty() accessor to get the stream state, since

each cluster does not know which SRF bank it is going to be accessing. For instance, con-

sider executing the example first introduced in Kernel 3.6, which is a loop-flattened version

of our initial while-loop example. When executing this kernel on a SIMD architecture

without using conditional streams, our target architecture would selectively stall clusters

once the loop stopping condition was met locally. Once the loop stopping condition was

satisfied in all clusters, execution would resume starting with the first instruction after the

loop. We will display the loop condition here again for reference:

loop while ¬in stream.empty() ∨ ¬done begin

Now, consider the execution of this kernel using a conditional input stream. The portion

of the condition that checks whether in stream is empty will not necessarily be accurate.

This is because the stream empty condition is not a purely local operation anymore, and

must be performed globally across the clusters. Furthermore, even though the conditional

stream might not be empty, there still may not be enough elements to satisfy all the request-

ing clusters. In this case, some of the clusters will not get valid data. Thus, the case values

must be known before checking for the end of stream condition. However, the case values

may not necessarily be known at the start of the loop, and may in fact be calculated after

the start of the loop and before the first conditional access. A solution to this is to check

the stream empty condition explicitly for every conditional stream record access using the

GET CS EOS instruction, and then qualify code in the rest of the loop with this condition.

The loop-flattened kernel we referred to above, with this new modification for conditional

input streams, is shown for reference in Kernel 5.1. We updated the API to return the

EOS signal as part of the conditional access, and in this example we assigned the result to

stream done.

More details on the exact pieces of stream buffer state that we need to store and the exact

logic that each instruction requires are provided for reference in Table 5.3 and Table 5.4.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 117

Table 5.3 Stream buffer specific state stored in the conditional stream unit. There are S
sets of stream buffer states—one per stream buffer.

sbuf state Size

field (bits) Description

dir 1

Indicates direction of stream buffer for the duration
of this kernel. TRUE indicates an input stream (read
from SRF), and FALSE indicates an output stream
(write from SRF).

start lg C

Which SRF bank should service the next read or
write. The order of bank access is determined by
the conditional stream ordering, discussed in Sec-
tion 5.3.1.

srf acc[C] 1× C
Indicates which of the SRF banks need to advance
their stream pointer and read or write a data word.

perm[C] lg C × C

Configuration for the data switch. We are assuming
the switch is source routed—that is, perm[i] indi-
cates which cluster’s data should be sent to the output
port for cluster i.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 118

Table 5.4 Conditional stream unit instruction details. All the referenced signals and state
are listed in Table 5.3 or shown in Figure 5.3 and Figure 5.4. Note that signals listed in
small caps are external inputs and outputs for the conditional stream unit.

CLEAR CS STATE

cstream[0] = · · · = cstream[S − 1] = FALSE

INIT CI STATE and INIT CO STATE

cstream[SBUF NUM] = TRUE

sbuf state[SBUF NUM].dir = (op == INIT CI STATE)
sbuf state[SBUF NUM].start = 0

Common logic for GEN CI STATE and GEN CO STATE

let clust req = CLUST REQ[][SBUF NUM]
let numreq = clust req[0] + · · ·+ clust req[C − 1]
let next start = (sbuf state[SBUF NUM].start + numreq) mod C
let wrap = (nxt start <= sbuf state[SBUF NUM].start)
with sbuf state[SBUF NUM] do,

srf acc[i] := ((i >= start) && (i < nxt start))
‖ (!((i >= nxt start) && (i < start)) && wrap)

start := nxt start

GEN CI STATE

let clust req = CLUST REQ[][SBUF NUM]
let mynum(cl) = clust req[0] + · · ·+ clust req[cl − 1]
with sbuf state[SBUF NUM] do,

perm[i] := (start + mynum(i)) mod C

GEN CO STATE

let clust req = CLUST REQ[][SBUF NUM]
let mynum(cl) = (cl + C − sbuf state[SBUF NUM].start) mod C
with sbuf state[SBUF NUM] do,

perm[i] := smallest j, s.t. mynum(i) + 1 = clust req[0] + · · ·+ clust req[j]

GET CS EOS

eos[i] = EOS[perm[i]][SBUF NUM]

COND DATA IN and COND DATA OUT

with sbuf state[SBUF NUM] do,
dir select = dir
perm config = {perm[0], . . . , perm[C − 1]}
srf req = {srf acc[0] . . . srf acc[C − 1]}

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 119

Kernel 5.1 compute iterative with loop-flattening, updated for conditional input streams.
Compared to the original, Kernel 3.6, this version has a modified loop condition since the
stream empty state must be returned by the conditional stream access function. Note that
the semantics of the kernel shown are such that an extra iteration will be required at the end
of the kernel for the last cluster(s), since they have to attempt to read an input record from
the stream in order to figure out if it is empty or not.

done ← true;
stream done ← in stream.empty();
loop while ¬stream done ∨ ¬done begin
/* stream done == in stream.empty() for this cluster */

State, stream done popif
←− in stream(done);

State, done ← COMPUTE ITERATIVE(State);
/* only output if input stream */
/* wasn’t empty for this cluster */

out stream(done ∧ ¬stream done)
pushif
←− State;

end

5.4.3 Scalability

The complexity, size and delay of the hardware necessary to implement conditional streams

grows as the number of clusters (C) increases. We will consider each potentially problem-

atic piece of logic in turn, and show that the most expensive piece of logic to scale is the

hardware to implement the GEN CO STATE instruction. The problem with the straight-

forward hardware implementation of this operation is that each cluster must generate a

different 1-bit request signal for every other cluster. This amounts to transposing C 2 wires.

In order to reduce the wiring area, therefore, we will employ binary encoding instead of

one-hot, and will distribute the priority encoding to occur in stages located near the re-

quest sources instead of routing all the inputs to one global encoder. The details of these

optimizations will be made clearer later in the section.

Inter-Cluster Switch Scaling

The two pieces of hardware we need to worry about when scaling are the inter-cluster

communication paths and the conditional stream global logic. Let’s consider both in turn.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 120

The first important communication path is the inter-cluster data switch. It turns out that

by using a 2-D grid layout of the processing clusters, we can minimize the area impact of

this switch [Khailany et al., 2003]. This is achieved by implementing the switch in two

stages: in the first stage, each cluster puts a data value onto a vertical bus dedicated to it; in

the second stage, each horizontal bus (there is one per cluster) selects which of the vertical

buses to read from. This scheme keeps the C2 area impact of the expensive switch points

at each column-row intersection small. This allows good scaling at least up to 256 clusters

(with 5 ALUs per cluster). Furthermore, the same study [Khailany et al., 2003] indicates

that the inter-cluster data switch can be fully pipelined as well, so that the bandwidth of

the switch is not sacrificed. Therefore, this hardware should not be a limiting factor, up to

256 clusters at least. The other important communication paths we need to consider are

those that gather control signals from each cluster and deliver them to the global logic, and

those paths that distribute output control signals and switch permutations from the global

logic back to the clusters. Using the grid layout given in the above study, these do not

significantly increase area as well.

GEN CI STATE Scaling

We identified the conditional stream global logic as the other important piece of hardware to

consider when scaling the number of clusters. The most complex pieces of logic are those

for calculating the switch permutation for the GEN CX STATE operations. Let’s look at

the one for GEN CI STATE first. We basically need to calculate a running sum of all the

clust req signals, where each intermediate output is added to start to produce a result

that is lg C bits wide. A simplistic implementation of this operation would require serial

execution of C additions, and hence O(C) time. However, we can use a parallel prefix

scan-+ operation [Cormen et al., 1990] in order to implement this operation in O(lg C)

time.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 121

GEN CO STATE Scaling

The implementation of the permutation generation for GEN CO STATE is much more

complicated, however. This is because each cluster needs to do a search, not just a de-

terministic calculation, as we can see from the pseudo-code in Table 5.4 for calculating

perm in the GEN CO STATE operation. A reasonable approach for implementing this

logic requires first using a parallel prefix scan-+ operation, just as before. For each cluster,

this will produce the destination cluster (dest) that data must be sent to. Unfortunately,

the inter-cluster switches on stream processors to date have been built to be input-routed.1

Thus, at this point, each cluster must instead figure out which other cluster is trying to write

to it (src), hence the need for a search.

This search can be implemented with relatively little hardware using a bisection search.

This would only require adding another lg C-bit inter-cluster switch. Each cluster writes

their local value of dest to the switch during each communication operation. Since dest

is the result of a running sum, is it ordered across the clusters. Each cluster maintains its

own search pointer, and does a bisection search to locate the cluster it should read from

(i.e., the first other cluster whose value of dest points to the cluster doing the searching).

A total of lg C communication operations would be required, however, and these could not

be pipelined either since they are dependent on each other. Thus the latency and throughput

of this iterative method are poor, and hence we would like to find a more direct approach

in hardware to speed things up.

To this end, a naı̈ve hardware-only implementation of the circuitry required to imple-

ment the logic to calculate src in each cluster is shown in Figure 5.5. The area of this

wiring scales roughly as O(C4), making this logic the most expensive to scale of all the

conditional stream hardware modules. Using the area models from [Khailany et al., 2003]

again, we can estimate the impact of this logic on the stream processor. This impact is

shown in Table 5.5 for several different machines, each with a different number of clusters.

Up until 64 clusters, the area is not a prohibitive factor; however beyond that this logic

starts to occupy a large fraction of the total area and is impractical.

However, we can actually improve the implementation in order to generate a solution

1This is partially so that non-permutation traffic, such as multi-cast, can also be efficiently routed.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 122

Destination
for data from
Cluster C-1

Destination
for data from
Cluster 1

Destination
for data from
Cluster 0

Source for
Cluster 0

Source for
Cluster C-1

lg
C

 t
o

 C
de

co
d

er
lg

C
 t

o
 C

d
ec

o
de

r
lg

C
 t

o
 C

de
co

d
er

C to lgC
priority
encoder

C to lgC
priority
encoder

Figure 5.5: Naı̈ve GEN CO STATE implementation.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 123

Table 5.5 Area impact of naı̈ve GEN CO STATE implementation. We used the area
models from [Khailany et al., 2003]. Each cluster consists of five arithmetic ALUs.
The total area includes the processing clusters, micro-controller, SRF, as well as the
GEN CO STATE logic.

Clusters Fraction of

(C) Total Area

8 1%

16 3%

32 8%

64 20%

128 43%

256 73%

that scales as O(C2 lg2 C), instead of O(C4). This improved implementation is shown in

Figure 5.6. Since each cluster only generates one destination for its data, we can use binary

encoding instead of one-hot encoding. Also, instead of routing all the priority encoder in-

puts to the bottom, we distribute the encoding with a stage located at the source of every

encoder input. Essentially, these two optimizations are trading-off extra gates for reduced

wiring area. We evaluated the wiring area for this new method using the same models as in

Table 5.5, and found that the GEN CO STATE logic only occupies 5% of the area of the

256 cluster machine now, as opposed to 73% with the straightforward method. Unfortu-

nately, note that the latency of this hardware grows as O(C) as shown. However, the latency

can be improved to O(lg C), at the expense of adding even more extra gates, by doing the

vertical searches in a tree fashion, as shown in Figure 5.72. Ultimately, these two imple-

mentation optimizations could result in a hardware implementation of GEN CO STATE

that is practical beyond configurations with 64 clusters. However, further study is required

to quantify the exact area of this improved solution. We do not provide this analysis here.

2Technically, this optimization will increase the rate at which area grows to O(C2 lg3
C)

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 124

== 0?

2:1
MUX

== 0?

2:1
MUX

C-2

C-1

1

Destination
for data from
Cluster C-2

Destination
for data from
Cluster 1

== 0?

2:1
MUX

0

Destination
for data from
Cluster 0

Source for
Cluster 0

== (C-1)?

2:1
MUX

== (C-1)?

2:1
MUX

1

== (C-1)?

2:1
MUX

0

Source for
Cluster C-1

C-2

C-1

Figure 5.6: Improved GEN CO STATE implementation for large numbers of clusters.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 125

== 0?

2:1
MUX

C-2C-1

== 0?
2:1

MUX

2:1
MUX

Destination for data
from Cluster C-1

Destination for data
from Cluster C-2

Destination for data
from Cluster C-3

Destination for data
from Cluster C-4

2:1
MUX

From Clusters (C-8)-(C-5)

Repeat
recursively

== 0?

== 0?

C-4C-3

Figure 5.7: Logarithmic-time hardware search implementation for GEN CO STATE. The
idea shown in this figure is applied recursively in order to achieve the log-time result. The
logic shown only produces the result for one cluster—this would have to be duplicated C
times for a complete solution.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 126

Even Further Scaling

The above area analysis was done for 5 ALUs per cluster, where each ALU supports 32-bit

floating point operations. If the number of ALUs per cluster or number of bits of precision

per ALU decreases, or floating-point support is dropped, then the area of each cluster will

decrease. For example, one could envision a cluster with only 2 ALUs that only supported

16-bit fixed-point operations. This might be targeted at mobile low-power applications, per-

haps. Since the area of the conditional stream hardware would have remained unchanged,

its relative area overhead would be more significant, and we might want to search for ways

to reduce it. Furthermore, for machines with this type of lean processing cluster, or for

machines with more than 64 clusters, we can expect that an inter-cluster switch with lim-

ited connectivity would be used (i.e., one that is not a full crossbar). Since conditional

streams need to route arbitrary permutations, their performance could degrade with limited

connectivity switches since these switches may take multiple cycles to route arbitrary per-

mutations. In these situations, we will probably want to use a scheme that uses conditional

streams to load-balance with some set of neighboring clusters only. Of course, this would

not result in perfect load-balancing, but might be a good trade-off between performance

and hardware efficiency.

5.5 Performance

As we mentioned at the beginning of the chapter, we developed the conditional streams

hardware in order reduce the overhead of accessing the task queue in the SRF. We should

verify two things, then. First, is the speed of the software solution slow enough to war-

rant the extra hardware? A purely software implementation of conditional streams required

26 and 51 extra operations for a conditional input and conditional output access, respec-

tively, for a single-word record on an eight-cluster machine (larger machines would require

more operations). Clearly, executing this number of extra operations every time we ac-

cess a record in the SRF will significantly affect the performance of conditional streams.

In contrast, the hardware-accelerated approach only requires three and two operations, re-

spectively, for the same conditional stream accesses.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 127

The second thing we need to verify is if the hardware solution actually does reduce

the overhead enough to allow us to reap the performance benefits of any improvements in

load-balance. This is covered in the rest of this section. We will show that conditional

streams incur a small fixed overhead for use, but provide the desired immunity against

load-imbalance between clusters.

5.5.1 If-statements

We can apply conditional streams to synthetic if in the same way as we did for the shapes

example earlier in the chapter. The variability arises because of statistical variations—that

is, even though the average fraction of elements that execute the body of the if-statement is

p across all the clusters, not every cluster will have exactly (BatchSize/C) ∗ p elements

that execute the body of the if-statement in their batch. Thus, statistical variations will

cause each cluster to have differing amounts of work, and conditional streams can even out

the distribution of this work between all the clusters.

The results for synthetic if are shown in Figure 5.8, for three experiments. The differ-

ence between each experiment was how dominant the basic block BODY was in the kernel.

The 1× case is analogous to Wbody = 32 operations. We also tried the 10× and 100×

cases, which correspond to Wbody = 320 and Wbody = 3,200, respectively. The last case

is analogous to a large kernel, where the bulk of it is nested within the if-statement. The

reason we tried these different cases is because load-imbalance only affects the body kernel

when using conditional routing, thus the larger this kernel is relative to the other kernels

the larger the cost of load-imbalance, as given by Amdahl’s Law. The 100× version is rep-

resentative of the asymptotic case when the body of the if-statement completely dominates

the runtime of the kernel.

The graph shows two sets of speedups for each case: one for IDEAL, which assumes

that we can achieve perfect load-balancing between the processing clusters, and one for

the CONDITIONAL STREAMS technique. Each curve is a speedup over the plain (non-load-

balanced) implementation of each kernel using conditional routing. For the 1× case, using

conditional streams actually degrades performance slightly compared to the base case. This

is because the body kernel only accounts for at most one-half the total execution time of the

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 128

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction true, p

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Sp
ee

du
p

Ideal 1 X
Ideal 10 X
Ideal 100 X
Conditional Streams 1 X
Conditional Streams 10 X
Conditional Streams 100 X

Figure 5.8: Conditional stream speedup for if-statements on an eight cluster SIMD ma-
chine. The various curves differ in how large the body of the if-statement was (in terms
of operations). In the legend, N× refers to a test where the size of Wbody was N times
larger than the base 1× case. The IDEAL curves assume perfect load-balancing between
the processing clusters. The batch size used was 64 elements per cluster. 1 ×Wbody = 32
operations; Winput = Woutput = 17 operations; S = 2 words.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 129

kernel. Furthermore, when p = 0.0 and p = 1.0, conditional streams also always degrades

performance because there is no load-imbalance in the input dataset. The slowdown due

to conditional streams, though, is always limited to less than 8%, over all values of p and

over all the experiments. However, as we start to increase the size of the basic block

BODY, conditional streams start to benefit overall performance. This is especially true

when we execute kernels with if-statements that are expensive, but rarely taken (10× and

100× with small p). At the point of biggest disparity, conditional streams offers a roughly

50% speedup. The IDEAL curves show that conditional routing and conditional streams in

concert can reduce the difference between actual kernel performance and ideal performance

to within 30% for most values of p, and to within 65% in the worst case for the experiments

shown.

5.5.2 While-loops

The results for the speedup that conditional streams provide to our base conditional routing

techniques is shown in Table 5.6. As expected, the biggest benefit of conditional streams

is gained when the amount of variance in the data set is high. In fact, conditional streams

provides roughly a 40%-50% speedup for the dataset with the highest variance. We should

also expect that when we have little or no variance in the data set we would see a slowdown

due to the overhead of inserting conditional streams. While we do see a small overhead for

FLCRSUCS of 4% for the “Zero-Variance” dataset, we actually see a speedup for the same

dataset on EXCRCS. This anomaly occurred because the compiler happened to schedule

the main-loop of the body kernel for the conditional streams version with less software-

pipelining stages. Thus, the reduced loop-priming overhead results in a slight speedup

even for the case with no variance in the dataset.

The second set of data, shown in Figure 5.9 shows how well the conditional stream

versions of the kernels do compared to the ideal performance of the machine. Conditional

streams combined with conditional routing is able to achieve more than 67% of ideal per-

formance (i.e., within 1.5x of the ideal execution time), for the entire range of datasets

shown with the FLCRSUCS technique. The EXCRCS technique still pays a hefty penalty

for executing a dataset with a small number of elements that require a large number of

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 130

Table 5.6 Conditional stream speedup for while-loops on an eight cluster SIMD machine.
The version of the kernel used is the same as in Figure 3.17(d), while the four probability
distributions used are the same as in Figure 3.18.

Speedup compared to the same method without conditional streams

Method
Zero-

Variance
Uniform Spread Bimodal

Expanded Conditional
Routing with Conditional

Streams (EXCRCS)
1.01 1.10 1.20 1.42

Flattened Conditional
Routing with State Unrolling

and Conditional Streams
(FLCRSUCS)

0.96 1.04 1.11 1.47

iterations, as we saw in Section 3.3.4. Therefore, while it comes within 15% of the ideal

performance of the machine (1.14x of the ideal execution time) when there is no variance

in the dataset, it performs at less than 50% of ideal with the “Bimodal” dataset.

5.5.3 Impact of SRF Communication

As we noted in Section 3.2.3, the amount of live state that is transferred into and out of

the basic blocks can have an impact on performance. A large amount of state will imply

a proportionally larger amount of extra SRF communication that needs to occur with con-

ditional routing. With the addition of conditional streams, however, this communication

impacts performance even more. Each conditional SRF access requires an inter-cluster

switch traversal. The switch bandwidth now becomes the limiting factor for the perfor-

mance of kernels that have to transfer a lot of state to/from the SRF. Figure 5.10 shows

how the schedule length of the conditional streams version of the input kernel from the

synthetic if benchmark (Section 3.2.1) degrades faster compared to the plain conditional

routing version as the amount of live state increases.

As the amount of operations in the input kernel increases, however, the point at which

the knee in the curve occurs will move to the right, since there will be more cycles of

arithmetic to overlap with the communication operations. Also, recall that the kernel that

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 131

Zero-
Variance

Uniform Spread Bimodal
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

pe
r

St
re

am
 E

le
m

en
t

(N
or

m
al

iz
ed

 to
 ID

E
A

L
)

EXCRCS
FLCRSUCS

Figure 5.9: Conditional stream results, normalized to the execution time of IDEAL, are
shown for the synthetic while kernel. EXCRCS = Expanded Conditional Routing with
Conditional Streams; FLCRSUCS = Flattened Conditional Routing with State Unrolling
and Conditional Streams.

0 8 16 24 32 40 48
Words of Live State, S

0
10
20
30
40
50
60
70
80
90

100

In
ne

r-
lo

op
 S

ch
ed

ul
e

L
en

gt
h

Conditional Routing
Conditional Streams

Figure 5.10: Impact of SRF communication on conditional stream version of input, which
is a kernel from the synthetic if benchmark, introduced in Section 3.2.1. The input kernel
requires two conditional stream accesses per stream element: one for the TRUE stream and
the other for the FALSE stream.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 132

implements the body of the if-statement does not use conditional streams, and thus will not

have this drastic reduction in performance as the amount of live state increases. Hence,

if the majority of the execution time is spent in the body kernel, then the impact of live

state will be minimized. For clarity, we can codify our observations above in the following

expression for the performance impact of conditional streams on synthetic if (i represents

execution time in cycles, SU represents speedup, SD represents slowdown):

Speedup = SU =
ics − i

i

i = iin + ibody + iout

ics =
ibody

SUbody

+ (SDiniin + SDoutiout)

In this expression, ics is the execution time of the version with conditional streams. The

value of ics depends on the speedup or slowdown of each of the three constituent kernels:

input, body, and output. We expect the execution time of the body kernel to decrease

because of improved load-balance, and to increase for the input and output kernels because

of increased inter-cluster communication. So, if the body is much larger than the other two

kernels, the improved load-balance will probably outweigh scheduling inefficiencies due

to inter-cluster communications. However, if there is a lot of internal live state and ibody is

not very large, then the slowdowns of the other blocks may negate any improvements due

to better load-balance.

5.6 Other Uses of Conditional Streams

We have shown so far that the conditional stream hardware mechanism is useful for load-

balancing work when using conditional routing techniques. An observation we can make

at this point is that in general, conditional streams can provide the abstraction of a single

stream that all the clusters are accessing—i.e., a global queue, that under hood happens to

be distributed across the SRF banks. Hence, the utility of the hardware implementation is

not limited to just conditionals. It can also accelerate any program that needs to use the

abstraction of a single-stream that is accessed by all the clusters (as opposed to C separate

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 133

sets of data all accessed independently by each cluster). Let’s look at some examples.

We can improve the process of handling reduction outputs. When all the clusters work

together to produce one output for every iteration, then extra software has to ensure that

the outputs are properly interleaved across the SRF banks. Conditional streams can be

used instead to avoid adding this extra control code. Another example comes from a depth

extractor application. In this application, a kernel compares two images at several different

horizontal shifts (disparities). The kernel is called repeatedly with a different horizontal

shift between the two rows. Assuming the data for each row is interleaved across the SRF

banks, control code has to be inserted to perform the shifting of the two rows relative to

each other. This code would need to calculate the necessary permutations to find the correct

SRF bank to cluster mapping for the current disparity. Instead, conditional streams handles

this shift elegantly, and simply requires a loop that drains a specified number of pixels from

one of the streams before starting the main loop.

Merging two sorted streams into one longer stream is another good example. In one

implementation, all clusters work together to output C elements every loop iterations, of

which C1 elements are from the first stream and C2 are from the second. C1 and C2 are

data-dependent. In order to read more values for the next iteration, therefore, a complicated

function has to be solved that generates the SRF to cluster mappings to refill data from both

input streams. The conditional stream hardware handles this operation efficiently, and again

avoids the addition of extra software to calculate the SRF bank to cluster mappings every

iteration. For example, the main loop schedule length for the fully software implementation

of a merge sort kernel was 25 cycles long, whereas the same loop with hardware conditional

stream primitives was only 14 cycles long. This translates to a roughly 80% overhead for

the software version.

5.7 RENDER Performance

Let’s look at the performance on an entire application (RENDER) now. Applying condi-

tional streams to the geom rast kernel actually alleviates two different instances of load-

imbalance in this application. Firstly, by using conditional streams with conditional rout-

ing, as discussed in this chapter, we can distribute the work evenly across the clusters for

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 134

geom rast. Secondly, by using a conditional stream to store the outputs of the geom rast

kernel to the SRF banks, we can ensure that kernels that come after geom rast will have

a load-balanced input set to work on. Let’s look at the impact of both instances of load-

balancing in turn.

The results in the first column of Table 5.7 show the improvement of the geom rast

kernel due to conditional streams, where each row is for the combination of a different

conditional technique with conditional streams. It turns out conditional streams don’t help

ORIGINAL or COMMON. This is because all clusters always read another input at exactly

the same time, due to SIMD. A conditional input stream doesn’t need to redistribute any

elements, because a cluster cannot go on its own and start a new element without waiting

for the rest. The performance of PREDICATION doesn’t improve either, even though we

used loop-flattening (since loop-flattening allows a cluster to start processing a new element

before the other clusters have finished). Unfortunately, early in the loop there is an update

of some loop-carried state which is needed by the next stream element; therefore each

cluster can only process elements from within its local SRF bank. CONDITIONAL ROUTING

however, jettisons the portion of code with the loop-carried dependency into a separate

kernel before we start to optimize the while-loop in geom rast. Therefore we can load-

balance the input to the while-loop, as well as the work for the different if-statements in

geom rast. We achieve a 10% speedup on geom rast when we use conditional streams with

CONDITIONAL ROUTING.

The second source of load-imbalance we mentioned arises because the geom rast kernel

produces a potentially different number of output elements for each input element. Since

each cluster can produce a different number of outputs into their local SRF bank, this will

cause all the kernels downstream to suffer load-imbalance, even if these later kernels do not

contain any conditionals themselves. Therefore, by writing the outputs of geom rast to the

SRF using a conditional stream we can ensure that the load will be distributed evenly for

the remainder of the kernels in the RENDER application. Every conditional technique took

advantage of this, and there was between 1.1×–1.4× speedup in the overall application by

using conditional streams. We should note that the improvement achieved by RENDER is

the highest when using CONDITIONAL ROUTING, partly because CONDITIONAL ROUTING

was the only method that increased the performance of the geom rast itself.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 135

Table 5.7 Impact of conditional streams on the performance of the geom rast kernel and
the entire RENDER application on a stream processor with SIMD clusters.

Conditional Streams Normalized

Speedup Comparison

Method
Machine

type
geom rast RENDER geom rast RENDER

ORIGINAL SIMD 1.0 1.1 1.0 1.0

COMMON SIMD 1.0 1.2 2.4 2.1

PREDICATION SIMD 1.0 1.1 1.3 1.2

CONDITIONAL

ROUTING
SIMD 1.1 1.4 4.2 3.1

COMMON and
CONDITIONAL

ROUTING

MIMD — — 4.6 3.3

The MIMD results are shown in the last row of the table. Recall that MIMD was

not able to provide any performance advantage in the last chapter, when we looked at the

RENDER application without conditional streams. However, the situation is slightly dif-

ferent when we add conditional streams. The CONDITIONAL ROUTING implementation

incurs a large overhead for inter-cluster communication when using conditional streams.

For this reason, combining it with the COMMON technique can help on a MIMD machine,

especially to implement the if-statements that have a smaller operations to communication

ratio. However, even so, MIMD only provides a 10% performance advantage on this ap-

plication.3 An interesting future extension of this work would be to see how the actual

performance per unit area compares between the SIMD and MIMD machines.

3A MIMD implementation of conditional streams must be able to handle requests to multiple conditional
streams on the same cycle (from different clusters). On any real MIMD implementation, only one conditional
access would be handled at a time, causing a stall on the clusters requesting access to other streams. However,
our simulation infrastructure ignored this and assumed multiple conditional requests could be handled each
cycle. This unfairly improves the MIMD result, but we estimate the impact of this simulation inaccuracy to
be small on final performance.

CHAPTER 5. LOAD-BALANCING WITH CONDITIONAL STREAMS 136

5.8 Summary

A conditional stream is a mechanism that provides the abstraction of a single global queue,

despite the fact that the SRF is actually banked along with the clusters. Conditional streams

can be used in conjunction with the conditional routing technique in order to provide im-

munity to the load-imbalance in an input data stream, and to generate output data streams

in a way that eliminates any more load-imbalance further downstream in the application.

When faced with the decision of whether to employ conditional streams, we must first

make sure that any benefits gained by improved load-balance between the clusters is not

offset by overheads, both due to executing conditional stream control operations (such as

GEN CX STATE) and due to poorer schedules that result from limited inter-cluster switch

bandwidth. For the if-statement and while-loop benchmarks, there was less than 8% over-

head for using conditional streams when no load-imbalance was in the input dataset. On

the flip side, conditional streams achieved up to a 1.5x speedup for the worst-case situations

in our experiments. We were able to keep the overhead so low because we used a hardware

mechanism for implementing our scheme. We presented the hardware implementation de-

tails, and noted that some of the logic can get expensive when the number of processing

clusters in the machine gets large. Finally, besides being useful for implementing condi-

tional routing, the conditional stream functionality is useful in a variety of other situations,

such as merging two streams. Since the conditional stream mechanism is implemented in

hardware, we can eliminate control logic that would otherwise dilute the kernel code in

these situations.

Chapter 6

Conclusions

Stream processors offer a compelling combination of area and power-efficiency along with

programmability. They excel on a wide range of media processing applications, which

tend to be quite regular. However, applications that contain conditionals are challenging to

execute on stream processors (and other explicitly parallel processors such as SIMD, vector,

and VLIW machines as well). We make the observation however, that conditionals within

kernel main loops do not necessarily break the data-parallel paradigm—that is we can still

operate on many stream elements in parallel. However, conditionals do require different

calculations for each element, so each processing cluster may not execute the exact same

code for each element. Our goal in this dissertation was to develop techniques to efficiently

execute kernels with conditionals, without sacrificing the efficiency of the hardware. To

this end, we wanted to avoid adding dynamic scheduling hardware to improve ILP and we

wanted to avoid providing a separate micro-controller for each processor cluster (MIMD)

to improve data-parallelism.

Before we summarize our contributions, let’s review how bad the problem was to start

with. Let’s look at the geom rast kernel one more time on two machines: 1) a single-cluster

stream processor, with only one ALU in the cluster that is not pipelined; and 2) an eight-

cluster SIMD stream processor with five ALUs per cluster that are pipelined four cycles

deep. We made the observation that the geom rast kernel can be compiled and executed

on the first machine with almost perfect efficiency. However, without using any of the

techniques we introduced, the kernel executes at most 18× as fast on the larger stream

137

CHAPTER 6. CONCLUSIONS 138

processors. Compare this to the potential speedup:

ops/cycle of large machine
ops/cycle of small machine

=
(1 op/ALU

cycle
)(5 ALUs

cluster
)(8 clusters)

1
4

op/cycle
= 160×

We are still roughly nine times as slow as the peak possible speedup. Our new tech-

niques, conditional routing and conditional streams, however are able to increase the speedup

to 31×, which is roughly five times as slow as the peak possible speedup. So while our

techniques improved upon existing techniques by 1.9×, there is still a lot of room for im-

provement. The following discussion will review our specific contributions and identify

potentially fruitful opportunities to increase efficiency even further via future research.

6.1 Conditional Routing

Conditional routing replaces conditional control-flow with communication. This type of

data-steering creates streams of elements that all require similar processing, and hence

each stream can be processed quite efficiently. Conditional routing is thus quite amenable

to software-pipelining to improve VLIW schedules, and to execution on hardware-efficient

SIMD machines. We did make the observation however that when the size of the data

records starts to get large, the required SRF communication starts to slow the kernel down.

Furthermore, we noted that the output of certain optimizations reordered the output of a

kernel with a while-loop. In this regard, we found that the addition of an indexable-SRF

was the best solution for restoring order, if necessary.

Because of these drawbacks, we found that conditional routing was not always the

best technique to use, but rather that it offered a large performance improvement when

the situation was amenable. Therefore, in addition to presenting raw performance, we

analyzed a series of parameter studies for if-statements, in order to understand when we

should choose one technique over the other. For example, PREDICATION can not be beat

when the conditional is small and frequently executed.

Handling complicated conditionals, such as if-statements with many else-if clauses or

with many levels of nesting, could be handled by flattening the whole conditional construct

CHAPTER 6. CONCLUSIONS 139

(Section 3.2.2), and then choosing the best technique for each resulting top-level clause.

However, this may not be the optimal algorithm, since we are ignoring some global infor-

mation contained in the original structure of the if-statements. Therefore, an interesting

area for further research would be to develop algorithms for finding the best combinations

of techniques to apply to complex conditional constructs.

6.2 Conditional Streams

Conditional streams attacked the problem of balancing load across all the clusters of a

stream processor. We proposed a hardware mechanism for accessing the SRF that evenly

distributes elements between the various SRF banks and the clusters. While conditional

streams offered good performance when record sizes were small, the effect of larger record

sizes can potentially reduce its efficiency. This is the main reason why we improved the

performance of the geom rast kernel by only 10% when we added conditional streams. In

order to address this, we recommend further work in evaluating methods of implementing

conditional streams that don’t require every record that is read from or written to the SRF to

be transferred across the global inter-cluster switch. For example, we might consider incor-

porating some of the ideas from existing load-balancing techniques that employ distributed

task-queues.

A distributed task-queue is set up so that processing clusters can make as many ref-

erences as possible to the local SRF bank. As imbalance starts to appear, only the com-

munication necessary to remedy the imbalance is incurred. Keckler classifies distributed

task-queue algorithms into two types: those that load-balance via offloading and those that

load-balance via work stealing [Keckler, 1994]. Offloading schemes require two phases:

a computation phase and communication phase. Processors operate on data in their local

queue in the computation phase. The communication phase is triggered on a node based on

how many tasks are currently in its local task queue. A good comparison of several of these

types of techniques is given provided in [Eager et al., 1986]. In work stealing systems, only

processors with empty local task queues can participate in load-balancing, which they do

by requesting work from other processors. An example of this type of scheme is lazy task

creation [Mohr et al., 1991]. We suggest exploring how to combine some of these methods

CHAPTER 6. CONCLUSIONS 140

with conditional streams, in order reap the benefits of improved load-balancing even when

record sizes are large.

6.3 A Compiler Framework

While conditional routing and conditional streams are tremendously useful in their current

forms, we have shown that there is still much room for improvement. Some of the sug-

gestions above can help in this regard. However, we feel that probably the most important

piece of technology required to proceed will be a framework for implementing these con-

ditional techniques in an automatic compiler tool. This would accelerate the process of

converting a greater number of irregular applications into the stream model. Currently, the

choice of conditional technique has to be made by the programmer, and switching tech-

niques involves manual effort to change kernel and stream code. Even if the compiler

couldn’t analytically determine the best technique, it would at least expedite the process of

testing various techniques to experimentally determine which one is the best.

A useful compiler framework could use a variety of input, from programmer hints to

profiling information. Whether a particular stream must be ordered or not can be included

as a keyword in the stream language. Many of the results presented in this dissertation will

contribute directly to the effort of developing a compiler framework for handling kernel

conditionals. Specific parameter studies, such as the effect of basic-block size and stream

length, identify the relative importance that each characteristic should play in compiler

heuristics. This dissertation also outlines the available options for different situations which

might arise in real program. For example how to sort the output streams of a while-loop

kernel, or how to compile more complex conditional-statements.

One interesting piece of technology that must be developed for the compiler framework

to be successful is the ability to split kernels. This is required to implement the conditional

routing optimizations. The algorithm for splitting kernels must identify which internal live

state goes to the different clauses of the conditional, and must route that state to and from

the corresponding streams. Interestingly, a tool that could split kernels would be useful for

more than just applying conditional routing. For instance, kernels must be split when a data

structure is randomly accessed, and that data structure resides in off-chip DRAM because

CHAPTER 6. CONCLUSIONS 141

it cannot fit in the on-chip memories (SRF or scratch-pads). Furthermore, splitting a kernel

might be the best solution for implementing a single large kernel that contains too much

state to allocate within the local register files (LRFs).

Appendix A

The IMAGINE Stream Processor

Throughout this thesis, we have evaluated our conditional routing results on a prototyp-

ical stream processor. This is not necessarily an idealized model (i.e., realistic latencies

were used for performance), but at the same time the particular combination of architec-

tural parameters we used has never actually been implemented. This appendix presents

some details on a stream processor that has been implemented in silicon (IMAGINE), in

order to provide some concrete numbers. Furthermore, the appendix will explore how the

conditional streams hardware was implemented on IMAGINE, and will present the set of

changes and compromises that were made to the conditional streams implementation on a

real implementation.

The architecture shown in Figure A.1 contains all the basic stream hardware of the

canonical stream processor we introduced in Section 2.2, which consisted of a stream reg-

ister file (SRF) and stream clients. The stream clients on IMAGINE include a kernel execu-

tion unit (KEU) and a DRAM interface, as well as a network interface. The KEU consists

of eight arithmetic VLIW clusters, each of which consists of six arithmetic ALUs (three

adders, two multipliers, and one divide/square-root unit).

In order to simplify the design and implementation of the IMAGINE architecture, the

functionality of the application processor has been split into two portions. The on-chip

stream controller only handles the sequencing of operations to the stream clients. An ex-

ternal processor executes the application level code and hands off any operations destined

for stream clients to the stream controller through the host interface.

142

APPENDIX A. THE IMAGINE STREAM PROCESSOR 143

Imagine Stream Processor

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

ALU Cluster 4

ALU Cluster 3

ALU Cluster 2

ALU Cluster 1

ALU Cluster 0

Stream
Register File

Stream
Controller

Host
Processor

Streaming
Memory
System

S
D
R
A
M

Host
Interface

Network Interface

Other Imagine
Nodes, I/O

Figure A.1: The Imagine Processor architecture block diagram and floor-plan.

APPENDIX A. THE IMAGINE STREAM PROCESSOR 144

This processor supports 48 ALUs on a single die to provide a high peak performance.

At a frequency of 180 MHz, IMAGINE delivers 7.4 GFLOPS or 14.4 16-bit GOPS. On a

range of media processing applications, the processor sustains roughly half of this peak

performance [Kapasi et al., 2003]. Furthermore, when supplied with a lower voltage

and clocked at a lower frequency (1.2 V, 96 MHz), the processor achieves a peak of

2.4 GFLOPS/W or 4.7 16-bit GOPS/W.

A.1 Conditional Streams Implementation on Imagine

Implementing conditional streams on the IMAGINE architecture presented some additional

challenges, since we wanted to meet these two additional constraints:

1. In order to reduce complexity, the SRF control on the IMAGINE architecture is not as

flexible as the target SIMD architecture we have been evaluating throughout the dis-

sertation so far. In particular, the clusters on IMAGINE are not capable of accessing

their individual SRF banks independently, and can only push or pop stream elements

together. Thus, even though only one cluster may request an element, all eight SRF

banks will have to pop an element from the stream in order to service that request.

2. We wanted to minimize the impact of conditional streams on the eventual area of the

VLSI implementation of the architecture.

In order to satisfy the first constraint, we had to implement a buffer outside of the

SRF. For a conditional input stream, if initially less than eight clusters requested an input

element, then the remainder would be stored in the buffer (C = 8 on IMAGINE). On the

next access, data would first be supplied from this buffer, and only if there were not enough

elements in the buffer would more elements be read from the stream buffers. Again, any

remaining elements would be kept in the buffer for future accesses. The use of a buffer

to do this is shown in Figure A.2. In this implementation, there must be room for two

words per record element of the stream datatype. The figure shows a sequence of three

conditional stream accesses, where the stream buffers are only accessed for two of the

three accesses. This is because the there is sufficient data in the buffers to completely

APPENDIX A. THE IMAGINE STREAM PROCESSOR 145

satisfy the second conditional stream access. The end-of-stream logic was also modified

to take into account any elements that might be in the buffers at the end of the kernel. As

for output streams, if less than eight clusters wanted to initially output data, then these data

elements would be stored in the buffer with no stream buffer transfer. On the next access,

again, elements would first be stored to the buffers, and only if more than eight elements

have been accumulated will a stream buffer transfer occur. Furthermore, IMAGINE did not

have the ability to track stream lengths that were not a multiple of C. Thus, at the end

of conditional output streams, NULL data elements had to be used to fill any extra stream

slots required to bring the stream length to the next highest multiple of eight. Future kernels

downstream in the application have to specifically case out on these NULL elements in

software to make sure they were not mistaken for real data.

The second constraint, minimizing the impact on area, was met by reusing many mod-

ules already present in the IMAGINE architecture for other purposes. Thus, the inter-cluster

communication switch that was used by kernels to swap data between clusters, served

double-duty as the data switch for conditional streams as well. Furthermore, the extra

buffers required for conditional streams, as discussed just above, were implemented within

the scratch-pad register files in each cluster. These existing modules, named the COMM

unit and SCRATCHPAD unit, are controlled independently by each cluster on the IMAG-

INE architecture. Thus, in order to simplify interfacing with these modules, we factored

the conditional streams global logic into eight identical parts, one for each cluster. This

logic was implemented as two ALUs in each cluster, the JUKEBOX and VALID units.

These two units controlled the COMM and SCRATHPAD units in each cluster in order to

do the necessary buffering and data transfers for conditional streams. Of course, in order

to distribute the conditional stream logic efficiently, some of the computation has to be du-

plicated on each cluster. Nonetheless, these ALUs occupied less than 5% of the area of a

cluster on the IMAGINE prototype chip, less than 1% of the area of the entire processor.

Further details and illustrations of the implementation of conditional streams on IMAGINE

can be found in [Kapasi et al., 2000; Khailany, 2003].

Notice that conditional routing cannot be used on IMAGINE without the conditional

stream mechanism. Conditional routing requires that all clusters be able to fill and drain

their SRF banks independently. However, each cluster cannot independently access their

APPENDIX A. THE IMAGINE STREAM PROCESSOR 146

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

Buffer Switch
Data
Value

Case
Value

Permutation

Access 0

input_stream

������

� ����

� �����

��� ���

SRF0

SRF1

SRF2

SRF3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Permutation

Buffer Switch
Data
Value

Case
Value

Access 1

input_stream

������

� ����

� �����

��� ���

SRF0

SRF1

SRF2

SRF3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Permutation

Buffer Switch
Data
Value

Case
Value

Access 2

input_stream

������

� ����

� �����

��� ���

SRF0

SRF1

SRF2

SRF3

Cluster0

Cluster 1

Clsuter 2

Cluster 3

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Figure A.2: Use of a buffer for conditional streams with Imagine-style stream buffers. The
stream buffers are only read for the first and last conditional input stream operations.

APPENDIX A. THE IMAGINE STREAM PROCESSOR 147

own SRF on IMAGINE. Conditional streams solves the problem by buffering data and bal-

ancing the SRF accesses across the banks. Thus, the benefits of conditional routing we have

discussed for SIMD machines in Chapter 4 would not be applicable to a stream processor

with IMAGINE-style limited SRF control. This increases the importance of conditional

streams on an IMAGINE-style architecture, because they are necessary, not only to achieve

good load-balancing, but to also reap the benefits that conditional routing offer.

Bibliography

[Agarwala et al., 2002] S. Agarwala, P. Koeppen, T. Anderson, A. Hill, M. Ales,

R. Damodaran, L. Nardini, P. Wiley, S. Mullinnix, J. Leach, A. Lell, M. Gill, J. Gol-

ston, D. Hoyle, A. Rajagopal, A. Chachad, M. Agarwala, R. Castille, N. Common,

J. Apostol, H. Mahmood, M. Krishnan, D. Bui, Q. An, P. Groves, L. Nguyen, N. Na-

garaj, and R. Simar. A 600 MHz VLIW DSP. In 2002 International Solid-State Circuits

Conference Digest of Technical Papers, pages 56–57, 2002.

[Ahn et al., 2003] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and

Abhishek Das. Evaluating the Imagine stream architecture. Submitted to the 31st Annual

International Symposium on Computer Architecture, November 2003.

[Allen et al., 1983] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion

of control dependence to data dependence. In Proceedings 10th Annual Symposium on

Principles of Programming Languages, pages 177–189, January 1983.

[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms, pages 665–667, 695–697. MIT Electrical Engineering and

Computer Science Series. MIT Press, 1990.

[Dehnert and Bratt, 1989] James C. Dehnert and Peter Y.-T. Hsu Joseph P. Bratt. Over-

lapped loop support in the Cydra 5. In Proceedings of the Third International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

pages 26–38, Boston, MA, April 1989. ACM Press.

[Dulong, 1998] Carole Dulong. The IA-64 architecture at work. IEEE Computer,

31(7):24–32, July 1998.

148

BIBLIOGRAPHY 149

[Eager et al., 1986] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load shar-

ing in homogeneous distributed systems. IEEE Transactions on Software Engineering,

12(5):662–675, May 1986.

[Ebcioglu and Nakatani, 1990] K. Ebcioglu and T. Nakatani. A new compilation technique

for parallelizing loops with unpredictable branches on a vliw architecture. In D. Gelern-

ter, A. Nicolau, and D. Padua, editors, Research Monographs in Parallel and Distributed

Computing, pages 213–229. MIT Press, 1990.

[Eden and Mudge, 1998] A. N. Eden and T. Mudge. The YAGS branch prediction scheme.

In Proceedings of the 31st Annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 69–77, Dallas, TX, November 1998. IEEE Computer Society Press.

[Ellis, 1986] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. ACM doctoral

dissertation award; 1985. The MIT Press, 1986.

[Fang et al., 1990] Zhixi Fang, Peiyi Tang, Pen-Chung Yew, , and Chuan-Qi Zhu. Dy-

namic processor self-scheduling for general parallel nested loops. IEEE Transactions

on Computers, 39(7):919–929, July 1990.

[Fisher, 1981] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-

paction. IEEE Transactions on Computers, C-30(7):478–489, July 1981.

[Hwu et al., 1993] W. W. Hwu, S. A. Mahlke, W. Y. Chen, N. J. Warter P. P. Chang, R. A.

Bringmann, R. E. Hank R. G. Ouellette, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.

Lavery. The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 7:229–248, January 1993.

[Jayasena et al., 2004] Nuwan Jayasena, Mattan Erez, Jung Ho Ahn, and William J. Dally.

Stream register files with indexed access. In To appear in Proceedings of the 10th

International Symposium on High Performance Computer Architecture, February 2004.

[Kanade et al., 1996] Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano, and

Masaya Tanaka. A stereo machine for video-rate dense depth mapping and its new

BIBLIOGRAPHY 150

applications. In Proceedings of the 15th Computer Vision and Pattern Recognition Con-

ference, pages 196–202, June 1996.

[Kapasi et al., 2000] Ujval J. Kapasi, William J. Dally, Scott Rixner, Peter R. Mattson,

John D. Owens, and Brucek Khailany. Efficient conditional operations for data-parallel

architectures. In Proceedings of the 33rd Annual International Symposium on Microar-

chitecture, pages 159–170, Monterey, CA, December 2000. ACM Press.

[Kapasi et al., 2002a] Ujval J. Kapasi, William J. Dally, Scott Rixner, John D. Owens, and

Brucek Khailany. The Imagine stream processor. In Proceedings 2002 IEEE Interna-

tional Conference on Computer Design, pages 282–288, Freiburg, Germany, September

2002.

[Kapasi et al., 2002b] Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens,

and Brian Towles. Stream scheduling. Concurrent VLSI Architecture Tech Report 122,

Computer Systems Laboratory, Stanford University, Stanford, CA, March 2002.

[Kapasi et al., 2003] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany,

Jung Ho Ahn, Peter Mattson, and John D. Owens. Programmable stream processors.

IEEE Computer, pages 54–62, August 2003.

[Keckler, 1994] Stephen W. Keckler. The importance of locality in scheduling and load

balancing for multiprocessors. Concurrent VLSI Architecture Memo 61, MIT, February

1994.

[Khailany et al., 2001] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Matt-

son, Jin Namkoong, John D. Owens, Brian Towles, Andrew Chang, and Scott Rixner.

Imagine: Media processing with streams. IEEE Micro, pages 35–46, March/April 2001.

[Khailany et al., 2003] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi,

John D. Owens, and Brian Towles. Exploring the VLSI scalability of stream processors.

In Proceedings of the Ninth Symposium on High Performance Computer Architecture,

pages 153–164, Anaheim, CA, February 2003.

BIBLIOGRAPHY 151

[Khailany, 2003] Brucek Khailany. The VLSI Implementation and Evaluation of Area-

and Energy-Efficient Streaming Media Processors. PhD thesis, Stanford University,

Stanford, CA, June 2003.

[Lam, 1988] Monica S. Lam. Software pipelining: An effective scheduling technique for

VLIW machines. In Proceedings of the ACM SIGPLAN 1988 Conference on Program-

ming Language Design and Implementation, pages 318–328, Atlanta, GA, June 1988.

ACM.

[Lowney et al., 1993] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes,

W. D. Lichtenstein, Robert P. Nix, John S. ODonnell, and John C. Ruttenberg. The

Multiflow trace scheduling compiler. Journal of Supercomputing, 7(1–2):51–142, May

1993. Special Issue on Instruction-Level Parallelism.

[Mahlke et al., 1992] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-

mann. Effective compiler support for predicated execution using the hyperblock. In

Proceedings of the 25th Annual International Symposium on Microarchitecture, pages

45–54. IEEE Computer Society Press, December 1992.

[Mattson et al., 2000] Peter Mattson, William J. Dally, Scott Rixner, Ujval J. Kapasi, and

John D. Owens. Communication scheduling. In Proceedings of the 9th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, pages 82–92, Cambridge, MA, November 2000.

[Mattson, 2001] Peter Mattson. A Programming System for the Imagine Media Processor.

PhD thesis, Stanford University, Stanford, CA, 2001.

[McFarling and Hennessy, 1986] Scott McFarling and John Hennessy. Reducing the cost

of branches. In Proceedings of the 13th Annual International Symposium on Computer

Architecture, pages 396–403, Tokyo, Japan, June 1986. IEEE Computer Society Press.

[Mohr et al., 1991] Eric Mohr, David A. Kranz, and Robert H. Halstead Jr. Lazy task

creation: A technique for increasing the granularity of parallel programs. IEEE Trans-

actions on Parallel and Distributed Systems, 2(3):264–280, July 1991.

BIBLIOGRAPHY 152

[Montrym and Moreton, 2002] John Montrym and Henry Moreton. Nvidia GeForce4. In

Hotchips 14, August 2002.

[Naffziger et al., 2002] Samuel D. Naffziger, Glenn Colon-Bonet, Timothy Fischer, Reid

Riedlinger, Thomas J. Sullivan, and Tom Grutkowski. The implementation of the

Itanium 2 microprocessor. IEEE Journal of Solid-State Circuits, 37(11):1448–1460,

November 2002.

[Owens et al., 2000] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott Rixner, Peter

Mattson, and Ben Mowery. Polygon rendering on a stream architecture. In Proceedings

of the 2000 SIGGRAPH / Eurographics Workshop on Graphics Hardware, pages 23–32,

August 2000.

[Owens et al., 2002] John D. Owens, Brucek Khailany, Brian Towles, and William J.

Dally. Comparing Reyes and OpenGL on a stream architecture. In 2002 SIGGRAPH /

Eurographics Workshop on Graphics Hardware, pages 47–56, September 2002.

[Owens, 2002] John D. Owens. Computer Graphics on a Stream Architecture. PhD thesis,

Stanford University, November 2002.

[Polychronopoulos and Kuck, 1987] Constantine D. Polychronopoulos and David J. Kuck.

Guided self-scheduling: A practical scheduling scheme for parallel supercomputer.

IEEE Transaction on Computer, 36(12):1425–1439, December 1987.

[Rai, 2003] Jathin Sanoor Rai. A feasibility study on the application of stream architec-

tures for packet processing applications. Master’s thesis, North Carolina State Univer-

sity, Raleigh, NC, 2003.

[Rajagopal et al., 2002] Sridhar Rajagopal, Scott Rixner, and Joseph R. Cavallaro. A pro-

grammable baseband processor design for software defined radios. In Proceedings of

the 45th IEEE International Midwest Symposium on Circuits and Systems, volume 3,

pages 413–416, Tulsa, OK, August 2002. Invited Paper.

[Rajagopal, 2004] Sridhar Rajagopal. Scalable Wireless Application-Specific Processors

(SWAPs) For Emerging Wireless Systems. PhD thesis, Rice University, Houston, TX,

May 2004. (Expected).

BIBLIOGRAPHY 153

[Rau et al., 1989] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle.

The Cydra 5 departmental supercomputer. IEEE Computer, 22(1):12–35, January 1989.

[Rixner et al., 1998] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson,

John D. Owens, Brucek Khailany, and Abelardo Lopez-Lagunas. A bandwidth-efficient

architecture for media processing. In Proceedings of the 31st Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, pages 3–13. IEEE Computer Society Press,

1998.

[Rixner et al., 2000] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Uj-

val J. Kapasi, and John D. Owens. Register organization for media processing. In

Proceedings of the Sixth International Symposium on High Performance Computer Ar-

chitecture, pages 375–387, January 2000.

[Rixner, 2001] Scott Rixner. Stream Processor Architecture. Kluwer Academic Publish-

ers, Boston, MA, 2001.

[Russell, 1978] Richard M. Russell. The Cray-1 Computer System. Communications of

the ACM, 21(1):63–72, January 1978.

[Seznec et al., 2002] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis

Sazeides. Design tradeoffs for the Alpha EV8 conditional branch predictor. In Pro-

ceedings of the 29th Annual International Symposium on Computer Architecture, pages

295–306, Anchorage, AL, May 2002. IEEE Computer Society Press.

[Sherryl and Pappas, 1990] Tomboulian Sherryl and Matthew Pappas. Indirect addressing

and load balancing for faster solution to mandlebrot set on simd architectures. In Pro-

ceedings of the Third Symposium on the Frontiers of Massively Parallel Computation,

pages 443–450, College Park, MD, October 1990.

[Slotnick et al., 1962] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The

Solomon computer. In Proceedings of the Fall 1962 Eastern Joint AFIPS Computer

Conference, volume 22, pages 97–107, Philadelphia, PA, December 1962.

BIBLIOGRAPHY 154

[Smith, 1981] James E. Smith. A study of branch prediction strategies. In Proceedings

of the 8th Annual Symposium on Computer Architecture, pages 135–148, Minneapolis,

MN, May 1981. IEEE Computer Society Press.

[Stoodley and Lee, 1996] Mark G. Stoodley and Corinna G. Lee. Software pipelining

loops with conditional branches. In Proceedings of the 29th Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, pages 262–273, Paris, France, December

1996. IEEE Computer Society Press.

[Tang and Yew, 1986] P. Tang and P.-C. Yew. Processor self-scheduling for multiple-

nested parallel loops. In Proceedings of the 1986 International Conference on Parallel

Processing, pages 528–535, August 1986.

[TI, 2001] Texas Instruments. TMS320C6713, Floating-Point Digital Signal Processors,

December 2001. Report SPRS186E, Revised July 2003.

[Towle, 1976] R. A. Towle. Control and Data Dependence for Program Transformations.

PhD thesis, University of Illinois, Urbana-Champaign, 1976. Technical Report R-76-

788, Dept. of Computer Science.

[von Hanxleden and Kennedy, 1992] Reinhard von Hanxleden and Ken Kennedy. Relax-

ing SIMD control flow constraints using loop transformations. In SIGPLAN Conference

on Programming Language Design and Implementation, pages 188–199, 1992.

[Warter et al., 1992] Nancy J. Warter, Grant E. Haab, Krishna Subramanian, and John W.

Bockhaus. Enhanced modulo scheduling for loops with conditional branches. In Pro-

ceedings of the 25th Annual International Symposium on Microarchitecture, pages 170–

179, Portland, OR, December 1992. IEEE Computer Society Press.

[Warter-Perez and Partamnian, 1995] Nancy J. Warter-Perez and Noubar Partamnian.

Modulo scheduling with multiple initiation intervals. In Proceedings of the 28th An-

nual International Symposium on Microarchitecture, pages 111–118, Ann Arbor, MI,

November 1995. IEEE Computer Society Press.

BIBLIOGRAPHY 155

[Yeh and Patt, 1991] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch

prediction. In Proceedings of the 24th Annual International Symposium on Microarchi-

tecture, pages 51–61. ACM Press, November 1991.

