
PRIMAL-DUAL CUTTING-PLANE METHOD FOR

DISTRIBUTED DESIGN

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Alessandro Magnani

December 2006

c© Copyright by Alessandro Magnani 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Stephen P. Boyd)
Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mark A. Horowitz)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Sanjay Lall)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

This thesis studies aspects of convex optimization for design. In particular we consider

the problem of designing a complex system formed from a number of subsystems. Each

subsystem represents a soft design, i.e., a system that is not completely specified, or can

be configured in different ways. The design problem is to coordinate the subsystems in

order to achieve a given global specification. There are two major parts of this thesis.

The first part introduces a new framework and algorithm that, under certain condi-

tions, optimally solves the design problem. We call this new algorithm the primal-dual

cutting-plane method. We describe the properties of this algorithm and we demonstrate

with examples the generality of this framework.

The second part introduces new algorithms that can be used to generate high-level

models of subsystems for use in this design framework. In particular we address the

problem of fitting data (perhaps obtained from simulations or complex models) with

piecewise-linear or polynomial convex functions. Moreover we show other techniques

that allow us to generate high-level models for use in this framework. We will also

describe other possible applications of these algorithms.

v

vi

Acknowledgments

First and foremost I would like to thank my advisor Professor Stephen Boyd, for his

excellent guidance and teaching. His wealth of ideas, clarity of thought, enthusiasm and

energy have made working with him an exceptional experience for me.

I would like to thank my academic advisor Professor Mark Horowitz and Professor

Sanjay Lall for giving me valuable feedback and being on my reading committee. I thank

Professor Joseph Kahn for acting as the chairman of my defense committee.

My special thanks go to a dynamic research group whose members are always fun to

be with: Alexandre d’Aspremont, Jon Dattorro, Maryam Fazel, Arpita Ghosh, Michael

Grant, Haitham Hindi, Siddharth Joshi, Seung Jean Kim, Kwangmoo Koh, Robert

Lorenz, Almir Mutapcic, Sikandar Samar, Jöelle Skaf, Jun Sun, Argyris Zymnis and

many others; I am very grateful to Denise Murphy for her superb administrative assis-

tance.

I wish to acknowledge the Stanford Graduate Fellowship program for providing fund-

ing for my Ph.D. study and research.

I dedicate this thesis to my parents and my wife.

vii

viii

Contents

Abstract v

Acknowledgments vii

List of figures xii

1 Introduction and overview 1

1.1 The design problem . 1

1.2 Model creation and convex data fitting . 3

1.3 Contribution of this thesis . 5

2 Primal-dual cutting-plane method 7

2.1 Introduction . 7

2.2 General framework . 9

2.3 The design problem . 14

2.4 Solving the design problem . 16

2.5 Numerical examples . 21

2.6 Remarks . 27

3 Subsystem modeling 29

3.1 Introduction . 29

3.2 Subsystem model through an optimization problem 29

3.3 Subsystem model through a sublevel set and epigraph of a function 31

4 Convex piecewise-linear fitting 33

4.1 Introduction . 33

ix

4.2 Applications . 38

4.3 Least-squares partition algorithm . 40

4.4 Improved least-squares partition algorithm 46

4.5 Numerical examples . 50

5 Convex polynomial fitting 55

5.1 Introduction . 55

5.2 Convex polynomials via SOS . 57

5.3 Function fitting via SOS . 58

5.4 Minimum volume set fitting . 60

5.5 Conditional convex polynomial fitting . 65

5.6 Extensions . 68

A 71

A.1 Affine coordinate transformation invariance 71

Bibliography 73

x

List of Figures

2.1 System with four subsystems. The variables xi are the interface variables,

the yi are the internal variables. Constraints are represented with lines

between subsystems. 10

2.2 Cutting-plane example: x◦ is a cutting-plane of X 12

2.3 Primal oracle: primal oracle of the subsystem X returns cutting-plane x◦

when queried with the point x. 13

2.4 Dual oracle: the dual oracle of system X returned point x when queried

with cutting-plane x◦. 14

2.5 Cascaded combinatorial logic block example. 22

2.6 Block diagram of the combinatorial logic block systems represented in the

new framework. 24

2.7 Primal-dual algorithm iterations for the cascaded combinatorial logic blocks

example: white dot represents a feasible subsystem, a black dot represents

an infeasible subsystem. 25

2.8 Power allocation versus algorithm iterations for the cascaded combinato-

rial logic blocks example. The black line is the total power constraint.

The dash-dotted line represents the power allocated to the first block and

the dashed line represents the sum of the power allocated to both blocks. 26

2.9 Cascaded amplifiers example. 26

2.10 Amplifier topology. The common mode circuitry is not shown for simplicity. 26

2.11 Power allocation versus iterations for the cascaded amplifier example. The

dashdotted line represents the power allocated to the first amplifier and

the dashed line represents the power allocated to both of them. The black

line is maximum total power. 27

xi

2.12 Input referred noise versus iterations for the cascaded amplifier example.

The dashdotted line represents the input referred noise of the first am-

plifier and the dashed line represents the input referred noise of both of

them. The black line is maximum total input referred noise. 28

4.1 Best RMS fit obtained with 10 trials (top curve) and 100 trials (bottom

curve), versus number of terms k in max-affine function. 51

4.2 Distribution of RMS fit obtained in 200 trials of least-squares partition

algorithm, for k = 12, lmax = 50. 52

4.3 Distribution of the number of steps required by least-squares partition

algorithm to converge, over 200 trials. The number of steps is reported as

50 if convergence has not been obtained in 50 steps. 52

4.4 Best RMS fit obtained for max-affine function (top) and sum-max function

(bottom). 53

5.1 Convex polynomial fitting example. 59

5.2 Pseudo minimum volume example. 64

5.3 Conditional convex polynomial fitting. 67

xii

Chapter 1

Introduction and overview

In this thesis we consider the problem of designing a complex system formed by a num-

ber of subsystems. Each subsystem can design itself given specifications and needs to

satisfy a number of constraints imposed by the system. The goal is to find a design for

each subsystem so that the constraints are satisfied and the system meets some global

specifications.

In the first part of the thesis we introduce a new framework and a new algorithm

to solve this design problem. In the second part of the thesis we address the problem

of creating models for the subsystems starting from data or equations describing the

subsystems.

1.1 The design problem

We consider a generic system formed by k subsystems. Each subsystem represents a soft

design, i.e., a system that is not completely specified, or can be configured in different

ways. For example, a subsystem might represent a family of amplifiers, each with a

different gain, power, area, noise power, input capacitance, and so on. The details of

each design are private to the subsystem; only the interface variables are available outside

the subsystem. For our amplifier example, the specific circuit design is private to the

subsystem; its specifications, that matter to the surrounding system, are exported. For

subsystem i we call xi ∈ Rni the vector of interface variables and Xi the set of feasible

interface variables. In other words xi ∈ Xi if and only if subsystem i includes a design

with interface variables xi.

1

2 CHAPTER 1. INTRODUCTION AND OVERVIEW

The subsystems need to satisfy a set of constraints. For example, some of the con-

straints come from the fact that the subsystems share some common resources, or have

electrical connections or need to meet some global specifications. We can assume without

loss of generality that all the constraints are linear and can therefore be written as

k
∑

i=1

Fixi = g.

We will show later why this assumption is not restrictive.

The design problem is to find interface variables that are feasible for all the sub-

systems and satisfy the constraints
∑k

i=1 Fixi = g. We can therefore write the design

problem as

find x

subject to xi ∈ Xi, i = 1, . . . , k
∑k

i=1 Fixi = g.

(1.1)

This problem can describe a large variety of design problems and it is in general hard

to solve. We will therefore only consider the situation where the sets Xi are convex.

Practically it has been shown that many subsystems have set Xi convex at least after a

change of coordinates [dMH02, HBL98, BK05]. Under this assumption the problem is

a convex problem [BV04] and can be solved efficiently. For example, if the sets Xi are

polyhedral the problem becomes a linear program [BV04].

In this thesis we are interested in the situation where we are not given a complete

description of the sets Xi but we can only get information on them using an oracle.

An oracle is a simple way of getting information about Xi. For example, an oracle

can be queried with a point x̂ and it checks if the point belongs to the set Xi or not.

Therefore the oracle gives localization information regarding the set X . In the framework

we present in this thesis, each subsystem has two oracles that we call primal and dual

oracle. The primal oracles checks if a point x̂ belongs to the set X . If the point doesn’t

belong to the set, it returns a halfspace that contains X and not the point x̂. The dual

oracle checks if a given halfspace contains the set X . If the halfspace doesn’t contain X ,

the dual oracle returns a point in the set that is not in the halfspace.

The goal is to coordinate between subsystems to find a solution to problem (1.1),

by only using the information provided by the oracles of the subsystems. We call this

design problem distributed design.

1.2. MODEL CREATION AND CONVEX DATA FITTING 3

In practice this problem is usually solved by a manual iterative process where at each

iteration a new set of interface variables for each subsystem is created and then tested

to see if it achieves the given global specification. If some of the constraints cannot be

met, a new set of specifications is derived and this process is repeated until a feasible

design is found. Usually the new set of specifications is obtained by the designer using

his experience and the information gathered while designing each subsystem.

In chapter 2 we introduce a framework and an algorithm that allows us to solve the

distributed design problem efficiently. In particular, we will precisely define the oracles

and we will introduce a new algorithm called primal-dual cutting-plane method that

either finds a globally optimal design or certifies the infeasibility of the design problem.

One reason for doing distributed design is the ability to solve large design prob-

lems [BT89]. In fact, by splitting the system in smaller subsystems we can distribute

the computation cost and solve larger problems. Another reason is the ability to encap-

sulate subsystems. In fact, in this framework, as long as a subsystem has the specified

interface, it can be swapped or re-used in many different designs. We can also easily

design a system where the internal models of each subsystems are different. The goal of

a designer in this framework is therefore to create soft designs that provides the correct

interface for each of the subsystems.

1.2 Model creation and convex data fitting

In the second part of this thesis, we study the problem of creating suitablemodels for the

subsystems to be used in this framework. We will first address the problem of creating

the oracles of the subsystems if we are given a mathematical description of the subsystem.

We will also consider the problem of estimating the set X if we are only given a set of

points in the set X , possibly on its boundary. This situation can occur if, for example, we

are gathering information on a subsystem by performing simulations. Each simulation

result corresponds to a design and therefore a point in X . Given these points, we would

like to fit them using a family of functions, in order to have an approximation of the

set X . We can then use this fit as a description of the subsystem’s feasible set. We will

describe exactly what we mean by fitting data points.

Chapter 3 shows how given a mathematical representation of the subsystem we can

create the interface for the subsystems (oracles). In particular we consider the case

4 CHAPTER 1. INTRODUCTION AND OVERVIEW

where the design of a subsystem is carried out using a convex optimization problem.

In this case we will show the relationship that exists between the dual variables of the

optimization problem [BV04] and the subsystem’s interface. Moreover we will show how

to create the interface for a subsystem, in the case where the feasible set is described

either as the sublevel set or the epigraph of some given function.

In chapter 4 and chapter 5, we introduce two new algorithms that can be used to

create models for subsystems from given data perhaps obtained from simulations or

complex models. In particular the two algorithms allow us to fit data with a convex

function. The obtained fit together with the techniques of chapter 3, can then be used

to create a subsystem model.

In chapter 4 we present a new algorithm that fit data using convex piecewise-linear

functions. In particular given data

(u1, y1), . . . , (um, ym) ∈ Rn × R

we would like to fit them with a convex piecewise-linear function f : Rn → R from some

set F of candidate functions. The problem is

minimize J(f) =
∑m

i=1(f(ui) − yi)
2

subject to f ∈ F ,

with variable f . We will consider the case where f is given by

f(x) = max{aT
1 x+ b1, . . . , a

T
k x+ bk},

and we will also consider a more general form of a convex piecewise-linear function. We

will introduce new heuristic algorithms for this problem.

In chapter 5 we introduce an algorithm to fit data using convex polynomials. In

particular given data

(u1, y1), . . . , (um, ym)

we want to solve the problem

minimize
∑m

i=1(f(ui) − yi)
2

subject to f is convex,

1.3. CONTRIBUTION OF THIS THESIS 5

where f is a polynomial with the form

f = c1p1 + · · · + cwpw,

and the pi are given polynomials. We will also introduce a heuristic to approximate a

set of data using the sublevel set of polynomials. In particular the problem is

minimize volume(P)

subject to P = {x | f(x) ≤ 1}
ui ∈ P i = 1, . . . ,m,

P is convex.

In chapters 4, and 5, we will also show other possible applications of these algorithms

and we will demonstrate them with examples. In particular these algorithms can be also

used to do LP modeling, to simplify convex functions and to create equations compatible

with geometric programming.

1.3 Contribution of this thesis

In Chapter 2, the framework the the algorithm are new. The convergence result and the

analytical cutting-plane method are based on the standard results [Ye97, BV04].

In Chapter 4, the algorithms presented are new. Chapter 4 is based on the paper

A. Magnani, and S. Boyd. Convex Piecewise-Linear Fitting. Under review in

Optimization and Engineering.

In Chapter 5, the algorithms presented are new. They were originally presented in

A. Magnani, S. Lall and S. Boyd. Tractable fitting with convex polynomials via

sum-of-squares . In proceedings of Conference on Decision and Controls, 2005.

Chapter 2

Primal-dual cutting-plane method

2.1 Introduction

In this chapter we first describe a new framework (§2.2) for convex distributed design.

We define the oracles which are the only interface between subsystems and we define the

form of the constraints between subsystems. We also state all the assumptions that need

to be satisfied by the subsystems and the system. We also define the design problem

that we would like to solve in §2.3. We then describe a class of algorithms (cutting-plane

methods) that allow us to solve convex feasibility problems. We then introduce (§2.4)

the primal-dual cutting-plane method that can be viewed as a improvements of the above

mentioned algorithms, that can efficiently solve the distributed design problem. Finally

we show two examples of how this framework can be used to solve design problems in

practice. We will consider two examples from digital and analog circuit design but the

framework can also be used in other fields as well.

2.1.1 Previous work

For a recent survey of relevant work on automated design, see [GME05]. In the flat

methodology, the design of the entire system is carried out at the same time, designing

each component and subsystem in one large optimization problem. This can be done

by repeatedly simulating the system [KPRC99] or by deriving convex approximate con-

straints, which are then solved with a convex solver [dMH02]. Another approach is called

the top-down constrained driven methodology [VCBS04, CCC+97, DGS+96, DDNAV04].

These methods traverse the design from the highest level design specifications down to

7

8 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

the design of the lowest level subsystems in the system hierarchy. At each step a set of

specifications is chosen for the lower level subsystems and the optimization is then per-

formed at the lower level using this set of specifications. If this fails, the algorithm must

relax the specifications from the previous step and try again. Designs using this approach

have been reporting using simulated annealing [AWV05] to perform the optimization.

The next approach is the so called bottom-up with top-down constrained driven

methodology [HS96, SGA03, BJV03, BNV05]. This methodology is similar to the pre-

vious one but in this one the top down methodology follows a first step in which the

feasibility problem of deciding the feasibility of the design is addressed in a bottom up

fashion. In this methodology each subsystem in the first phase of the design can be

queried with a set of specifications and returns true if the design is feasible and false

vice versa. Using a bottom up algorithm it is possible to find a feasible design for each

subsystem. This technique is similar to our proposed approach, except that we will

require a cutting-plane to be returned when a set of specifications in infeasible. (This

allows us to drive the overall design first to feasibility, and the optimality.) Yet another

methodology we mention is the so-called multi-objective bottom-up technique [EMG05],

which proceeds in a bottom up fashion using a genetic algorithm. At each step the design

of a subsystem is chosen from a library of Pareto optimal designs.

Multidisciplinary design optimization (MDO) is an enabling methodology for the de-

sign of complex system, the physics of which involve coupling between various interacting

subsystems. The underlying focus of MDO methodology is to develop formal procedure

for exploiting the coupling in the problem at every stage of the design process. A review

of the state of the art in MDO can be found in [SH97]. The earlier research in MDO

has focused on system optimization approaches, also known as multidisciplinary feasible

methods [KSD+97]. These approaches carry out the optimization in a centralized way

using a single optimizer. More recently distributed optimization architecture has been

introduced. In particular, concurrent subspace optimization [RG94, WRBB96] and col-

laborative optimization [AL00, BK97] are the most promising ones. The algorithms are

all heuristic and they don’t guarantee convergence to a global optimum.

Many modeling and optimization techniques have been developed for subsystem.

One way to internally optimize the subsystem is using geometric programming [DPZ67].

Models used in this approach can be automatically generated [DGS05] or manually

obtained [dMH02]. Support Vector Machine and kernel techniques can be used to

2.2. GENERAL FRAMEWORK 9

obtained models of the subsystem that return the feasibility or infeasibility of the

design [BJV03, PAOS03]. Other possible modeling techniques are extensive simula-

tion [KPRC99], (boosted) neural networks [WV03, MG05], genetic programming [MG05],

model-order reduction [Roy03], data mining [LSRC02], and Kriging [MG05].

2.2 General framework

A system in our framework is a set of subsystems together with a set of constraints that

the subsystems have to satisfy. The constraints might represent physical connections

between subsystems, some global performance measure that the system needs to achieve,

a limit on a common resource shared by subsystems, or any other specification that allows

us to completely describe the interaction between subsystems.

Each subsystem represents possibly many different designs and therefore we say that

it is a soft design. A given design for subsystem i can be completely described with

a vector yi that we call the vectors of internal variables. In other words the internal

variables are all that is needed to completely specify a given design. If, for example, the

subsystem represents an amplifier the vector of internal variables might contain the size

of all the components in the circuit.

For every design of subsystem i there is an associated vector xi that we call the vector

of interface variables. The vector xi contains all the variables that are visible from the

other subsystems of the system. Therefore all the constraints of the system are expressed

only in term of the interface variables. For the amplifier example the vector xi might

contain the gain, power consumption, area of the amplifier obtained by the design yi.

Figure 2.1 shows a system formed by four subsystems. The lines between subsystems

represents the constraints that are expressed only in term of the interface variables xi.

For simplicity we define n =
∑k

i=1 and x = (x1, . . . , xk) to be respectively the number

and vector of all interface variables in the system.

2.2.1 Subsystem characterization

If we consider subsystem i, for given interface variables xi there might not be a vector of

internal variables yi associated with xi. In this case we say that xi is infeasible for the

subsystem i. In the amplifier example, a set of infeasible interface variables correspond

to some area, noise and power of the amplifier that cannot be achieved by any design. If

10 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

y1

x1

y2

x2

y3

x3

y4

x4

Figure 2.1: System with four subsystems. The variables xi are the interface variables, the
yi are the internal variables. Constraints are represented with lines between subsystems.

instead there is a vector yi associated with xi, we say that xi is feasible for the subsystem.

We call the set of all interface variables that are feasible for the subsystem i, Xi. In

other words if xi ∈ Xi, there is a design of the subsystem yi that corresponds to xi and

if xi /∈ Xi there is no yi that corresponds to xi.

Without loss of generality we will assume for the rest of the paper that for any

subsystem the design x = 0 ∈ X . If this is not the case we can always change coordinates.

We make this assumption only to simplify the mathematical notation.

We will refer to a subsystem by using the set of feasible design. We will therefore

say the subsystem Xi to refer to system i with a feasible set Xi.

2.2.2 System’s constraints

As described before, a system is formed by a set of subsystems and a set of constraints

on their interface variables. In this framework we make the assumption that all the

constraints can be written as

Fx = g,

where F ∈ Rp×n and g ∈ Rp. In other words the constraints are affine in the interface

variables.

This might seem like a restrictive assumption but as we will show with examples, this

is not the case. In fact, we can handle nonlinear constraints by having a new subsystem

whose only purpose is to enforce nonlinear constraints.

2.2. GENERAL FRAMEWORK 11

If, for example, we have the following nonlinear constraints between interface vari-

ables x1 and x2

‖x1 − x2‖ ≤ 1,

we can add to the system a new subsystem with feasible set X3 = {x | ‖x‖ ≤ 1} and

impose the linear constraint x1 − x2 = x3. We will show more examples later in this

thesis.

2.2.3 Convexity and closure assumptions

The framework we just described is extremely general, and in general, the associated

design problem, is hard to solve. We therefore make the assumption that the sets Xi

are convex. Practically it has been shown that many subsystems have set Xi convex at

least after a change of coordinates [dMH02, HBL98, BK05]. Moreover if the convexity

assumption of the set X is not satisfied we can restrict X to a convex subset and still use

this framework. This might be the case if for example we already know that the final

design for a given subsystem will lie in a smaller set of all the feasible designs.

We also assume that the set X is closed. This is from a practical point of view not

important and can be neglected.

2.2.4 The subsystem’s interface

As we said before, each subsystem is described using interface variables x ∈ Rn and the

convex set of feasible design X . To coordinate between subsystems we need to be able

to get information about the sets X . In this framework, the only way to get information

about the feasibility set of a subsystem is through oracles. An oracle is simply an

interface of the subsystem that once queried returns information on the feasibility set.

Each subsystem needs to have what we call a primal oracle and a dual oracle.

In the next sections we will give formal definitions of the oracles. We first introduce

some notation.

2.2.5 Cutting-plane

Given a set X , with 0 ∈ X , and a vector x◦ we say that x◦ is a cutting-plane of X if

x◦Tx < 1 for all x ∈ X . In other words a cutting-plane defines a halfspace {x | x◦Tx < 1}
that contains X and a halfspace {x | x◦Tx ≥ 1} that doesn’t contain it.

12 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

x◦

X

x◦Tx < 1

Figure 2.2: Cutting-plane example: x◦ is a cutting-plane of X .

If the set X is closed and convex for any point y /∈ X there is cutting-plane x◦ of X
such that yTx◦ = 1.

Figure 2.2 shows a cutting-plane of the set X and the shaded area represents the set

{x | x◦Tx < 1}.

2.2.6 Polar set

Given a set X , with 0 ∈ X , we define the polar set X ◦ as

X ◦ = {x◦ | x◦Tx < 1 for all x ∈ X}.

In other words, the polar set is the set of all cutting-plane of the set X . It’s easy to show

that the polar set of a set is always convex.

2.2.7 Primal oracle

The primal oracle allows us to check if a given point belongs to the feasibility set. If the

point doesn’t belong to the feasibility set the primal oracle returns a cutting-plane that

separates the point from the set X . We now define in more detail the primal oracle.

Given a point x̂ we can query the primal oracle of a subsystem. If x̂ ∈ X the

primal oracle returns true and if x̂ /∈ X , it returns a vector xcirc ∈ X ◦ such that

x◦T x̂ > 1. In other words if the specification x̂ is infeasible for the subsystem the oracle

2.2. GENERAL FRAMEWORK 13

X

x

xTx◦ < 1

x◦

Figure 2.3: Primal oracle: primal oracle of the subsystem X returns cutting-plane x◦

when queried with the point x.

returns a cutting-plane which separates X from the point x̂. Therefore we can interpret

x◦ as a certificate of the infeasibility of x̂. The shaded area represents the halfspace

{x | x◦Tx < 1}, that contains the set X .

Figure 2.3 shows the cutting-plane x◦ returned by the primal oracle of the subsystem

X when queried with the point x.

2.2.8 Dual oracle

The dual oracle checks if a given point belongs to the polar of the feasible set. If the

point doesn’t belong to the polar set then it returns an hyperplane that separates the

point from the polar set. We now define in more detail the dual oracle.

Given a vector x◦ we can query the dual oracle of a subsystem. The subsystem

returns true if x◦ ∈ X ◦ otherwise it returns x̂ ∈ X such that x◦T x̂ ≥ 1. The point x̂ is

a certificate that x◦ is not a cutting-plane for X . Figure 2.4 shows the point x returned

by the dual oracle of system X when queried with a vector x◦. Clearly x◦ is not a

cutting-plane for X since the halfspace x | x◦Tx < 1 does not contain X .

We can also interpret the dual oracle as simply a primal oracle for the polar of X .

14 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

X
x

x◦

x◦Tx < 1

Figure 2.4: Dual oracle: the dual oracle of system X returned point x when queried with
cutting-plane x◦.

2.3 The design problem

The problem we want to solve for a given system is to find a feasible specific design for

each subsystems so that all the constraints between them are satisfied. In other words we

would like to find a specific configuration of the subsystem that yield a feasible system.

The problem is then, given a system with constraints described by F and g, to find x so

that the constraints are satisfied, and each xi is feasible. If we define X = X1 × · · · ×Xk

to be the set of all possible x such that xi for i = 1, . . . , k is feasible, we can rewrite the

problem as

find x

subject to x ∈ X ,
Fx = g.

(2.1)

We call problem (2.1) the primal feasible problem. We say that we can solve the

design problem if we either find a feasible solution of problem (2.1) or if we can prove

that the problem is infeasible. In the next section we will show how we can certify

infeasibility of (2.1) by introducing the so called dual problem.

2.3. THE DESIGN PROBLEM 15

2.3.1 Certificate of infeasibility

It is easy to show that if we can find a solution to problem

find ν

subject to F T ν ∈ X ◦,

gT ν ≥ 1.

(2.2)

the design problem is infeasible and therefore a solution to problem (2.2) is a certificate

of infeasibility for problem (2.1). We call this problem the dual feasibility problem.

In fact by contradiction suppose that ν is a solution of problem (2.2) and x ∈ X is such

that Fx = g we have that νTFx < 1 and therefore νT g < 1 but this is a contradiction

since νT g ≥ 1. In general if problem (2.1) is infeasible is not always possible to find a

feasible solution to problem (2.2).

If intX 6= ∅ problem (2.1) and problem (2.2) are strong alternatives, i.e., prob-

lem (2.1) is feasible if and only if problem (2.2) is infeasible and vice versa [BV04].

Under this assumption the design problem is either to find a solution to problem (2.1)

or a solution to problem (2.2).

2.3.2 Reformulation of the design problem

It is possible to rewrite problem (2.1) and problem (2.2) by using the sets Xi and X ◦

i

explicitly. This play an important role since the oracles return information on the indi-

vidual sets Xi and not X .

We define F1, . . . , Fk so that Fx = F1x1 + · · ·+Fkxk. We can write problem (2.1) as

find x

subject to xi ∈ Xi, i = 1, . . . , k
∑k

i=1 Fixi = g.

(2.3)

16 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

and problem (2.2) as

find ν, λ

subject to λ−1
i F T

i ν ∈ X ◦

i , i = 1, . . . , k

1Tλ = 1

λ ≻ 0

gT ν ≥ 1.

(2.4)

It’s easy to see that if problem (2.4) is feasible then problem (2.3) is infeasible. In

fact suppose λ, ν is a solutions of problem (2.4) and x is solution of problem (2.3) we

have

λ−1
i νTFixi < 1 ⇒ νTFixi < λi ⇒

νT
k

∑

i=1

Fixi < 1Tλ ⇒ νT g < 1.

This is a contradiction since we also should have νT g ≥ 1.

It’s also possible to show (see [BV04]) that if intX 6= ∅, these two problems are

strong alternatives. In the next section we will show how to simultaneously look for a

solution of either problem (2.3) or problem (2.4).

2.3.3 Extensions

The design problem we introduce is a feasibility problem i.e., it only involves finding a

feasible design. In practice we are usually interested in a design that minimizes some

given quantity, for example noise or power. We might also be interested in a tradeoff

analysis to see how two or more parameters specification of the design tradeoff. It’s easy,

once the feasibility design problem can be solved, to solve both an optimization problem

or a tradeoff analysis by solving a sequence of feasibility problems [BV04]. For simplicity

in this thesis we will only consider the feasibility problem.

2.4 Solving the design problem

There are multiple ways of solving problem (2.1) when the set X is convex. We first

describe a simple cutting-plane algorithm [Kel60] that allows us to solve problem (2.1) if

2.4. SOLVING THE DESIGN PROBLEM 17

there exists a feasible design. Since this simple algorithm doesn’t guarantee convergence

in the case of an infeasible system we introduce a new algorithm called primal-dual

cutting-plane method (PDCPM) that guarantees to either find a feasible design or to

certify infeasibility by finding a solutions of problem (2.2).

2.4.1 Cutting-plane methods

Cutting-plane methods form a category of effective algorithms for solving nondifferen-

tiable convex optimization problems (see, e.g., [Ber99, BV04, MGV98, GV99]). They can

be regarded as a localization methods that localize a feasible point to a polyhedron (the

localization set). At each iteration a new point in the the localization set is computed

(centering step) and based on the information returned by the primal oracle queried at

that point, the localization set is narrowed down. The classical centering methods that

have been suggested include the center of gravity method of Levin [Lev65], the largest

sphere method of Elzinga and Moore [EM73], the ellipsoid method of Yudin and Ne-

mirovsky [NY83], the maximum volume ellipsoid method of Tarasov, Khachiyan, and

Erlich [KT93, TKE88], and the method of volumetric centers of Vaidya [Vai89], among

others.

In this paper we focus on analytic center cutting-plane method (ACCPM) where the

centering method uses the analytic center of the localization set. This method was first

proposed by Goffin and Vial [GV90] and then continued in [GHV92, GHVZ93].

Analytic center

Let P = {x | Ax ≤ b, Fx = g} = {x | aT
i x ≤ bi, i = 1, . . . ,m, Fx = g} be a

bounded polyhedron, with nonempty interior, defined through inequalities and equality

constraints. Then its analytic center is defined as the unique optimal point of

maximize
∑m

i=1 log
(

bi − aT
i x

)

subject to Fx = g

which can be computed very efficiently using Newton’s method; see, e.g., [Ye97, BV04].

18 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

2.4.2 The ACCPM

The analytic center cutting-plane method starts with an initial polyhedron which in-

cludes any possible solution of (2.3). At each iteration we narrow the polyhedron so that

the polyhedron still contains all solutions of the problem. We then stop as soon as we

find a feasible solution of our problem.

We start with the polyhedron P(0) = {x | A(0)x ≤ b(0), Fx = g} that contains any

possible feasible point x⋆. For example, we can choose

A(0) =





I

−I



 b(0) =





x

−x





where x and x are known lower and upper bounds of the variable x. This is usually

the case in any design problem because there is always a specified range in which the

design variables should lie. Notice that all the points in the localization set are such that

Fx = g and therefore they satisfy the system’s constraints. We therefore just need to

find x in X .

The ACCPM can then be outlined as follows:

given P(0)

j := 0.

repeat

• Compute the analytic center x(j) of P(j).

• Query each subsystem at the point x
(j)
i using primal oracle.

• If x◦[i] for i = 1, . . . , t are the cutting-planes returned, x must lie in the

polyhedron

H(j) = {x | x◦Tx[i] < 1, for i = 1, . . . , t}.

• Form the polyhedron P(j+1) = P(j) ∩H(j)

• If no cutting-plane is returned, quit; else, j := j + 1.

It can be shown that if the problem is feasible and relint{x | Fx = g, x ∈ X} is not

empty, then the algorithm finds a solution in a finite number of steps. For computational

details and convergence analysis of ACCPM, see [Ye97, GV99] and references therein.

2.4. SOLVING THE DESIGN PROBLEM 19

The problem with this algorithm is that if the problem is infeasible there is no

guarantee of convergence. For this reason we introduce a primal-dual ACCPM that

either finds a feasible point or produces a certificate of infeasibility.

2.4.3 Primal-dual ACCPM

We describe a generalized version of ACCPM that we call primal-dual ACCPM. This

algorithm tries to either localize a feasible point of problem (2.3) or a feasible point

of (2.4). We use two polyhedra, P which includes any possible solution of (2.3) and P◦

which includes any possible solution of (2.4). At each iteration we shrink one or the

other of these two polyhedra until we find a feasible point for one of them. To shrink the

localization polyhedra we use the information returned by the primal and dual oracles

of each subsystems.

Before describing the ACCPM in detail we give some intuition on what the algorithm

does and how it shrinks the two polyhedra. Suppose that we query a subsystem at the

point xi using the primal oracle. If the point is not feasible for the subsystem Xi then

the cutting-plane x◦ can be used to shrink the polyhedron P since we now know that a

solution should satisfy xT
i x

◦ < 1. Vice versa if the point xi is feasible for system Xi, we

can shrink the polyhedron P◦ because we know that any cutting-plane x◦ of Xi should

satisfy xT
i x

◦ < 1 and therefore we need to have xT
i F

T
i ν < λ. On the other hand if we

query subsystem i with x◦ using the dual oracle and the dual oracle states that x◦ is a

cutting-plane for subsystem i, we can shrink set P because we need to have xT
i x

◦ < 1. If

instead the dual oracle returns a point xi ∈ Xi then we can shrink P◦ because we need

to have xT
i F

T
i ν < λ.

This shows that by querying each subsystem with either the primal oracle or dual

oracle we can either shrink the polyhedron P or P◦. As before after shrinking each

polyhedron we use the analytical center to find two new points in P and P◦ that we use

to query the primal and dual oracles of each subsystem at the next iteration.

The first polyhedron is defined as before so that it includes any possible solution of

the problem (2.3) and it is consistent with the system constraints. The second bounded

polyhedron contains any possible solution of (2.4) can be defined as

P◦(0) = {(ν, λ) | C(0)ν ≤ d(0), gT ν = −1, λ ≥ 0, 1Tλ = 1}.

20 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

For example, we can choose

C(0) =





I

−I



 d(0) =





y

−y



 ,

where y and y are known bounds. We should notice that the polyhedron P◦(0) contains

all possible solutions of (2.4) and every point in it satisfy

1Tλ = 1, λ � 0, gT ν ≥ 1,

and it is therefore feasible for the problem (2.4).

The primal-dual ACCPM can then be outlined as follows:

given P(0) and P◦(0).

j := 0.

repeat

• Compute the analytic center x(j) of P(j).

• Compute the analytic center (ν(j), λ(j)) of P◦(j).

• Define H(j) = Rn and H◦(j) = Rk+n

• for i=1, . . . , k

– Query subsystem i at the point x
(j)
i using the primal oracle.

– If primal oracle returns true then

H◦(j) = H◦(j) ∩ {(ν, λ) | x(j)T
i F T

i ν < λ}.

– If primal oracle returns x◦ then

H(j) = H(j) ∩ {x | xT
i x

◦ < 1}.

– Query subsystem i at the point Fiν(j)λ
−1
i using the dual oracle.

– If dual oracle return true then

H(j) = H(j) ∩ {x | xT
i Fiν(j)λ

−1
i < 1}.

2.5. NUMERICAL EXAMPLES 21

– If dual oracle returns x⋆ then

H◦(j) = H◦(j) ∩ {(ν, λ) | x⋆TF T
i ν < λ }.

• If H = Rn quit.

• If H◦ = Rk+n quit.

• Form the polyhedron P(j+1) = P(j) ∩H(j).

• Form the polyhedron P◦(j+1) = P◦(j) ∩H◦(j).

• j := j + 1.

If the algorithm terminates because H = Rn, the problem is feasible and x is a solution.

Vice versa the problem is infeasible and (ν(j), λ(j)) is a certificate of infeasibility.

2.4.4 Convergence analysis

The PDCPM, as we noted before, tries to localize a solutions of two different problems at

the same time. It is in other words like two ACCPMs running in parallel. One looks for

a solution of problem (2.3) and the other one looks for a solution of problem (2.4). We

can therefore apply the convergence properties of ACCPM to the PDCPM. Therefore we

conclude that if relint{x | Fx = g, x ∈ X} 6= ∅ or relint{ν | gT ν ≥ 1, F T ν ∈ X ◦} 6= ∅
the algorithm converges in a finite number of steps [GLY96].

The two conditions above are for every practical purpose always satisfied. It’s also

possible to add to the algorithm a maximum number of iteration after which it is auto-

matically terminated.

2.5 Numerical examples

We now present two numerical examples. The main purpose of these examples is to show

the generality of the presented framework and how it can be used to describe systems

and handle nonlinear constraints. We will then show some qualitative results of the

primal-dual cutting-plane method that allows us to better understand the behavior of

the algorithm.

22 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

X1 X2in out

Figure 2.5: Cascaded combinatorial logic block example.

2.5.1 Cascaded combinatorial logic blocks

In the first example we consider two subsystems each containing combinatorial logic.

Internally each block contains 30 gates that are connected randomly and has 8 inputs

and 8 outputs. The output of the first subsystems are connected to the input of the

second one. Figure 2.5 shows the 2 blocks connected together.

To be able to represent this system in our framework we will use four subsystems.

Two subsystems will represent the combinatorial logic block and the remaining 2 will

be used to express some constraints of the system. Moreover we will work with the

logarithm of the variables. In fact it has been shown that under reasonable assumptions

the feasibility set for a combinatorial logic circuit is convex after a logarithmic change

of coordinates [BK05].

We start by describing the two subsystems X1 and X2 that encapsulates the combina-

torial logic. The interface variables are the same for these two subsystems and are power

consumption, maximum input capacitance among all inputs, maximum load capacitance

over all outputs, and worst case delay from input to output. We can therefore, using the

logarithm, define the interface variables as

x1 = logC1in, x2 = logC1load, x3 = logD1, x4 = logP1

x5 = logC2in, x6 = logC2load, x7 = logD2, x8 = logP2

where Cin is the maximum input capacitance among all inputs, Cload is the maximum

output load, D is the worst case delay and P is the power consumption. We should notice

that we are using the maximum input capacitance among all inputs in order to simplify

this example but we could as well use different interface variables for each of the inputs

and outputs. Internally each block is described with equations that are compatible with

2.5. NUMERICAL EXAMPLES 23

geometric programming [BKVH06].

We now describe the two subsystems X3 and X4 used to impose some constraints on

the circuit. We will first give the mathematical description of each of them and we will

then explain why we need them and how we are going to use them. We have

X3 = {(x9, x10, x11) | exp(x9) + exp(x10) ≤ exp(x11)}
X4 = {(x12, x13, x14) | exp(x12) + exp(x13) ≤ exp(x14)}

It’s easy to see that both X3 and X4 are convex.

We will use them to describe the constraint on power and delay of the system. Since

we have a maximum power consumption specification for the system we need to impose

the constraint P1 + P2 ≤ Ptot, but since we work in a logarithmic space we need to

express the condition logP1 + logP2 ≤ logPtot. We have a similar equation for the

delay; since the system has a specification on the maximum delay Dtot we need to

impose logD1 + logD2 ≤ logDtot. It’s clear now how we can use the two subsystems to

impose the above constraints. We will have

x9 = logD1, x10 = logD2, x11 = logDtot

x12 = logP1, x13 = logP2, x14 = logPtot.

Figure 2.6 shows the block diagram of the original system represented in our frame-

work.

We will now explicitly give the matrix F and the vector g that represent all the

constraints for this system formed by X1, X2, X3, and X4. We have

F =













































1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 −1 0













































g =













































logCin

logCload

logDtot

logPtot

0

0

0

0

0













































24 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

X1 X2

X3 X4

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

x11

x12 x13

x14

Cin Cload

Delay Power

Figure 2.6: Block diagram of the combinatorial logic block systems represented in the
new framework.

For example, the first row of F enforces that the input maximum input capacitance of

the first block is equal to the specification for the input capacitance Cin. The last row

instead specifies that x8 = x13.

Even though this example is very simple, it shows that our model can handle non-

linear constraints by using additional subsystems and it’s easy to see how can it be used

for more complicated systems.

We ran the algorithm for some given value of Dtot, Ptot, Cin, and Cload. At each

iteration of the algorithm we represent the ith subsystem with a white dot if the primal

oracle returned feasibility and black otherwise. Figure 2.7 shows that in 25 steps the

algorithm find a feasible design for this specific set of specifications. We should notice

that a white dot corresponds a new cutting-plane in the dual problem and a black dot

corresponds to a new cutting-plane for the primal problem.

Figure 2.8 shows the power allocation between the two subsystems as the algorithm

runs. We notice that the final power allocation gives more power to the second block

as we would expect. Moreover for the first iterations the power allocated to the blocks

exceeds the total power allocation. This corresponds to a choice of x infeasible for X4.

Eventually the specification on power is met and the sum of the powers of the two blocks

2.5. NUMERICAL EXAMPLES 25

1 25
Iterations

CLB 1: X1

CLB 2: X2

Power: X3

Delay: X4

Figure 2.7: Primal-dual algorithm iterations for the cascaded combinatorial logic blocks
example: white dot represents a feasible subsystem, a black dot represents an infeasible
subsystem.

is less than the total allowed power.

2.5.2 Cascaded amplifiers

The second example consists of two cascaded amplifiers (figure 2.9). The global specifi-

cations are the total power, area, gain, input referred noise, bandwidth, phase margin,

input capacitance, output load and input/output swing of the two cascaded amplifiers.

The interface variables are area, power, gain, input referred noise, bandwidth, phase

margin, maximum input capacitance, output load capacitance and maximum input and

output swing. As for the previous example we work with the logarithm of these variables

because this allows us to have the set of feasible design convex [HBL98].

The internal topology of the amplifier is shown in figure 2.10. The common mode

circuitry is not shown for simplicity. All the equations for the amplifier are compati-

ble with geometric programming [HBL98]; therefore the oracles for the subsystems are

obtained using a geometric programming solver as we will show in chapter 3.

It’s also necessary to add another subsystem to enforce the nonlinear constraints that

guarantee that the system meets the global specifications. All these constraints can be

written in a form compatible with geometric programming and therefore we can again

use a geometric programming solver to create the subsystem [HBL98].

26 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

Iterations

P
ow

er

1 5 10 15 20 25
0

100

200

300

400

500

Figure 2.8: Power allocation versus algorithm iterations for the cascaded combinatorial
logic blocks example. The black line is the total power constraint. The dash-dotted line
represents the power allocated to the first block and the dashed line represents the sum
of the power allocated to both blocks.

X1 X2

Figure 2.9: Cascaded amplifiers example.

in

out

Figure 2.10: Amplifier topology. The common mode circuitry is not shown for simplicity.

2.6. REMARKS 27

Iterations

P
ow

er

1 4 8 12
0

10

20

30

40

Figure 2.11: Power allocation versus iterations for the cascaded amplifier example. The
dashdotted line represents the power allocated to the first amplifier and the dashed line
represents the power allocated to both of them. The black line is maximum total power.

We show the behavior of the algorithm for a given run of the algorithm. Figure 2.11

shows the power allocation at each iterations of the algorithm. The dash-dotted line

represents the power allocated to the first amplifier and the dashed line represents the

power allocated to both of them. The black line is maximum power specification. The

algorithm produces a feasible design and at the end as we expected the power allocated

to the first amplifier is more than the one allocated to the second one. This is due to

the fact that the amplifier is in this case limited by the noise.

Figure 2.12 shows the input referred noise of each amplifier together with the noise

specification (in black). The dashdotted line is the input referred noise of the first

amplifier and the dashed line is the input referred noise of the both of them. Again as

we expect the biggest contribution to the overall noise is due to the first amplifier.

2.6 Remarks

We should notice that if it’s possible to write the design problem as a larger convex prob-

lem, it is also possible to rewrite it so that it would fit in this framework. For example,

if it has been shown that a certain design problem can be cast as a convex problem,

we could divide this problem in smaller ones that would represent the subsystems and

rewrite everything in this framework. This applies, for example, to all the literature on

28 CHAPTER 2. PRIMAL-DUAL CUTTING-PLANE METHOD

Iterations

N
oi

se

1 4 8 12
0

20

40

60

Figure 2.12: Input referred noise versus iterations for the cascaded amplifier example.
The dashdotted line represents the input referred noise of the first amplifier and the
dashed line represents the input referred noise of both of them. The black line is maxi-
mum total input referred noise.

design problems that can be carried out using geometric programming. The examples

of this chapter fall in this category.

Chapter 3

Subsystem modeling

3.1 Introduction

In this chapter we consider the problem of creating the interface (primal and dual oracle)

that can be used in the framework we introduced in chapter 2. A subsystem should have

a convex feasible set X and should also have a primal and dual oracle available. We

will address two different situations. In the first one, the subsystem contains internally

an optimization problem that is used to determine if, for given interface variables, the

subsystem is feasible. In the second case the feasible set of the subsystem is described

as the sublevel set of some given function.

3.2 Subsystem model through an optimization problem

We consider a subsystem X with internal variables y, and interface variables x. We

assume that internally the subsystem is modelled with an convex feasibility problem. In

particular we have that a given x is feasible if and only if there is a feasible solution of

the problem

find y

subject to fi(x, y) ≤ 0, i = 1, . . . ,m
(3.1)

where the functions fi(x, y) are jointly convex in x and y.

In the next two sections we will show how to create a primal and a dual oracle from

the dual variables of an optimization problem closely related to problem (3.1).

29

30 CHAPTER 3. SUBSYSTEM MODELING

3.2.1 Primal oracle

We would like to create the primal oracle in the case where it is queried with the vector

x̄.

It’s easy to see that if we solve the problem

find y, x

subject to fi(x, y) ≤ 0, i = 1, . . . ,m

x = x̄

(3.2)

with variables x and y, and we find a feasible solution then by definition x̄ is feasible

and the primal oracle should return feasibility.

Vice versa if the problem is infeasible and µ are the dual variables associated with

the constraints x = x̄ we know [BV04] that for any x such that

xTµ/µT x̄ < 1

there won’t be any feasible solution of problem (3.2) and therefore no feasible design

with interface variables x. This shows that x◦ = −µ/µT x̄ is a cutting-plane and can be

used as the output of the primal oracle.

Therefore to create the primal oracle we solve problem (3.2) and if the problem is

feasible the primal oracle returns feasibility otherwise it returns x◦ = −µ/µT x̄ where µ

is the dual variable associated with the equality constraint x = x̄ of problem (3.2).

3.2.2 Dual oracle

We would like to find the output of the dual oracle when queried with vector x◦. There-

fore we would like to check if x◦ is a cutting-plane for the set X . If x◦ was a cutting-plane

it would mean that any x such that xTx◦ ≥ 1 is infeasible for problem (3.1). We can

check for this condition by solving the optimization problem

find y, x

subject to fi(x, y) ≤ 0, i = 1, . . . ,m

xTx◦ ≥ 1

(3.3)

3.3. SUBSYSTEM MODEL THROUGH A SUBLEVEL SET AND EPIGRAPH OF A FUNCTION31

with variables x and y. Clearly if this problem is infeasible then x◦ is a cutting-plane

for X . If there is a solution x⋆, y⋆ to problem (3.3) then x⋆ corresponds to a feasible

design with x⋆Tx◦ ≥ 1 and can be therefore used as the output of the dual oracle.

To create a dual oracle we solve problem (3.3) and if the problem is infeasible we

return feasibility for the dual oracle and if the problem is feasible, the dual oracle would

return the feasible point x⋆.

We showed that by solving two simple modified versions of problem (3.1) we can

obtain the primal and dual oracles for the subsystem. In practice the two modified

problems can be solved with only a small overhead compared to solving problem (3.1).

3.3 Subsystem model through a sublevel set and epigraph

of a function

In this section, we consider the case where the feasible set X of a subsystem is represented

as the sublevel set of a convex function f and the case where the set X is represented as

the epigraph of a convex function f .

We therefore have for the first case

X = {x | f(x) ≤ α},

where α is a given constant that we can assume without loss of generality to be 1, and

f is a convex function.

In the second case we have

X = {(z, t) | f(z) ≤ t},

where f is a convex function.

These situations may arise if for example the model is obtained by fitting data using

some given family of functions or if we have an analytical expression for X obtained

using some physical or mathematical assumptions. In the next chapters we will show

algorithms that allow us to obtain convex fits of given data that can then be used to

create subsystems using the techniques of this chapter.

We start by noticing that these two situations are special cases of a subsystem de-

scribed through problem (3.1). In fact for the first case, we have that the interface

32 CHAPTER 3. SUBSYSTEM MODELING

variables x are feasible if and only if problem

find y

subject to f(x) − 1 ≤ 0,

is feasible. For the second case instead we have that the interface variables x = (z, t) are

feasible if and only if problem

find y

subject to f(z) − t ≤ 0

is feasible. We can therefore apply the previous results in these cases.

We should notice that if the function f has some special form the problem of creating

primal and dual oracles can be simplified. As an example let’s assume that

f(x) = max(aT
i x+ bi), i = 1, . . . , k

and X is the epigraph of f :

X = {(z, t) | f(z) ≤ t}.

In this case the primal oracle can be obtained very efficiently. Let’s suppose that the

primal oracle is queried with the vector x̂ = (ẑ, t̂). We can easily check if this point

belongs to X by simply checking if the inequalities

aT
i ẑ + bi ≥ t, i = 1, . . . , k

are all satisfied. If for example the mth inequality is not satisfied the primal oracle would

return the vector (b−1
i ai, − b−1) which is a cutting-plane for the set X .

Chapter 4

Convex piecewise-linear fitting

4.1 Introduction

We consider the problem of fitting some given data

(u1, y1), . . . , (um, ym) ∈ Rn × R

with a convex piecewise-linear function f : Rn → R from some set F of candidate

functions. With a least-squares fitting criterion, we obtain the problem

minimize J(f) =
∑m

i=1(f(ui) − yi)
2

subject to f ∈ F ,
(4.1)

with variable f . We refer to (J(f)/m)1/2 as the RMS (root-mean-square) fit of the

function f to the data. The convex piecewise-linear fitting problem (4.1) is to find the

function f , from the given family F of convex piecewise-linear functions, that gives the

best (smallest) RMS fit to the given data.

Our main interest is in the case when n (the dimension of the data) is relatively

small, say not more than 5 or so, while m (the number of data points) can be relatively

large, e.g., 104 or more. The methods we describe, however, work for any values of n

and m.

Several special cases of the convex piecewise-linear fitting problem (4.1) can be solved

exactly. When F consists of the affine functions, i.e., f has the form f(x) = aTx + b,

the problem (4.1) reduces to an ordinary linear least-squares problem in the function

33

34 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

parameters a ∈ Rn and b ∈ R and so is readily solved. As a less trivial example,

consider the case when F consists of all piecewise-linear functions from Rn into R, with

no other constraint on the form of f . This is the nonparametric convex piecewise-linear

fitting problem. Then the problem (4.1) can be solved, exactly, via a quadratic program

(QP); see [BV04, §6.5.5]. This nonparametric approach, however, has two potential

practical disadvantages. First, the QP that must be solved is very large (containing

more than mn variables), limiting the method to modest values of m (say, a thousand).

The second potential disadvantage is that the piecewise-linear function fit obtained can

be very complex, with many terms (up to m).

Of course, not all data can be fit well (i.e., with small RMS fit) with a convex

piecewise-linear function. For example, if the data are samples from a function that has

strong negative (concave) curvature, then no convex function can fit it well. Moreover,

the best fit (which will be poor) will be obtained with an affine function. We can also

have the opposite situation: it can occur that the data can be perfectly fit by an affine

function, i.e., we can have J = 0. In this case we say that the data is interpolated by

the convex piecewise-linear function f .

4.1.1 Max-affine functions

We consider the parametric fitting problem, in which the candidate functions are parametrized

by a finite-dimensional vector of coefficients α ∈ Rp. One very simple form is given by

Fk
ma, the set of functions on Rn with the form

f(x) = max{aT
1 x+ b1, . . . , a

T
k x+ bk}, (4.2)

i.e., a maximum of k affine functions. We refer to a function of this form as ‘max-affine’,

with k terms. The set Fk
ma is parametrized by the coefficient vector

α = (a1, . . . , ak, b1, . . . , bk) ∈ Rk(n+1).

In fact, any convex piecewise-linear function on Rn can be expressed as a max-affine

function, for some k, so this form is in a sense universal. Our interest, however, is in

the case when the number of terms k is relatively small, say no more than 10, or a few

10s. In this case the max-affine representation (4.2) is compact, in the sense that the

number of parameters needed to describe f (i.e., p) is much smaller than the number of

4.1. INTRODUCTION 35

parameters in the original data set (i.e., m(n+ 1)). The methods we describe, however,

do not require k to be small.

When F = Fk
ma, the fitting problem (4.1) reduces to the nonlinear least-squares

problem

minimize J(α) =
m

∑

i=1

(

max
j=1,...,k

(aT
j ui + bj) − yi

)2

, (4.3)

with variables a1, . . . , ak ∈ Rn, b1, . . . , bk ∈ R. The function J is a piecewise-quadratic

function of α. Indeed, for each i, f(ui) − yi is piecewise-linear, and J is the sum of

squares of these functions, so J is convex quadratic on the (polyhedral) regions on which

f(ui) is affine. But J is not globally convex, so the fitting problem (4.3) is not convex.

4.1.2 A more general parametrization

We will also consider a more general parametrized form for convex piecewise-linear func-

tions,

f(x) = ψ(φ(x, α)), (4.4)

where ψ : Rq → R is a (fixed) convex piecewise-linear function, and φ : Rn × Rp →
Rq is a (fixed) bi-affine function. (This means that for each x, φ(x, α) is an affine

function of α, and for each α, φ(x, α) is an affine function of x.) The simple max-affine

parametrization (4.2) has this form, with q = k, ψ(z1, . . . , zk) = max{z1, . . . , zk}, and

φi(x, α) = aT
i x+ bi.

As an example, consider the set of functions F that are sums of k terms, each of

which is the maximum of two affine functions,

f(x) =
k

∑

i=1

max{aT
i x+ bi, c

T
i x+ di}, (4.5)

parametrized by a1, . . . , ak, c1, . . . , ck ∈ Rn and b1, . . . , bk, d1, . . . , dk ∈ R. This family

corresponds to the general form (4.4) with

ψ(z1, . . . , zk, w1, . . . , wk) =
k

∑

i=1

max{zi, wi},

and

φ(x, α) = (aT
1 x+ b1, . . . , a

T
k x+ bk, c

T
1 x+ d1, . . . , c

T
k x+ dk).

36 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

Of course we can expand any function with the more general form (4.4) into its

max-affine representation. But the resulting max-affine representation can be very much

larger than the original general form representation. For example, the function form (4.5)

requires p = 2k(n + 1) parameters. If the same function is written out as a max-affine

function, it requires 2k terms, and therefore 2k(n+1) parameters. The hope is that a well

chosen general form can give us a more compact fit to the given data than a max-affine

form with the same number of parameters.

As another interesting example of the general form (4.4), consider the case in which

f is given as the optimal value of a linear program (LP) with the righthand side of the

constraints depending bi-affinely on x and the parameters:

f(x) = min{cT v | Av ≤ b+Bx}.

Here c and A are fixed; b and B are considered the parameters that define f . This

function can be put in the general form (4.4) using

ψ(z) = min{cT v | Av ≤ z}, φ(x, b, B) = b+Bx.

The function ψ is convex and piecewise-linear (see, e.g., [BV04]); the function φ is

evidently bi-affine in x and (b, B).

4.1.3 Dependent variable transformation and normalization

We can apply a nonsingular affine transformation to the dependent variable u, by forming

ũi = Tui + s, i = 1, . . . ,m,

where T ∈ Rn×n is nonsingular and s ∈ Rn. Defining f̃(x̃) = f(T−1(x − s)), we have

f̃(ũi) = f(ui). If f is piecewise-linear and convex, then so is f̃ (and of course, vice

versa). Provided F is invariant under composition with affine functions, the problem of

fitting the data (ui, yi) with a function f ∈ F is the same the problem of fitting the data

(ũi, yi) with a function f̃ ∈ F .

This allows us to normalize the dependent variable data in various ways. For example,

4.1. INTRODUCTION 37

we can assume that it has zero (sample) mean and unit (sample) covariance,

ū = (1/m)
m

∑

i=1

ui = 0, Σu = (1/m)
m

∑

i=1

uiu
T
i = I, (4.6)

provided the data ui are affinely independent. (If they are not, we can reduce the problem

to an equivalent one with smaller dimension.)

4.1.4 Previous work

Piecewise-linear functions arise in many areas and contexts. Some general forms for rep-

resenting piecewise-linear functions can be found in, e.g., [KC78, KC90]. Several methods

have been proposed for fitting general piecewise-linear functions to (multidimensional)

data. A neural network algorithm is used in [GDD02]; a Gauss-Newton method is used

in [JJD98, HB97] to find piecewise-linear approximations of smooth functions. An iter-

ative procedure, similar in spirit to our method, is described in [FTM02]. Software for

fitting general piecewise-linear functions to data include, e.g., [TB04, SF02].

The special case n = 1, i.e., fitting a function on R, by a piecewise-linear function

has been extensively studied. For example, a method for finding the minimum number

of segments to achieve a given maximum error is described in [Dun86]; the same problem

can be approached using dynamic programming [Goo94, BR69, HS91, WHCL93], or a a

genetic algorithm [PM00]. The problem of simplifying a given piecewise-linear function

on R, to one with fewer segments, is considered in [II86].

Another related problem that has received much attention is the problem of fitting

a piecewise-linear curve, or polygon, in R2 to given data; see, e.g., [ABO+85, MS92].

An iterative procedure, closely related to the k-means algorithm and therefore similar in

spirit to our method, is described in [PR88, Yin98].

Piecewise-linear functions and approximations have been used in many applications,

such as detection of patterns in images [RDPR85], contour tracing [DLTW90], extraction

of straight lines in aerial images [VC92], global optimization [MRT05], compression of

chemical process data [BS96], and circuit modeling [JJD98, CD86, VdMV89].

We are aware of only two papers which consider the problem of fitting a piecewise-

linear convex function to given data. In [MRT05] Mangasarian et al. describe a heuristic

method for fitting a piecewise-linear convex function of the form a+ bTx+ ‖Ax+ c‖1 to

given data (along with the constraint that the function underestimate the data). The

38 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

closest related work that we know of is [KLVY04]. In this paper, Kim et al. describe a

method for fitting a (convex) max-affine function to given data, increasing the number

of terms to get a better fit. (In fact they describe a method for fitting a max-monomial

function to circuit models; see §4.2.3.)

4.2 Applications

As we described in chapter 3 the resulting fit can be used as the starting block to

construct a subsystem to be used in a distributed deisgn problem. In this section we

briefly describe some other applications of convex piecewise-linear fitting.

4.2.1 LP modeling

One application is in LP modeling, i.e., approximately formulating a practical prob-

lem as an LP. Suppose a problem is reasonably well modeled using linear equality and

inequality constraints, with a few nonlinear inequality constraints. By approximating

these nonlinear functions by convex piecewise-linear functions, the overall problem can

be formulated as an LP, and therefore efficiently solved.

As an example, consider a minimum fuel optimal control problem, with linear dy-

namics and a nonlinear fuel-use function,

minimize
∑T−1

t=0 f(u(t))

subject to x(t+ 1) = A(t)x(t) +B(t)u(t), t = 0, . . . , T − 1,

x(0) = xinit, x(T) = xdes,

with variables x(0), . . . , x(T) ∈ Rn (the state trajectory), and u(0), . . . , u(T − 1) ∈ Rm

(the control input). The problem data are A(0), . . . , A(T − 1) (the dynamics matrices),

B(0), . . . , B(T − 1) (the control matrices), xinit (the initial state), and xdes (the desired

final state). The function f : Rm → R is the fuel-use function, which gives the fuel

consumed in one period, as a function of the control input value. Now suppose we have

empirical data or measurements of some values of the control input u ∈ Rm, along with

the associated fuel use f(u). If we can fit these data with a convex piecewise-linear

function, say,

f(u) ≈ f̂(u) = max
j=1,...,k

(aT
j u+ bj),

4.2. APPLICATIONS 39

then we can formulate the (approximate) minimum fuel optimal control problem as the

LP
minimize

∑T−1
t=0 f̃(t)

subject to x(t+ 1) = A(t)x(t) +B(t)u(t), t = 0, . . . , T − 1,

x(0) = xinit, x(T) = xdes,

f̃(t) ≥ aT
j u(t) + bj , t = 1, . . . T − 1, j = 1, . . . , k,

(4.7)

with variables x(0), . . . , x(T) ∈ Rn, u(0), . . . , u(T−1) ∈ Rm, and f̃(0), . . . , f̃(T−1) ∈ R.

4.2.2 Simplifying convex functions

Another application of convex piecewise-linear fitting is to simplify a convex function that

is complex, or expensive to evaluate. To illustrate this idea, we continue our minimum

fuel optimal control problem described above, with a piecewise-linear fuel use function.

Consider the function V : Rn → R, which maps the initial state xinit to its associated

minimum fuel use, i.e., the optimal value of the LP (4.7). (This is the Bellman value

function for the optimal control problem.) The value function is piecewise-linear and

convex, but very likely requires an extremely large number of terms to be expressed in

max-affine form. We can (possibly) form a simple approximation of V by a max-affine

function with many fewer terms, as follows. First, we evaluating V via the LP (4.7),

for a large number of initial conditions. Then, we fit a max-affine function with a

modest number of terms to the resulting data. This convex piecewise-linear approximate

value function can be used to construct a simple feedback controller that approximately

minimizes fuel use; see, e.g., [BBM02].

4.2.3 Max-monomial fitting for geometric programming

Max-affine fitting can be used to find a max-monomial approximation of a positive

function, for use in geometric programming modeling; see [BKVH06]. Given data

(zi, wi) ∈ Rn
++ × R++, we form

ui = log zi, yi = logwi, i = 1, . . . ,m.

(The log of a vector is interpreted as componentwise.) We now fit this data with a

max-affine model,

yi ≈ max{aT
1 ui + b1, . . . , a

T
k ui + bk}.

40 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

This gives us the max-monomial model

wi ≈ max{g1(zi), . . . , gK(zi)},

where gi are the monomial functions

gj(z) = ebiz
aj1

1 · · · zajn
n , j = 1, . . . ,K.

(These are not monomials in the standard sense, but in the sense used in geometric

programming.)

4.3 Least-squares partition algorithm

4.3.1 The algorithm

In this section we present a heuristic algorithm to (approximately) solve the k-term

max-affine fitting problem (4.3), i.e.,

minimize J =
m

∑

i=1

(

max
j=1,...,k

(aT
j ui + bj) − yi

)2

,

with variables a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R. The algorithm alternates between

partitioning the data and carrying out least-squares fits to update the coefficients.

We let P
(l)
j for j = 1, . . . , k, be a partition of the data indices at the lth iteration,

i.e., P
(l)
j ⊆ {1, . . . ,m}, with

⋃

j

P
(l)
j = {1, . . . ,m}, P

(l)
i ∩ P (l)

j = ∅ for i 6= j.

(We will describe methods for choosing the initial partition P
(0)
j later.)

Let a
(l)
j and b

(l)
j denote the values of the parameters at the lth iteration of the

algorithm. We generate the next values, a
(l+1)
j and b

(l+1)
j , from the current partition

P
(l)
j , as follows. For each j = 1, . . . , k, we carry out a least-squares fit of aT

j ui + bj to

yi, using only the data points with i ∈ P
(l)
j . In other words, we take a

(l+1)
j and b

(l+1)
j as

4.3. LEAST-SQUARES PARTITION ALGORITHM 41

values of a and b that minimize

∑

i∈P
(l)
j

(aTui + b− yi)
2. (4.8)

In the simplest (and most common) case, there is a unique pair (a, b) that minimizes (4.8),

i.e.,




a
(l+1)
j

b
(l+1)
j



 =





∑

uiu
T
i

∑

ui
∑

uT
i |P (l)

j |





−1 



∑

yiui
∑

yi



 , (4.9)

where the sums are over i ∈ P
(l)
j .

When there are multiple minimizers of the quadratic function (4.8), i.e., the matrix

to be inverted in (4.9) is singular, we have several options. One option is to add some

regularization to the simple least-squares objective in (4.8), i.e., an additional term of

the form λ‖a‖2
2+µb2, where λ and µ are positive constants. Another possibility is to take

the updated parameters as the unique minimizer of (4.8) that is closest to the previous

value, (a
(l)
j , b

(l)
j), in Euclidean norm.

Using the new values of the coefficients, we update the partition to obtain P
(l+1)
j , by

assigning i to P
(l+1)
s if

f (l)(ui) = max
s=1,...,k

(a(l)T
s ui + b(l)s) = a

(l)T
j ui + b

(l)
j . (4.10)

(This means that the term a
(l)T
j ui+b

(l)
j is ‘active’ at the data point ui.) Roughly speaking,

this means that P
(l+1)
j is the set of indices for which the affine function aT

j z + bj is the

maximum; we can break ties (if there are any) arbitrarily.

This iteration is run until convergence, which occurs if the partition at an iteration

is the same as the partition at the previous iteration, or some maximum number of

iterations is reached.

We can write the algorithm as

Least-squares Partition Algorithm.

given partition P
(0)
1 , . . . , P

(0)
K of {1, . . . ,m}, iteration limit lmax

for l = 0, . . . , lmax

1. Compute a
(l+1)
j and b

(l+1)
j as in (4.9).

42 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

2. Form the partition P
(l+1)
1 , . . . , P

(l+1)
k as in (4.10).

3. Quit if P
(l)
j = P

(l+1)
j for j = 1, . . . , k.

During the execution of the least-squares partition algorithm, one or more of the sets

P
(l)
j can become empty. The simplest approach is to drop empty sets from the partition,

and continue with a smaller value of k.

4.3.2 Interpretation as Gauss-Newton method

We can interpret the algorithm as a Gauss-Newton method for the problem (4.3). Sup-

pose that at a point u ∈ Rn, there is a unique j for which f(u) = aT
j u+bj (i.e., there are

no ties in the maximum that defines f(u)). In this case the function f is differentiable

with respect to a and b; indeed, it is locally affine in these parameter values. Its first

order approximation at a, b is

f(u) ≈ f̂(u) = ãT
j u+ b̃j .

This approximation is exact, provided the perturbed parameter values ã1, . . . , ãk, b̃1, . . . , ãb

are close enough to the parameter values a1, . . . , ak, b1, . . . , ab.

Now assume that for each data point ui, there is a unique j for which f(ui) =

a
(l)T
j ui + b

(l)
j (i.e., there are no ties in the maxima that define f(ui)). Then the first

order approximation of (f(u1), . . . , f(um)) is given by

f(ui) ≈ f̂(ui) = ãT
j(i)ui + b̃j(i),

where j(i) is the unique active j at ui, i.e., i ∈ P
(l)
j .

In the Gauss-Newton method for a nonlinear least-squares problem, we form the first

order approximation of the argument of the norm, and solve the resulting least-squares

problem to get the next iterate. In this case, then, we form the linear least-squares

problem of minimizing

Ĵ =
m

∑

i=1

(

f̂(ui) − yi

)2
=

m
∑

i=1

(

ãT
j(i)ui + b̃j(i) − yi

)2
,

over the variables ã1, . . . , ãk, b̃1, . . . , b̃k. We can re-arrange the sum defining J into terms

4.3. LEAST-SQUARES PARTITION ALGORITHM 43

involving each of the pairs of variables a1, b1, . . . , ak, bk separately:

Ĵ = Ĵ1 + · · · + Ĵk,

where

Ĵj =
∑

i∈P
(l)
j

(ãTui + b̃− yi)
2, j = 1, . . . , k.

Evidently, we can minimize Ĵ by separately minimizing each Ĵi. Moreover, the parameter

values that minimize Ĵ are precisely a
(l+1)
1 , . . . , a

(l+1)
k , b

(l+1)
1 , . . . , b

(l+1)
k . This is exactly

the least-squares partition algorithm described above.

The algorithm is closely related to the k-means algorithm used in least-squares clus-

tering [GG91]. The k-means algorithm approximately solves the problem of finding a

set of k points in Rn, {z1, . . . , zk}, that minimizes the mean square Euclidean distance

to a given data set u1, . . . , um ∈ Rn. (The distance between a point u and the set of

points {z1, . . . , zk} is defined as the minimum distance, i.e., minj=1,...,k ‖u − zj‖2.) In

the k-means algorithm, we iterate between two steps: first, we partition the data points

according to the closest current point in the set {z1, . . . , zk}; then we update each zj as

the mean of the points in its associated partition. (The mean minimizes the sum of the

squares of the Euclidean distances to the point.) Our algorithm is conceptually identical

to the k-means algorithm: we partition the data points according to which of the affine

functions is active (i.e., largest), and then update the affine functions, separately, using

only the data points in its associated partition.

4.3.3 Nonconvergence of least-squares partition algorithm

The basic least-squares partition algorithm need not converge; it can enter a (noncon-

stant) limit cycle. Consider, for example, the data

u1 = −2, u2 = −1, u3 = 0, u4 = 1, u5 = 2

y1 = 0, y2 = 1, y3 = 3, y4 = 1, y5 = 0,

and k = 2. The data evidently cannot be fit well by any convex function; the (globally)

best fit is obtained by the constant function f(u) = 1. For many initial parameter values,

however, the algorithm converges to a limit cycle with period 2, alternating between the

44 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

two functions

f1(u) = max{u+ 2,−(3/2)u+ 17/6}, f2(u) = max{(3/2)u+ 17/6,−u+ 2}.

The algorithm therefore fails to converge; moreover, each of the functions f1 and f2 gives

a very suboptimal fit to the data.

On the other hand, with real data (not specifically designed to illustrate nonconver-

gence) we have observed that the least-squares partition algorithm appears to converge

in most cases. In any case, convergence failure has no practical consequences since the

algorithm is terminated after some fixed maximum number of steps, and moreover, we

recommend that it be run from a number of starting points, with the best fit obtained

used as the final fit.

4.3.4 Piecewise-linear fitting algorithm

The least-squares partition algorithm, used by itself, has several serious shortcomings.

It need not converge, and when it does converge, it can (and often does) converge to

a piecewise-linear approximation with a poor fit to the data. Both of these problems

can be mitigated by running the least-squares partition algorithm multiple times, with

different initial partitions. The final fit is taken to be the best fit obtained among all

iterations of all runs of the algorithm.

We first describe a simple method for generating a random initial partition. We

randomly choose points p1, . . . , pK , and define the initial partition to be the Voronoi sets

associated with these points. We have

P
(0)
j = {i | ‖ui − pj‖ < ‖ui − ps‖ for s 6= j}, j = 1, . . . ,K. (4.11)

(Thus, P
(0)
j is the set of indices of data points that are closest to pj .) The seed points pi

should be generated according to some distribution that matches the shape of the data

points ui, for example, they can be chosen from a normal distribution with mean ū and

covariance Σu (see (4.6)).

The overall algorithm can be described as

Piecewise-Linear Fitting Algorithm.

4.3. LEAST-SQUARES PARTITION ALGORITHM 45

given number of trials Ntrials, iteration limit lmax

for i = 1, . . . , Ntrials

1. Generate random initial partition via (4.11).

2. Run least-squares partition algorithm with iteration limit lmax.

3. Keep track of best RMS fit obtained.

4.3.5 General form fitting

In this section we show the least-squares partition algorithm can be modified to fit

piecewise-linear functions with the more general form (4.4),

f(x, α) = ψ(φ(x, α)),

where ψ is a fixed convex piecewise-linear function, and φ is a fixed bi-affine function.

We described the least-squares partition algorithm in terms of a partition of the

indices, according to which of the k affine functions is active at the point ui. The same

approach of an explicit partition will not work in the more general case, since the size of

the partition can be extremely large. Instead, we start from the idea that the partition

gives an approximation of f(ui) that is affine in α, and valid near α(l). If there is no ‘tie’

at ui (i.e., there is a unique affine function that achieves the maximum), then the affine

approximation is exact in a neighborhood of the current parameter value α(l).

We can do the same thing with the more general form. For each i, we find ai(α) and

bi(α), both affine functions of α, so that

f(ui, α) ≈ ai(α)Tui + bi(α)

for α near α(l), the current value of the parameters. This approximation is exact in

a neighborhood of α(l) if ψ(ui, α) is a point of differentiability of ψ. (For max-affine

functions, this is the case when there is no ‘tie’ at ui.) If it is not such a point, we can

choose any subgradient model of f(ui, α), i.e., any ai(α) and bi(α) for which

f(ui, α
(l)) = ai(α

(l))Tui + bi(α
(l)),

46 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

(the approximation is exact for α = α(l)), and

f(ui, α) ≥ ai(α)Tui + bi(α)

for all α. (In the case of max-affine functions, breaking any ties arbitrarily satisfies this

condition.)

We then compute a new parameter value using a Gauss-Newton like method. We

replace f(ui) in the expression for J with

f̂ (l)(ui, α) = ai(α
(l))Tui + bi(α

(l)),

which is affine in α. We then choose α(l+1) as the minimizer of

Ĵ =
m

∑

i=1

(f̂ (l)(ui) − yi)
2,

which can be found using standard linear least-squares.

To damp this update rule, we can add a regularization term to Ĵ , by choosing α(l+1)

as the minimizer of
m

∑

i=1

(f̂ (l)(ui) − yi)
2 + ρ‖α− α(l)‖2,

where ρ > 0 is a parameter.

4.4 Improved least-squares partition algorithm

The main problem with the previous algorithm is that each minimization is performed

locally on a set of points and no information regarding the other points is retained. This

is in general not a problem if the given data can be interpolated with a convex function

but, in other cases, the algorithm might not produce good results and not even converge.

We now present an improved partition algorithm that guarantees the convergence of

J . In §4.4.1, we will interpret this algorithm and give an intuitive derivation of it. In

§4.4.2, we will then give a proof of convergence and in §4.4.3, we will show the connection

with the simple partition algorithm.

First, to simplify the notation we define

f̃
(l)
j (x) = max{a(l)T

1 x+ b
(l)
1 , . . . , a

(l)T
j−1x+ b

(l)
j−1, a

(l)T
j+1x+ b

(l)
j+1, . . . , a

(l)T
k ui + b

(l)
k }.

4.4. IMPROVED LEAST-SQUARES PARTITION ALGORITHM 47

We can interpret f̃j as the fitting function we would obtain after the lth iteration of the

simple partition algorithm by eliminating the jth term in the max-affine form.

As for the simple partition algorithm, we let a
(l)
j and b

(l)
j denote the values at the lth

iteration of the algorithm and P
(l)
j for j = 1, . . . , k a partition on the data indices at the

lth iteration.

Given a partition of the data indices at the lth iteration, we pick a specific set P
(l)
h

and we take a
(l+1)
h and b

(l+1)
h as the optimal value a and b of the problem

minimize
∑

i∈P
(l)
h

max{(aTui + b− yi)
2, (f̃

(l)
h (ui) − yi)

2
+}

+
∑

i/∈P
(l)
h

((aTui + b− yi − |f (l)(ui) − yi|)+ + |f (l)(ui) − yi|)2,
(4.12)

where (x)+ = 0 for x ≤ 0 and (x)+ = x for x > 0. We set a
(l+1)
j = a

(l)
j and b

(l+1)
j = b

(l)
j

for h 6= j. We then find a new parttition P
(l+1)
j that satisfy conditions (4.10) and we

keep iterating until we reach convergence.

There could be different ways of picking the set P
(l)
h at each iteration. A natural one

is to iteratively pick its value from 1 to k. The algorithm then becomes

Improved Least-squares Partition Algorithm.

given partition P
(0)
1 , . . . , P

(0)
K of {1, . . . ,m}, iteration limit lmax

for l = 0, . . . , lmax

1. h = modk l + 1.

2. Compute a
(l+1)
h and b

(l+1)
h as in (4.12).

3. Define a
(l+1)
j = a

(l)
j and b

(l+1)
j = b

(l)
j for h 6= j.

4. Form the partition P
(l+1)
1 , . . . , P

(l+1)
k as in (4.10).

5. Quit if P
(l)
j = P

(l+1)
j for j = 1, . . . , k.

4.4.1 Interpretation

To gain some insight in this algorithm, we first make some observations on the value of

J from the lth iteration to the next assuming we are only changing a
(l)
1 to a

(l+1)
1 and b

(l)
1

to b
(l+1)
1 .

The contribution to the value of J associated with a point i /∈ P
(l)
1 at iteration (l+1)

48 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

is

(f (l+1) − yi)
2 = (max{f (l)(ui), a

(l+1)T
1 ui + b

(l+1)
1 } − yi)

2, (4.13)

and for a point i ∈ P
(l)
1 is

(f (l+1) − yi)
2 = (max{a(l+1)T

1 ui + b
(l+1)
1 , f̃

(l)
1) − yi}2. (4.14)

The value of J at iteration (l + 1) is then given by

J =
∑

i∈P
(l)
1

(max{a(l+1)T
1 ui+b

(l+1)
1 , f̃

(l)
1)−yi}2+

∑

i/∈P
(l)
1

(max{f (l)(ui), a
(l+1)T
1 ui+b

(l+1)
1 }−yi)

2.

We would like to choose a
(l+1)
1 and b

(l+1)
1 that minimize J . The problem is that both

expression (4.13) and (4.14) are in general non convex in a
(l+1)
1 and b

(l+1)
1 and therefore

the problem of minimizing J as a function of a
(l+1)
1 and b

(l+1)
1 is, in general, hard to

solve.

We therefore seek convex functions of a
(l+1)
1 and b

(l+1)
1 that gives an upper bound

of (4.13) and (4.14). It’s easy to see that

((a
(l+1)T
1 ui + b

(l+1)
1 − yi − |f (l)(ui) − yi|)+ + |f (l)(ui) − yi|)2 (4.15)

is convex as a function of a
(l+1)
1 and b

(l+1)
1 and is always greater or equal than (4.13).

Notice that (4.15) is equal to (4.13) if a
(l+1)T
1 ui + b

(l+1)
1 ≤ yi + |f (l)(ui) − yi| and in

particular if a
(l+1)
h = a

(l)
h and b

(l+1)
h = b

(l)
h . It’s also easy to see that

max{(a(l+1)T
1 ui + b

(l+1)
1 − yi)

2, (f̃
(l)
1 (ui) − yi)

2
+} (4.16)

is convex as a function of a
(l+1)
1 and b

(l+1)
1 and is always greater or equal than (4.14).

Notice that (4.16) is equal to (4.14) if a
(l+1)
h = a

(l)
h and b

(l+1)
h = b

(l)
h .

It’s then clear that at each step, the algorithm minimizes an upper bound of J over

the parameters a
(l+1)
h and b

(l+1)
h by fixing all the other parameters. It’s also important

to notice that the upper bound of J is equal to J for a
(l+1)
h = a

(l)
h and b

(l+1)
h = b

(l)
h . This

is the key property to show the convergence of the algorithm.

From this derivation is clear that problem (4.12) is a convex problem and it can also

4.4. IMPROVED LEAST-SQUARES PARTITION ALGORITHM 49

be rewritten as

minimize ‖t‖2

subject to f̃
(l)
h (ui) − yi ≤ ti, i ∈ P

(l)
h ,

−ti ≤ aTui + b− yi ≤ ti, i ∈ P
(l)
h ,

aTui + b− yi ≤ ti, i /∈ P
(l)
h ,

−ti ≤ f (l)(ui) − yi ≤ ti, i /∈ P
(l)
h ,

(4.17)

which is a quadratic program [BV04].

4.4.2 Convergence

It’s easy to show that the optimal value of (4.3) will converge. In fact we have

J (l+1) =
∑

i∈P
(l)
h

(f (l+1)(ui) − yi)
2 +

∑

i/∈P
(l)
h

(f (l+1)(ui))
2

≤
∑

i∈P
(l)
h

max{(a(l+1)T
h ui + b

(l+1)
h − yi)

2, (f̃
(l)
h (ui) − yi)

2
+}

+
∑

i/∈P
(l)
h

((a
(l+1)T
h ui + b

(l+1)
h − yi − |f (l)(ui) − yi|)+ + |f (l)(ui) − yi|)2

≤
∑

i∈P
(l)
h

max{(a(l)T
h ui + b

(l)
h − yi)

2, (f̃
(l)
h (ui) − yi)

2
+}

+
∑

i/∈P
(l)
h

((a
(l)T
h ui + b

(l)
h − yi − |f (l)(ui) − yi|)+ + |f (l)(ui) − yi|)2

=
∑

ui

(f (l)(ui) − yi)
2

= J (l).

Therefore at each iteration the value of J can only decrease and will therefore converge.

4.4.3 Connection with the simple partition algorithm

We should notice that, if the given data can be interpolated by a convex function the

solution of (4.12) is be the same as the one of

minimize
∑

i∈P
(l)
h

max{(aTui + b− yi)
2, (f̃

(l)
h (ui) − yi)

2
+}, (4.18)

50 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

provided this problem has a unique solution. This minimization problem is performed

only locally on the points of the set P
(l)
h as for the simple partition algorithm. Moreover,

as long as f̃
(l)
h (ui) − yi ≤ 0 problem (4.18) reduces to

minimize
∑

i∈P
(l)
h

(aTui + b− yi)
2,

which is the same as the minimization performed in the simple partition algorithm. This

condition is usually satisfied if the data can be interpolated with a convex function.

This shows that under certain conditions the improved and simple partition algorithm

are identical.

Finally we should notice that the starting point and the other techniques introduced

for the simple algorithm can be used for the improved partition algorithm.

4.5 Numerical examples

In this section we show some numerical results, using the following data set. The di-

mension is n = 3, and we have m = 113 = 1331 points. The set of points ui is given by

V × V × V, where V = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. The values are obtained as

yi = g(ui), where g is the (convex) function

g(x) = log(expx1 + expx2 + expx3).

We use the piecewise-linear fitting algorithm described in §4.3.4, with iteration limit

lmax = 50, and number of terms varying from k = 0 to k = 20. For k = 0, the fitting

function is taken to be zero, so we report the RMS value of y1, . . . , ym as the RMS fit.

For k = 1, the fit is the best affine fit to the data, which can be found using least-squares.

Figure 4.5 shows the RMS fits obtained after Ntrials = 10 trials (top curve), and after

Ntrials = 100 trials (bottom curve). These show that good fits are obtained with only 10

trials, and that (slightly) better ones are obtained with 100 trials.

To give an idea of the variation in RMS fit obtained with different trials, as well

as the number of steps required for convergence (if it occurs), we fix the number of

terms at k = 12, and run the least-squares partition algorithm 200 times, with a limit

of 50 iterations, recording both the final RMS fit obtained, and the number of steps

before convergence. (The number of steps is reported as 50 if the least-squares partition

4.5. NUMERICAL EXAMPLES 51

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

k

R
M

S
fi
t

Figure 4.1: Best RMS fit obtained with 10 trials (top curve) and 100 trials (bottom
curve), versus number of terms k in max-affine function.

algorithm has not converged in 50 steps.) Figure 4.5 shows the histogram of RMS fit

obtained. We can see that the fit is often, but not always, quite good; in just a few cases

the fit obtained is poor. Evidently the best of even a modest number of trials will be

quite good.

Figure 4.5 shows the distribution of the number of iterations of the least-squares

partition algorithm required to converge. Convergence failed in 13 of the 200 trials;

but in fact, the RMS fit obtained in these trials was not particularly bad. Typically

convergence occurs within around 25 iterations.

52 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036
0

5

10

15

20

25

30

35

RMS fit

N
u
m

b
er

of
tr

ia
ls

Figure 4.2: Distribution of RMS fit obtained in 200 trials of least-squares partition
algorithm, for k = 12, lmax = 50.

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Number of iterations

N
u
m

b
er

of
ru

n
s

Figure 4.3: Distribution of the number of steps required by least-squares partition algo-
rithm to converge, over 200 trials. The number of steps is reported as 50 if convergence
has not been obtained in 50 steps.

4.5. NUMERICAL EXAMPLES 53

8 10 12 14 16 18 20

10
−1.9

10
−1.8

10
−1.7

10
−1.6

10
−1.5

10
−1.4

k

R
M

S
fi
t max-affine form

sum-max form

Figure 4.4: Best RMS fit obtained for max-affine function (top) and sum-max function
(bottom).

In our last numerical example, we compare fitting the data with a max-affine function

with k terms, and with the more general form

f(x) = max
i=1,...,k/2

(

aT
i x+ bi

)

+ max
i=k/2+1,...,k

(

aT
i x+ bi

)

,

parametrized by a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R. (Note that the number of pa-

rameters in each function form is the same.) This function corresponds to the general

form (4.4) with

ψ(z1, . . . , zk) = max
i=1,...,k/2

zi + max
i=k/2+1,...,k

zi,

and

φ(x, α) = (aT
1 x+ b1, . . . , a

T
k x+ bk).

We set the iteration limit for both forms as lmax = 100, and take the best fit obtained

in Ntrials = 10 trials. We use the value ρ = 10−5 for the regularization parameter in the

general form algorithm. Figure 4.4 shows the RMS fit obtained for the two forms, versus

k. Evidently the sum-max form gives (slightly) better RMS fit than the max-affine form.

54 CHAPTER 4. CONVEX PIECEWISE-LINEAR FITTING

Chapter 5

Convex polynomial fitting

5.1 Introduction

We consider the problem of fitting given data

(u1, y1), . . . , (um, ym)

with ui ∈ Rn and yi ∈ R with a convex polynomial f .

Given polynomials p1, . . . , pw in n variables, we restrict the polynomials we are con-

sidering so that f has the form

f = c1p1 + · · · + cwpw,

where ci for i = 1, . . . , w, are reals. We would like to choose variables c = (c1, . . . , cw).

For example, this description of f allows us to describe the set of polynomials of degree

less than a constant or the polynomials of a specific degree.

Using least-squares fitting we obtain the problem

minimize
∑m

i=1(f(ui) − yi)
2

subject to f is convex,
(5.1)

One may also consider other norms but we will use the above formulation in this chapter.

In some special cases the solution to this problem is known. If, for example, the

polynomials pi are such that f is affine in x and therefore convex, we have that f has

55

56 CHAPTER 5. CONVEX POLYNOMIAL FITTING

the form f = c1 + c2x1 + · · · + cn+1xn and the problem becomes

minimize
∑m

i=1(f(ui) − yi)
2.

This is a least-squares problem with variable ci and it has an analytical solution.

If instead the polynomials pi have degree less than or equal to 2 then f is a quadratic

form and can be written as

f(x) = xTAx+ bTx+ r,

where A, b, and r linearly depend on c. Since imposing the convexity of f is equivalent

to imposing A to be positive semidefinite, the problem becomes

minimize
∑m

i=1(f(ui) − yi)
2

subject to f(x) = xTAx+ bTx+ r,

A � 0.

This problem is a semidefinite program (SDP) [BV04] with variables A, b, and r and can

be solved efficiently.

In the general case, if we consider the set C of coefficients such that f is convex

C = {c | f = c1p1 + · · · + cdpw, f is convex} ,

problem (5.1) can be rewritten as

minimize
∑m

i=1(f(ui) − yi)
2

subject to c ∈ C.
(5.2)

Since the set C is convex, this is a convex optimization problem. Nevertheless, since

there is no known tractable description of the set C in general and so the problem is hard

to solve.

We will consider a subset of C so that the problem becomes tractable. We will also

show conditions under which one can solve the original problem exactly.

5.2. CONVEX POLYNOMIALS VIA SOS 57

5.2 Convex polynomials via SOS

We first consider the problem of imposing convexity on a generic polynomial f in n

variables of the form f = c1p1 + · · ·+ cwpw where pi, i = 1, . . . , w, are given polynomials

in n variables, c = (c1, . . . , cw) ∈ Rw, and d is the degree of f .

We know that a necessary and sufficient condition for f to be convex is that

h = sT∇2f(x)s ≥ 0 for all x, s. (5.3)

Notice that h is a polynomial expression with variables s and x and moreover is of the

same degree d as f .

A polynomial g(t) such that g(t) ≥ 0 for all t ∈ Rn is called positive semidefinite

(PSD). Therefore f is convex if and only if h is PSD.

Except for special cases (e.g., n = 1 or d = 2), it is NP-hard to determine whether

or not a given polynomial is PSD, let alone solve an optimization problem, with the

coefficients of c as variables, with the constraint that h is PSD.

A famous sufficient condition for a polynomial to be PSD is that it has the form

g(x) =
r

∑

i=1

qi(x)
2,

for some polynomials qi, with degree no more than d/2. A polynomial g that has this

sum-of-squares form is called SOS.

The condition that a polynomial g be SOS (viewed as a constraint on its coefficients)

turns out to be equivalent to an linear matrix inequality (LMI) ([Nes00, Par00]). In

particular a polynomial g of even degree w is SOS if and only if there exist monomials

of degree less that d/2, e1, . . . , es and a positive semidefinite matrix V such that

g = eTV e. (5.4)

Since the condition g = eTV e is a set of linear equality constraints relating the coefficients

of g to the elements of V , we have that imposing the polynomial g to be SOS is equivalent

to the positive semidefiniteness constraint that V � 0 together with a set of linear

equality constraints.

We will impose convexity on the polynomial f by requiring h to be SOS. We then

58 CHAPTER 5. CONVEX POLYNOMIAL FITTING

clearly have

S = {c | h is SOS} ⊆ C.

Since the condition of a polynomial being PSD is not equivalent to being SOS, in general

C 6= S and therefore by imposing h to be SOS, we are not considering all the possible

convex polynomials but only a subset of them. Only in special cases does S = C, for

example if n = 1 or d = 2.

As mentioned above, the advantage of h being SOS is that imposing this constraint

can be cast as LMI and handled efficiently [BGFB94].

5.3 Function fitting via SOS

Using the approximation of the previous section to solve problem (5.1), we obtain

minimize
∑m

i=1(f(ui) − yi)
2

subject to c ∈ S.
(5.5)

Equivalently, using the necessary and sufficient condition for a polynomial to be SOS,

we obtain the problem

minimize
∑m

i=1(f(ui) − yi)
2

subject to h = sT∇2f(x)s = eTV e for all x, s

V � 0,

(5.6)

where e is a vector of monomials in s and x and the variables are the matrix V and c.

Since the equation h = eTV e is simply a set of linear equations in the coefficients of V

and c, this problem can be cast as a semidefinite program for which there are efficient

algorithms [BV04, VB96].

5.3.1 Numerical example

We present a very simple example for n = 1, where the data ui for i = 1, . . . , 100, is

obtained by uniformly sampling the interval [−5, 5] and yi = exp(ui). In this case, since

S = C we can tractably solve problem (5.1). Figure 5.1 shows an example, where stars

correspond to given data points.

5.3. FUNCTION FITTING VIA SOS 59

d = 6

d = 4

d = 2

50−5

Figure 5.1: Convex polynomial fitting example.

60 CHAPTER 5. CONVEX POLYNOMIAL FITTING

5.4 Minimum volume set fitting

In this section we address the problem of finding a convex set P , described through a

sub-level set of a convex polynomial g, that contains a set of points and is close in some

sense to them. We would like, for example, to find the minimum volume set P that

includes all points ui.

As before, given polynomials p1, . . . , pw we restrict ourselves to consider a polynomial

g of the form

g = b1p1 + · · · + bwpw,

where we would like to choose b ∈ Rw. Therefore we want to solve the problem

minimize volume(P)

subject to P = {x | g(x) ≤ 1}
ui ∈ P for all i = 1, . . . ,m,

P is convex.

(5.7)

If for example g is a polynomial of degree 2, P will be the minimum volume ellipsoid

containing all the data points. This is a well-known problem [BV04] and if we write g

as g = xTAx+ bTx+ r we then g is convex if and only if A is positive semidefinite. The

above problem then becomes

minimize volume(P)

subject to uT
i Aui + bTui + r ≤ 1, i = 1, . . . ,m

A � 0.

We can assume without loss of generality that g(x) ≥ 0 for all x, in which case the

volume of P is proportional to
√

detA−1 and we can write the problem as

minimize log detA−1

subject to uT
i Aui + bTui + r ≤ 1, i = 1, . . . ,m

A � 0




A b

bT r



 � 0,

where the last constraint is equivalent to g(x) ≥ 0 for all x. This problem can be cast

5.4. MINIMUM VOLUME SET FITTING 61

as an SDP [NN95].

In the general case the problem can be written as

minimize volume(P)

subject to ui ∈ P for i = 1, . . . ,m,

h = sT∇2g(x)s ≥ 0 for all x, s.

Now not only is the second constraint hard to handle exactly, but there is also no known

way to efficiently compute the volume of P . We propose a heuristic algorithm that tries to

shrink the set P around the data points and that for d = 2 is equivalent to the minimum

volume ellipsoid. This problem has possible applications in data mining [KNZ01, LN95],

robotics, and computer vision [KG99, TCS+94, RB97].

5.4.1 Pseudo minimum volume heuristic

The main idea of the algorithm is to increase the curvature of g along all directions so

that the set P gets closer to the points ui. Since the curvature of g along the direction

s is proportional to

h = sT∇2g(x)s,

we will write h in a specific form so that we can, at the same time, enforce h to be PSD

and increase the curvature of g.

The first step, as before, is to impose

h = sT∇2g(x)s is SOS,

or equivalently

h = sT∇2g(x)s = eTV e for all x, s

V � 0,

where e is a vector of monomials in x and s. In this way we have that g is convex.

Similarly to the case of the minimum volume ellipsoid, we maximize the determinant of

V which has the effect of increasing the curvature of g along all possible directions.

62 CHAPTER 5. CONVEX POLYNOMIAL FITTING

The heuristic becomes

minimize log detV −1

subject to g(x) ≥ 0 for all x,

sT∇2g(x)s = eTV e for all x, s

g(ui) ≤ 1 i = 1, . . . ,m.

Again replacing the positivity constraint g(x) ≥ 0 by an SOS condition, we arrive at

minimize log detV −1

subject to g is SOS

sT∇2g(x)s = eTV e for all x, s

g(ui) ≤ 1 i = 1, . . . ,m,

or equivalently

minimize log detV −1

subject to g = hTCh,

C � 0,

sT∇2g(x)s = eTV e for all x, s

g(ui) ≤ 1 i = 1, . . . ,m,

(5.8)

where h is a vector of monomials in x and e is a vector of monomials in x and s. This

problem can now be solved efficiently.

It is clear that for d = 2, the problem reduces to finding the minimum volume

ellipsoid. Note that the matrix C is not unique and it depends on the choice of monomials

e. It is also possible for the heuristic to fail; for example, if we choose a redundant set

of monomials for e, then C may not be full rank and the determinant of C will be zero.

One workaround for this is to use fewer monomials for e. Moreover we should notice

that it is not strictly needed for e to be made out of monomials but any polynomial

expression would work.

It can be shown (see Appendix) that, under some minor conditions, the solution to

this problem has the nice property of being invariant to affine coordinate transformations.

In other words, if P is the solution of the problem, by changing the coordinates of the

points ui through an affine transformation, we would have that the set P scaled by the

same transformation, is an optimal point for the problem in the new set of coordinates.

5.4. MINIMUM VOLUME SET FITTING 63

Example

We show in a simple case how to derive the matrices C and V for problem (5.8). Suppose

g has the form

g(x, y) = c1 + c2x
4y4,

we can choose the vectors of monomials h as

h = (1, x2y2).

With this choice of h the matrix C will be

C =





c1 0

0 c2



 .

We then have

h = sT∇2g(x)s = 12c3x
2y4s21 + 12c3x

4y2s22 + 32x3y3s1s2,

and by picking the vector of monomials e to be

e = (xy2s1, x
2ys2),

we obtain

h = eTV e = eT





12c3 16c3

16c3 12c3



 e.

Numerical example

We show the result of the algorithm for a set of points corresponding to the simulated

first 150 steps of a dynamical system. We pick g to be a generic polynomial of degree

less than d. Figure 5.2 shows the level set for different degrees d of the polynomial g.

64 CHAPTER 5. CONVEX POLYNOMIAL FITTING

d = 6

d = 2d = 2

d = 4

Figure 5.2: Pseudo minimum volume example.

5.5. CONDITIONAL CONVEX POLYNOMIAL FITTING 65

5.5 Conditional convex polynomial fitting

In this section we want to solve problem (5.1) with the relaxed constraint that f is convex

only over a set P and not on the entire space

minimize
∑m

i=1(f(ui) − yi)
2

subject to f is convex on P.
(5.9)

We require that the set P contains the points ui and that is convex. Moreover the set

P should be described as the sub-level set of a polynomial g

P = {x | g(x) ≤ 1} .

For example, the previously presented algorithm gives us a set P with the required

properties that can be used to solve problem (5.9).

We will write a sufficient condition for f to be convex over the set P . We will show

that for P compact this condition has a nice property that allows to prove a stronger

result. For h = sT∇2fs we define

l(x, s) = h(x, s) + w(x, s)(1 − g(x)), (5.10)

where w is a sum of squares polynomial. It is clear that if l is SOS then the function f

will be convex over the set P . Vice versa it can be shown [Sch91] that if P is compact

and h is strictly positive over P , there exist SOS polynomials l and w so that (5.10)

holds.

Therefore, by using this condition to impose convexity of f over P , the problem

becomes
minimize

∑m
i=1(f(ui) − yi)

2

subject to sT∇2fs− w(x, s)(1 − g(x)) is SOS

w is SOS.

Notice that we have a wide range of choice for the polynomial w since the only constraint

is that it should be SOS. Therefore we cannot solve this problem because to describe

the polynomial w we would need an infinite number of variables. Nevertheless we should

notice that if we were able to solve this problem and P was compact, we would be able

66 CHAPTER 5. CONVEX POLYNOMIAL FITTING

to find a polynomial for which the cost function is no greater than the optimal value of

minimize
∑m

i=1(f(ui) − yi)
2

subject to f is strictly convex on P.
(5.11)

To make this problem tractable we can, for example, impose the maximum degree of

w to be less than a given constant t. In this case, w will have the form

w = hTWh,

where h is a vector of all monomials of degree less or equal than t/2 and W is a generic

positive semidefinite matrix.

Once we fix the order of the polynomial w, the problem can be cast as a convex

program (SDP) and solved efficiently. We obtain the problem

minimize
∑m

i=1(f(ui) − yi)
2

subject to sT∇2fs− w(x, s)(1 − g(x)) is SOS

w = hTWh,

W � 0,

where the variables are c and W and h is a vector of monomials of degree less or equal

than t/2. By increasing t we obtain larger problems that in the limit tend to a solution

for which the cost function is not greater than the optimal value of problem (5.11).

5.5.1 Numerical example

We solve the same numerical example presented in section 5.3.1 but imposing convexity

only on the interval [−5, 5]. In this way we can, for example, fit using odd degree

polynomials. We describe the interval with g(x) = x2 − 24 and we fix the degree of w

to be less or equal than 4. In particular figure 5.3 shows the result for a third and fifth

order polynomial. Clearly the function is not convex on R but it is still convex on the

interval [−5, 5].

5.5. CONDITIONAL CONVEX POLYNOMIAL FITTING 67

d = 3

d = 5

50−5 10−10

Figure 5.3: Conditional convex polynomial fitting.

68 CHAPTER 5. CONVEX POLYNOMIAL FITTING

5.6 Extensions

We present two simple extensions. The first one allows to fit a set of points described

through the intersection of two sub-level sets of polynomials. The second one extends

the results of this chapter to a different class of polynomials.

5.6.1 Fitting the intersection of sub-level sets of polynomials

One simple extension of the pseudo minimum volume heuristic is to find a convex set P

that fits a set of the form

K = {x | fi(x) ≤ 0 i = 1, 2} ,

where fi are polynomials.

We can write a sufficient condition for P to contain K. In particular, if we have

(1 − g(ui)) + w1f1 + w2f2 − w3f1f2 is SOS, (5.12)

where wi are SOS, clearly the set P will contain the set K. It can also be shown [Sch91]

that if K is compact and P is such that x̂ ∈ K implies g(x̂) < 1 then there exist SOS

polynomials wi such that (5.12) is verified.

The heuristic can be modified to impose K ⊆ P as

minimize log detC−1

subject to g is SOS

sT∇2g(x)s = eTCe for all x, s ∈ Rn

(1 − g(ui)) +
∑

iwifi − w3f1f2 is SOS,

w1, w2, w3 are SOS.

To be able to solve this problem, we need to impose some more constraints on the

polynomials wi since the only constraint is that they should be SOS. As we did before,

we can impose them to have a maximum degree less than some constant, and the resulting

optimization problem is an SDP. With similar techniques one may also also easily handle

union and intersection of such sets.

5.6. EXTENSIONS 69

5.6.2 Convexity along a line passing through a point

We can extends the techniques presented in this chapter to a different class of polyno-

mials [KG99], that are convex only when restricted to a line passing for a given point

x0.

Given a polynomial f and a point x0, the property is equivalent to

h(x) = (x− x0)
T∇2f(x)(x− x0) ≥ 0 for all x.

In other words we are replacing the generic direction s in (5.3) along which the curvature

of the polynomial is evaluated, with the direction x−x0 that goes through the point x0.

We can therefore apply the function fitting algorithm (5.5) and the pseudo minimum

volume algorithm (5.8) for polynomials with this property by simply substituting s with

x− x0. We should point out that in this case the algorithm loses the property of being

invariant under an affine coordinate transformation.

Appendix A

A.1 Affine coordinate transformation invariance

Given problem (5.8), we would like to show the relationship between the solutions of it

for two different systems of coordinates x, y such that x = Ay + b where detA 6= 0. In

particular we have that, if ui, vi for i = 1, . . . ,m are the points in the first and second

system of coordinates respectively,

ui = Avi + b.

We will use subscript x to refer to the problem with the x coordinates and a y subscript

for the problem in the y coordinates. We call, for example, ex and hx the vectors e and

h in the first system of coordinates and ey and hy in the second. We also call êy and ĥy

the vectors ex and hx where each component as been transformed in the other system

of coordinates so that x = Ay + b and sx = Asy. Therefore each component of ĥy, for

example, is a polynomial in y and êy depends only on y and sy. The same holds for êx

and ĥx which are the vectors ey and hy in the other system of coordinates.

We make the assumption that the vector êy can be represented as a linear combination

of ey and that êx is a linear combination of ex. Moreover we require the same property

for the vectors hx and hy. This assumption is satisfied, for example, if hx consists of

all monomials up to a certain degree in x and the same choice is made for hy. In other

words, we require that in the two systems of coordinates, we can describe the same set

of polynomials.

71

72 APPENDIX A.

Given this property we have that

ĥy = U1hy,

êy = U2ey,

where U1 and U2 are matrices that depend nonlinearly on A and b. So suppose that

g(x) is a feasible solution for the problem in the x coordinates. We will show that the

polynomial f(y) = g(Ay + b) is feasible in the second system of coordinates.

We have that

f(vi) = g(Avi + b) = g(ui) ≤ 1,

and therefore the points are included in the sub-level set. We also have that

f(y) = g(Ay + b)

= ĥT
y Cxĥy

= hT
y U

T
1 CxU1hy,

where clearly Cy = UT
1 CxU1 � 0, and

sT
y ∇2f(y)sy = sT

y ∇2g(Ay + b)sy

= sT
yA

T∇2
xg(Ay + b)Asy

= êTy Vxêy

= eTy U
T
2 VxU2ey,

where Vy = UT
2 VxU2 � 0. It is also clearly true that

log detV −1
x = 2 log detU2 + log detVy,

in other words the same polynomial after a coordinate transformation is still feasible

for the second problem and produce a value which is the same except for a constant

independent of the polynomial. Since the same applies in the other direction, we can

conclude that an optimal solution to the first problem will be optimal for the second one

too.

Bibliography

[ABO+85] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C. Yap. Finding minimal

convex nested polygons. In Proceedings of the symposium on Computational

geometry, pages 296–304. ACM Press, 1985.

[AL00] N. Alexandrov and R. Lewis. Analytical and computational aspects of

collaborative optimization. Technical Report 2000-210104, NASA, 2000.

[AWV05] A. Agarwal, G. Wolfe, and R. Vemuri. Accuracy driven performance macro-

modeling of feasible regions during synthesis of analog circuits. In GLSVSLI

’05: Proceedings of the 15th ACM Great Lakes symposium on VLSI, pages

482–487, New York, NY, USA, 2005. ACM Press.

[BBM02] A. Bemporad, F. Borrelli, and M. Morari. Model Predictive Control Based

on Linear Programming - The Explicit Solution. IEEE Transactions on

Automatic Control, 47(12):1974–1985, December 2002.

[Ber99] D. Bertsekas. Nonlinear Programming. Athena Scientific, second edition,

1999.

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.

[BJV03] F. De Bernardinis, M. Jordan, and A. Vincentelli. Support vector machines

for analog circuit performance representation. In DAC ’03: Proceedings of

the 40th conference on Design automation, pages 964–969, New York, NY,

USA, 2003. ACM Press.

73

74 BIBLIOGRAPHY

[BK97] R. Braun and I. Kroo. Development and application of the collaborative

optimization architecture in a multidisciplinary design environment. Mul-

tidisciplinary Design Optimization: State of the Art, pages 98–116, 1997.

[BK05] S. Boyd and S. Kim. Geometric programming for circuit optimization. In

Proceedings of International Symposium on Physical Design., pages 44–46,

2005.

[BKVH06] S. Boyd, S. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric

programming. Optimization and Engineering, 2006.

[BNV05] F. De Bernardinis, P. Nuzzo, and A. Vincentelli. Mixed signal design space

exploration through analog platforms. In DAC ’05: Proceedings of the 42nd

annual conference on Design automation, pages 875–880, New York, NY,

USA, 2005. ACM Press.

[BR69] R. Bellman and R. Roth. Curve fitting by segmented straight lines. Amer-

ican Statistical Association Journal, 64:1079–1084, 1969.

[BS96] B. Bakshi and G. Stephanopoulos. Compression of chemical process data

by functional approximation and feature extraction. AIChE Journal,

42(2):477–492, January 1996.

[BT89] D. Bertsekas and J. Tsitsiklis. Parallel and distributed computation: nu-

merical methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[CCC+97] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, A. Mal-

vasi, A. Vincentelli, and I. Vassiliou. A Top-Down, Constraint-Driven De-

sign Methodology for Analog Integrated Circuits. Kluwer Academic Pub-

lishers, 1997.

[CD86] L. Chua and A. Deng. Canonical piecewise-linear modeling. IEEE Trans-

actions on Circuits and Systems, 33(5):511–525, May 1986.

BIBLIOGRAPHY 75

[DDNAV04] A. Doboli, N. Dhanwada, A. Nunez-Aldana, and R. Vemuri. A two-layer

library-based approach to synthesis of analog systems from vhdl-ams spec-

ifications. ACM Trans. Des. Autom. Electron. Syst., 9(2):238–271, 2004.

[DGS+96] S. Donnay, G. Gielen, W. Sansen, W. Kruiskamp, D. Leenaerts, S. Buytaert,

K. Marent, M. Buckens, and C. Das. Using top-down CAD tools for mixed

analog/digital ASICs: a practical design case. Analog Integr. Circuits Signal

Process., 10(1-2):101–117, 1996.

[DGS05] W. Daems, G. Gielen, and W. Sansen. Simulation-based generation of

posynomial performance models for the sizing of analog integrated circuits.

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 22(5):517–534, 2005.

[DLTW90] D. Dobkin, S. Levy, W. Thurston, and A. Wilks. Contour tracing by piece-

wise linear approximations. ACM Transactions on Graphics, 9(4):389–423,

October 1990.

[dMH02] M. del Mar Hershenson. Design of pipeline analog-to-digital converters

via geometric programming. In ICCAD ’02: Proceedings of the 2002

IEEE/ACM international conference on Computer-aided design, pages 317–

324, New York, NY, USA, 2002. ACM Press.

[DPZ67] R. Duffin, E. Peterson, and C. Zener. Geometric Programming–Theory and

Application. Wiley, New York, 1967.

[Dun86] J. Dunham. Optimum uniform piecewise linear approximation of planar

curves. IEEE Transactions on Pattern Analysis and Machine Intelligence,

8(1):67–75, 1986.

[EM73] J. Elzinga and T. Moore. Computational experience with the central cutting

plane algorithm. In ACM’73: Proceedings of the annual conference, pages

448.5–456. ACM Press, 1973.

76 BIBLIOGRAPHY

[EMG05] T. Eeckelaert, T. McConaghy, and G. Gielen. Efficient multiobjective syn-

thesis of analog circuits using hierarchical pareto-optimal performance hy-

persurfaces. In DATE ’05: Proceedings of the conference on Design, Au-

tomation and Test in Europe, pages 1070–1075, Washington, DC, USA,

2005. IEEE Computer Society.

[FTM02] G. Ferrari-Trecate and M. Muselli. A new learning method for piecewise lin-

ear regression. In Proceedings of the International Conference on Artificial

Neural Networks, pages 444–449. Springer-Verlag, 2002.

[GDD02] G. Gothoskar, A. Doboli, and S. Doboli. Piecewise-linear modeling of ana-

log circuits based on model extraction from trained neural networks. In

Proceedings of IEEE International Workshop on Behavioral Modeling and

Simulation, pages 41–46, 2002.

[GG91] A. Gersho and R. Gray. Vector quantization and signal compression. Kluwer

Academic Publishers, Norwell, MA, USA, 1991.

[GHV92] J. Goffin, A. Haurie, and J. Vial. Decomposition and nondifferentiable

optimization with the projective algorithm. Management Science, 38:284–

302, 1992.

[GHVZ93] J. Goffin, A. Haurie, J. Vial, and L. Zhu. Using central prices in the

decomposition of linear programs. European Journal of Operation Research,

64:393–409, 1993.

[GLY96] J. Goffin, Z. Luo, and Y. Ye. Complexity analysis of an interior cutting plane

method for convex feasibility problems. SIAM Journal on Optimization,

6(3):638–652, 1996.

[GME05] G. Gielen, T. McConaghy, and T. Eeckelaert. Performance space model-

ing for hierarchical synthesis of analog integrated circuits. In DAC ’05:

Proceedings of the 42nd annual conference on Design automation, pages

881–886, New York, NY, USA, 2005. ACM Press.

[Goo94] M. Goodrich. Efficient piecewise-linear function approximation using the

uniform metric: (preliminary version). In Proceedings of the tenth annual

BIBLIOGRAPHY 77

symposium on Computational geometry, pages 322–331, New York, NY,

USA, 1994. ACM Press.

[GV90] J. Goffin and J. Vial. Cutting planes and columm generation techniques

with the projective alg orithm. Journal of Optimization Theory and Appli-

cations, pages 409–429, 1990.

[GV99] J. Goffin and J. Vial. Convex nondifferentiable optimization: A survey

focussed on the analytic center cutting plane mathod. Technical Report

99.02, McGill University, Canada, February 1999.

[HB97] J. Horst and I. Beichel. A simple algorithm for efficient piecewise-linear

approximation of space curves. In Proceedings of International Conference

on Image Processing. IEEE Computer Society, 1997.

[HBL98] M. Hershenson, S. Boyd, and T. Lee. GPCAD: a tool for CMOS op-amp

synthesis. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international

conference on Computer-aided design, pages 296–303, New York, NY, USA,

1998. ACM Press.

[HS91] S. Hakimi and E. Schmeichel. Fitting polygonal functions to a set of points

in the plane. CVGIP: Graph. Models Image Process, 53(2):132–136, 1991.

[HS96] R. Harjani and J. Shao. Feasibility and performance region modeling of

analog and digital circuits. Analog Integr. Circuits Signal Process., 10(1-

2):23–43, 1996.

[II86] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise

linear function. Journal of Information Processing, 9(3):159–162, 1986.

[JJD98] P. Julian, M. Jordan, and A. Desages. Canonical piecewise-linear approxi-

mation of smooth functions. IEEE Transactions on Circuits and Systems,

45(5):567–571, May 1998.

[KC78] S. Kang and L. Chua. A global representation of multidimensional

piecewise-linear functions with linear partitions. IEEE Transactions on

Circuits and Systems, 25:938–940, 1978.

78 BIBLIOGRAPHY

[KC90] C. Kahlert and L. Chua. A generalized canonical piecewise-linear represen-

tation. IEEE Transactions on Circuits and Systems, 37(3):373–383, March

1990.

[Kel60] J. Kelley. The cutting plane method for solving convex programs. Journal

of the SIAM, 8:703–712, 1960.

[KG99] D. Keren and C. Gotsman. Fitting curves and surfaces with constrained

implicit polynomials. IEEE Trans. Pattern Anal. Mach. Intell., 21(1):31–

41, 1999.

[KLVY04] J. Kim, J. Lee, L. Vandenberghe, and C. Yang. Techniques for improving

the accuracy of geometric-programming based analog circuit design opti-

mization. In Proceedings of the IEEE International Conference on Com-

puter Aided Design., pages 863–70, 2004.

[KNZ01] E. Knorr, R. Ng, and R. Zamar. Robust space transformations for distance-

based operations. In KDD ’01: Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

126–135. ACM Press, 2001.

[KPRC99] M. Krasnicki, R. Phelps, R. Rutenbar, and L. Carley. MAELSTROM: effi-

cient simulation-based synthesis for custom analog cells. In DAC ’99: Pro-

ceedings of the 36th ACM/IEEE conference on Design automation, pages

945–950, New York, NY, USA, 1999. ACM Press.

[KSD+97] J. Korte, A. Salas, H. Dunn, N. Alexandrov, W. Follett, G. Orient, and

A. Hadid. Multidisciplinary approach to aerospike nozzle design. Technical

Report 110326, NASA, 1997.

[KT93] L. Khachiyan and M. Todd. On the complexity of approximating the max-

imal inscribed ellipsoid for a polytope. Math. Program., 61(2):137–159,

1993.

[Lev65] A. Levin. An algorithm of minimization of convex functions. Soviet Math.

Dokl., pages 1244–1247, 1965.

BIBLIOGRAPHY 79

[LN95] D. Levin and E. Nadler. Convexity preserving interpolation by algebraic

curves and surfaces. Numerical Algorithms, 9:113–139, 1995.

[LSRC02] H. Liu, A. Singhee, R. Rutenbar, and L. Carley. Remembrance of circuits

past: macromodeling by data mining in large analog design spaces. In

DAC ’02: Proceedings of the 39th conference on Design automation, pages

437–442, New York, NY, USA, 2002. ACM Press.

[MG05] T. McConaghy and G. Gielen. Analysis of simulation-driven numerical

performance modeling techniques for application to analog circuit optimiza-

tion. In ISCAS, 2005.

[MGV98] O. Du Merle, J. Goffin, and J. Vial. On improvements to the analytic cen-

ter cutting plane method. Computational Optimization and Applications,

11(1):37–52, 1998.

[MRT05] O. Mangasarian, J. Rosen, and M. Thompson. Global minimization via

piecewise-linear underestimation. Journal of Global Optimization, 32, 2005.

[MS92] J. Mitchell and S. Suri. Separation and approximation of polyhedral objects.

In Proceedings of the ACM-SIAM symposium on Discrete algorithms, pages

296–306. Society for Industrial and Applied Mathematics, 1992.

[Nes00] Y. Nesterov. Squared functional systems and optimization problems. In

J. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, High Performance

Optimization Techniques, pages 405–440. Kluwer, 2000.

[NN95] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in

convex programming. SIAM studies in applied mathematics, 1995.

[NY83] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency

in Optimization. Wiley, 1983.

[PAOS03] J. Phillips, J. Afonso, A. Oliveira, and L. Miguel Silveira. Analog macro-

modeling using kernel methods. In ICCAD ’03: Proceedings of the 2003

IEEE/ACM international conference on Computer-aided design, page 446,

Washington, DC, USA, 2003. IEEE Computer Society.

80 BIBLIOGRAPHY

[Par00] P. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. PhD thesis, California Institute

of Technology, 2000.

[PM00] J. Pittman and C. Murthy. Fitting optimal piecewise linear functions using

genetic algorithms. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(7):701–718, 2000.

[PR88] T. Phillips and A. Rosenfeld. An isodata algorithm for straight line fitting.

Pattern Recognition, 7(5):291–297, 1988.

[RB97] E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit.

Journal of Intelligent and Robotic Systems, 18:105–126, 1997.

[RDPR85] G. Rives, M. Dhome, J. La Preste, and M. Richetin. Detection of patterns

in images from piecewise linear contours. Pattern Recognition Letters, 3:99–

104, 1985.

[RG94] J. Renaud and G. Gabriele. Approximation in nonhierarchic system opti-

mization. AIAA, 32(1):198–205, 1994.

[Roy03] J. Roychowdhury. Automated macromodel generation for electronic sys-

tems. In In Behavioral Modeling and Simulation Workshop, 2003.

[Sch91] K. Schmudgen. The k-moment problem for compact semi-algebraic sets.

Math. Ann., 289:203–206, 1991.

[SF02] M. Storace and O. De Feo. Piecewise-linear approximation of nonlinear

dynamical systems, September 2002.

[SGA03] G. Stehr, H. Graeb, and K. Antreich. Feasibility regions and their signifi-

cance to the hierarchical optimization of analog and mixed-signal systems.

International Series of Numerical Mathematics, 146:167–184, 2003.

[SH97] J. Sobiesky and R. Haftka. Multidisciplinary aerospace design optimization:

Survey of recent developments. Structural Optimization, 14(1):1–23, 1997.

[TB04] F. Torrisi and A. Bemporad. Hysdel-a tool for generating computational

hybrid models for analysis and synthesis problems. IEEE Transactions on

Control Systems Technology, 12(2):235–249, March 2004.

BIBLIOGRAPHY 81

[TCS+94] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. Kriegman. Param-

eterized families of polynomials for bounded algebraic curve and surface

fitting. IEEE Trans. Pattern Analysis and Machine Intelligence, 16:287–

303, 1994.

[TKE88] S. Tarasov, L. Khachiyan, and I. Erlich. The method of inscribed ellipsoids.

Soviet Math. Dokl., pages 226–230, 1988.

[Vai89] P. Vaidya. A new algorithm for minimizing convex functions over convex

sets. In Proceedings of Symposium on Foundations of Computer Science,

pages 338–343, 1989.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,

38(1):49–95, 1996.

[VC92] V. Venkateswar and R. Chellappa. Extraction of straight lines in aerial

images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(11):1111–1114, November 1992.

[VCBS04] A. Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi. Benefits and

challenges for platform-based design. In DAC ’04: Proceedings of the 41st

annual conference on Design automation, pages 409–414, New York, NY,

USA, 2004. ACM Press.

[VdMV89] L. Vandenberghe, B. de Moor, and J. Vandewalle. The generalized lin-

ear complementarity problem applied to the complete analysis of resis-

tive piecewise-linear circuits. IEEE Transactions on Circuits and Systems,

36(11):1382–1391, November 1989.

[WHCL93] D. Wang, N. Huang, H. Chao, and R. Lee. Plane sweep algorithms for the

polygonal approximation problems with applications. In Proceedings of the

International Symposium on Algorithms and Computation, pages 515–522,

London, UK, 1993. Springer-Verlag.

[WRBB96] B. Wujek, J. Renaud, S. Batill, and J. Brockman. Concurrent subspace op-

timization using design variable sharing in a distributed computing environ-

ment. Concurrent Engineering: Research and Applications, 4(4):361–378,

1996.

82 BIBLIOGRAPHY

[WV03] G. Wolfe and R. Vemuri. Extraction and use of neural network models

in automated synthesis of operational amplifiers. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 22(2), 2003.

[Ye97] Y. Ye. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience

Series in Discrete Mathematics and Optimization. John Wiley & Sons, New

York, 1997.

[Yin98] P. Yin. Algorithms for straight line fitting using k-means. Pattern Recog-

nition Letters, 19(1):31–41, January 1998.

