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Abstract

Chip complexity has grown to a point where traditional verification techniques are

growing difficult and expensive to use. Current research is looking into the use of for-

mal methods along with changes in the design methodology to cope with the problem

of implementing complex designs correctly. It is suggested that the formalization of

abstract models from the start of the design process can find problem with the design

early and reduce the cost of fixing bugs.

The key to successfully using formal verification during the early design stages is

to recognize that different verification problems must be approached from different

perspectives. Each different perspective answers the question of “Why is the design

correct?” using a different reasoning technique. By using different models and tools

for each different perspective, a set of perspective can capture the design intuition,

thus the models can be made small enough so that they can be constructed, verified,

and modified quickly. This methodology was applied to the verification of the Smart

Memory Project during the design phase, and it has found corner case bugs early in

the design process, reducing the cost of re-design compared to if the bugs were found

later on.

One particular perspective that was used in verifying the Cache Controller of the

Smart Memory is the transactional model perspective. The tool TDV (transactional

diagram verifier) was developed to enable quick model construction and fast formal

verification to be performed on models with transaction view. TDV is especially

efficient in verifying designs which have problematic corner case situations caused by

interacting parallel processes.
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TDV verifies parallel transaction models by producing and verifying a set of verifi-

cation obligations from the specification. The way the specifications are modeled and

converted into verification obligations are well suited in verifying transaction model

designs.
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Chapter 1

Introduction

1.1 Design Complexity

With the increasing complexity of design that is made available through better fab-

rication technologies, the problem of verification also becomes a bigger issue. Tra-

ditionally, verification is performed using simulation techniques and currently, it is

still the primary way to verify design correctness. Techniques in simulation technol-

ogy such as coverage models, guided test generation, and faster simulation speeds

have helped by allowing simulation to zero in on bugs more efficiently. The use of

formal methods also has various successes through advances in model checkers which

allows for complete coverage on small modules or conceptual protocols. The various

successes with formal methods have also allowed a hybrid formal and informal veri-

fication approach. Simulations now use formal methods to guide their verification or

allow formal methods to replace simulation in certain parts of the verification process.

1.1.1 Current Research Directions

Despite these advances, there are still shortcomings to both verification methods as

the design complexity increases. The complexity of the design, especially with the

recent trend of parallel processing units, raises the possibility of missed corner cases

that simulation technologies have trouble analyzing. Although formal verification is

1



2 CHAPTER 1. INTRODUCTION

well suited for finding corner case design bugs, current formal verification technologies

are only powerful enough to verify small designs. It is still unknown how to apply

formal verification consistently to larger designs or find corner cases that result from

the interaction of multiple modules. Although there have been successes in using

formal verification in verifying large high level designs, the verification methodology

successes are time consuming and specific to a particular design.

The other usage of formal verification is for quick verification of protocol ideas

before the design process. However, in these verification efforts, it is not clear how

to tie the verified protocol models with the real implementation to ensure that the

design actually implement the verified model.

There have been various proposals in the ESL community in finding ways to bridge

the gap between the abstract level description and the implementation. One research

area is to automatically generate RTL level system description [2]. Or, instead of

automatically generating RTL code, formal verification can be used to verify that

RTL corresponds to a higher level description such as SystemC [39, 20]. Others

emphasize the importance of design methodology change so that helpful assertions

may be inserted into the RTL code [33].

Bridging the gap between an abstract model and a concrete model is a problem

recognized by the formal verification community even before ESL research has came

onto the scene [23]. This is because formal verification requires abstract models

in order to make verification possible, and it is suggested that the correspondence

between the abstract models and implementation can be verified through refinement

techniques. However, all these techniques only work well for layers that are close to

each other in terms of abstraction level, and there is still no practical way to link

formally solvable abstract model to the RTL implementation at this time.

Recent research has suggested that by changing the methodology of design, it is

possible to better integrate the abstract models into the design [27]. By formalizing

the behavioral models (as opposed to using patched up C/C++ simulators), Re-

searchers hope that more of the abstract model design formalizations can be directly

linked to the design. This would make the verification of abstract and implementa-

tion possible. Various tools and model techniques have been developed that allow
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for the formalization of abstract design [3]. The next section will look at different

design methodologies that have been suggested in literatures and examine how the

current formal verification technology can be practically used with today’s design

environments.

1.2 Design Methodologies

1.2.1 Refinement Methodology

The idea of designing from the abstract model and successively add in the details

has been the predominate model for programming until the rise of object oriented

programming [40]. It is suggested that stepwise refinement of the program in design

makes it more adaptable to changes that will occur as a result of an extension or

correction to the program. Since these extensions or corrections may not involve

changes to the abstract description, only the last design choices and decisions will have

to be re-implemented. This idea is also known as the top-down design methodology.

At first glance, formal verification is well suited for this methodology because the

difference between the refinement layers can be made small, and thus it is possible

to verify the correspondence of these two layers through formal methods. Formal

verification can also 100% coverage verification, thus any design layer can be made bug

free before it is refined to the next level. This ensures that bugs will not be propagated

down the refinement chain. One such project which uses refinement methodology to

develop a router design while doing formal verification is demonstrated in a project

by Creveuil and Roman [8]. And observation made by Creveuil and Roman in their

project is that it is more helpful to formalize the design and come up with a plan

for formal verification than to do the formal proof itself. Although I have made

similar observation in my verification experience, my experience of dealing with an

actual project demonstrates that formal verification through refinement layers does

not work due to design changes that occurs in a real industrial design.

Another proposal for writing high level specification and verification by refinement

is seen in the Pentium Pro arbitration logic verification project [37]. Although this
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project was done on an industry design, this project is concerned about top-down

verification after the design is complete rather than verification as part of the top-

down design process.

The problem with using formal verification as part of the design process is that the

designers of any project have many considerations besides the correctness of the design

during the design process. The design often changes as the design progresses due to

considerations of implementation efficiency and performance. This causes problems

for doing formal verification using refinement techniques during the design process

because it is a time intensive process to formalize an abstract design, formalize the

properties of interest, and find techniques to reduce the design to a manageable level.

Furthermore, formal verification efforts are sensitive to changes in the abstract design.

Thus when the real design requires changes to the abstract model, the time intensive

aspects of formal verification must be scrapped and reanalyzed [15]. Thus, using

traditional formal verification techniques along side the design through refinement

does not work because changes to the abstract level model during the design process

make formal verification hard to keep up with the speed of the progression of designs.

Although it can be argued that by finding all the bugs on the abstract design, the

abstract model will not need to be changed later, thus making refinement methodol-

ogy possible. This concept of designing the abstract level design to completion before

working on the more concrete model is mentioned by the waterfall model in Royce’s

paper [31]. However, Royce argued that a design refined from an abstract model to a

more concrete model without a mechanism for feedback is flawed since feedback from

detail implementation is essential to produce a useful and implementable abstract

design. Thus changes to the abstract model are going to be an essential part of the

design process during the evolution of the design. Formal verification can prevent

abstract model changes due to design bugs, but the abstract design can still change

due to performance or implementability reasons which make formal verification on

abstract model in the refinement style methodology impractical. The time consump-

tion and the difficulty to incorporate new changes in formal verification is the reason

why formal verification is applied generally toward designs that have been completed,

and even in some cases, designs that is already in the fabs.
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1.2.2 Design Methodology Motivation

The motivation for the refinement methodology is that it allows the design to be

analyzed early in the design process, when the changes are less costly to make. From

a verification perspective, it allows design problems to be found and corrected early.

In addition, looking for bugs with an abstract design also means that design bugs are

easier to trace to the source, and debugging is easier when it is done with the abstract

model.

The advantage of early design verification is so important and advantageous such

that that most design methodologies have explicit or implicit goal of achieving early

design verification. The next two sections will describe how the current industry

methodology uses simulators to achieve the goal of early verification and its short

comings. And it will also describe the proposal put forth through Electronic System

Level Design (ESL) to formalize the current ad-hoc design process to achieve better

verification at the abstract level designs.

1.2.3 Current Industry Practice

In industry today, it is often that the designers create a C/C++ simulator of the

design that captures some parts of the design for testing a concept and provides a

platform for starting software development. This C/C++ simulator is implicitly an

abstract model of the design that allows some design decisions to be verified before

detail RTL is written. Just as there are different levels of abstraction that can be

modeled in formal verification, simulators can also be written to model at different

abstract levels in the design.

There are two issues with using C/C++ simulator to debug designs early in the

design process. One is the issue of matching up the final implementation to the

simulator. This is to verify that the final implementation is going to behave in the

same way as the as the more verified (and more likely correct) simulator design. The

problem is not only in verifying that they match, but also in maintaining the abstract

model. In a typical design project, once the RTL is written, any bug fixes or changes

tend to be reflected only in the RTL, but not the abstract simulator. This is because
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it is at this point in the design process, the abstract version is no longer used since

verification and simulation can be done on the RTL, thus the cost of maintaining

a current version of the simulator seems to not be worth the effort. However, this

prevents using the faster simulator to catch any bugs that may be introduced through

the changes in the design.

The second issue is that simulator may still require too much detailed information

to be able to be constructed early in the design process. This presents a problem for

using formal verification on the abstract simulator model. C/C++ simulators usually

contain programming details which unnecessarily blow up the state of the system

under verification, making formal verification on C/C++ simulators impractical or

not worth the effort compared with verifying it on the final implementation later in

the design process.

The trade-off between these two issues can be made by writing the simulator at

different abstraction levels. The designers can write a simulator early in the design

process using an abstract model, but it offers fewer guarantees that the model will

actually represent the final implementation. Or the simulator can be written so that

it is cycle accurate and port accurate to the implementation, but usually this cannot

be done until details of the design are finalized.

The goal of current research is to close this gap, that is, to link the abstract model

with the implementation while giving the verification engineers the ability to start

verification early.

1.2.4 Electronic System Level Design (ESL) Methodology

Historically, the ESL design methodology comes from the desire to create an exe-

cutable design early in the design process so that software development may proceed

at the same time. This means that abstract executable models must be developed

to allow early creation of executable models. Being able to develop software at the

same time as hardware design allows the requirements of the application to be better

understood during the design process and allows enough time for the hardware to

change according to its changing requirements.
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Having an executable (and thus formalized) model is also appealing from a formal

verification perspective. Because formal verification is incapable of dealing with large

designs due to exponential scaling of the state space, creating a smaller abstract

model representation of the design is often necessary for formal verification. It is for

this reason that research are also being done of using formal verification within the

methodology of ESL design [39].

Various languages and tools have been developed to allow for abstract executable

models to be created. These ESL languages differ on abstraction levels as well as

the target application. As an example, MATLAB is used to build an abstract rep-

resentation that is often used in DSP and control applications. SystemC is meant

to leverage off current industry practice of using C/C++ simulators by adding hard-

ware centric concepts. SystemVerilog, Vera, Bluespec takes the opposite approach

by adding more abstraction capability to RTL level languages, thus SystemVerilog

operates at fairly low level design. SDL, UML, XML are also examples of high level

abstraction descriptions languages.

The reason why these design languages and methodology have not been widely

accepted in industry is because we see the same issues and trade-off as the C/C++

simulator models. Abstract models are good for quick modeling to give feedback for

further direction in design, however, it is difficult to leverage the abstract model in

producing RTL design, and once the RTL implementation is done, it is hard to verify

that implementation corresponds to the abstract model and hard to maintain that

abstract model because the gap between the two models is large. Even for lower level

languages, the design it compiles from these languages are often not acceptable from

a performance perspective.

The formal verification community have recognized the advantage of abstract de-

sign verification partly because there is no other way to perform formal verification on

large designs [21]. However, the same shortcomings also plague the formal verification

methodologies. We see that formal verification is very successful in verifying small,

low level modules with respect to a local properties of interest, but it cannot handle

large designs or designs with properties that are dependent on various modules. It is
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also successful in verifying small high-level abstract description for prototyping pur-

poses, but there is no assurance that the implementation will implement the verified

abstract model correctly.

1.3 Formal Verification Methodologies

We explore the use of formal verification concurrently with the design by investigat-

ing the use of formal verification early in the design process in the Smart Memory

project [18]. The following sections will discuss several observations on the issues

involving doing concurrent design and verification based on our experience in this

project. We will also suggest methodology concepts which allows for practical use of

formal verification during the design process. The rest of the Thesis will describe the

verification project using the suggested methodology for a class of verification prob-

lem. Specifically, a tool is developed to formally verify parallel transaction processes

while allowing the verification effort to keep up with the design.

1.3.1 Methodology Observation: Formalization

Although it is argued that the waterfall model, which complete the abstract level de-

sign before working on the more concrete model, does not work practically. However,

in the current industry practice and the proposed ESL methodologies, the refinement

methodology in the waterfall model are still central to the design process. That is,

abstract model is built (either formally in computer or informally in documentations)

to verify and assess design decisions early in the design. Yet in all the methodologies,

including simulator, ESL, and waterfall model, the problem of changing design spec-

ifications is still a major hurdle, which is what make the waterfall model impractical.

This problem is especially pronounced in the use formal verification because the effort

required for setting up formal verification is tremendous.

However, the waterfall model does reflect to the design process as it progresses

from the abstract design to the implementation in the general sense. The changes

that are made to the abstract design usually does not affect the design concepts, but
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the changes to the formalization of the design concepts is what causes the need to

re-design and re-analyze the abstract model. That is, the overall concept of how the

design works and what is required for the correct operation usually does not change

during the design process. But the formalization of the model involves taking the idea

of the design and writing it down in a machine readable, unambiguous way. And this

process usually constrains the design beyond the initial concept of the designers. The

concept of formalization is different from the refinement process, where the details of

how a design is implemented are specified.

In order to do any performance analysis or correctness analysis, an abstract de-

sign must be formalized by definition. The process of writing a C/C++ simulator,

sketching the design out using MATLAB, UML or defining the interfaces are all part

of the formalization process. Since this formalization is highly dependent on the im-

plementability of the abstract design, the details of this formalization will invariably

change when the more refined designs are constructed.

1.3.2 Abstract Formal Verification

There have been numerous projects which use formal methods to verify high level

designs. Numerous papers have been published tackling different formal verification

problems, and different methods of modeling have been proposed for these different

problem under verying abstraction levels. For example, Oliveira and Hu stated that

regular expressions and extensions of regular expressions are efficient ways to model

communication protocol over bus [24]. The use of formal specification languages such

as TLA are geared toward verifying abstract specifications [7, 1], although the amount

of work in formalizing and setting up the verification of these abstraction specifications

are very time intensive. Transaction Level descriptions are well suited for formal

verification on lower level designs for detecting hazards [41, 17]. Our experience and

the experiences of Chen, Yang, et. el. [5] show that that using assume/guarantee

reasoning is a good way to verify protocols in a hierarchical manner.

This leads to the observation that different problems or different abstraction level

descriptions require different ways of modeling in order to make formal verification
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possible. That is, there is no one modeling technique or tool that can be used in order

to solve the formal verification problem for the different types of design at different

abstraction levels.

1.3.3 Proposal

To summarize the difficulties and observations in performing verification along with

design, we propose that verification along with design methodology should have the

following properties:

• Top-down design: The methodology should capture the advantage of the top-

down design; namely the ability to catch design bugs early in the design process

where the cost of fix is small.

• Design Intuitions: The implicit abstract models that are used by the designers

(although it might not be formalized) should be captured by the methodology

process to aid the verification efforts.

• Light-weight formal verification: Any formalization and verification of abstract

design needs to be able to be done quickly so that any changes to the formal-

ization can be re-verified without wasting much effort.

• Light-weight modeling: Formalize as little details as possible to minimize re-

verification due to design changes. To accomplish this, the methodology should

formalize only what is necessary for showing the correctness of design on con-

ceptual level for the property of interest.

• Formal Verification Perspectives: Allow the use of different verification tech-

niques and tools for different verification problems at different levels of abstrac-

tion.

The basis of our proposal is to perform formal verification along with design early in

the design process. There are two points that make the proposed methodology differ-

ent from the previous proposals. One is having the verification engineer work along
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with the designers during the design process as opposed to bringing the verification

engineer later in the design process or having the designers write their own abstract

models. The second is to allow informal descriptions of the models to be constructed

and verified formally.

The role of the verification engineer early in the design process is to understand

the design and the motivation of the designers so that the model may be properly

chosen to represent and reflect the designer’s priorities. Performing formal verification

on the model will also allow the verification engineer to give feedback to the designers

to help them avoid pitfalls in their design that will cause unforeseen incorrect corner

cases. Part of the interaction between the verification engineer and the designer is to

understand the design so that the areas where formal verification will have the most

impact can be identified. Separating out formal verification into smaller problem

domains while letting traditional verification methodologies verify the rest of the

design is the key to prevent monolithic formal verification problems that are too time

intensive to be done during the design process.

However, in order for the verification engineer to be able to give feedback in a

prompt manner, the verification must be performed quickly. Allowing for informal

descriptions allows quick verification on the areas which formal verification has the

most benefit. By informal description, I mean that the model can be built without

consideration about matching the model to the real implementation. Our experiences

have shown that such a model can be built and verified within a few days. Once the

design progresses, if the match of abstraction model to the implementation becomes

a worry to the designers, then further refinement or formalized correspondence can

be established. By allowing quick informal descriptions to be verified, it allows cor-

rections to be done early in the design process.

We apply this methodology to the cache system of the Smart Memory Project and

demonstrate the use of formal verification during the design phase of the project. It

is shown through this methodology application that formal verification can be prac-

tically used to find bugs early in the design process even though the verification may

not be completely formalized. This methodology was applied to various design phases

of the project at various abstraction levels including the verification of the deadlock
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free property, the cache coherence protocol based on MESI, the implementation cache

controller with respect to transaction rules, the SyncOp protocol, and the execution

of the cancel command.

The verification model for these projects varied from informal, but systematic ex-

amination of the design, to formalized verification through model checker and theorem

prover. One such verification effort, the verification of the cache controller architec-

ture design, led to the development of a verification tool, TDV, which specializes in

the verification of interrupt free properties in a parallel process environment.

1.4 TDV Tool Development

Building on the observation that different problems in verification require different

perspective of formal verification model and tools, we developed the tool Transaction

Diagram Verifier (TDV) for a few verification problems encountered in the Smart

Memory Project. TDV is designed to verify design which can be easily modeled

into transactions where each transaction is modeled as an abstract state diagram. It

is well suited for problems with simple single transaction execution, but may have

unforeseen corner cases when multiple transactions are occurring at the same time in

the system.

Although this verification problem can possibly be checked by a model checker,

the TDV tool contains several pre-verified logical reasonings that the model checker

cannot normally reason about. This gives the advantage that our design methodology

requires. The TDV model applies constraints to the input model so that an efficient

verification scheme can be used to perform verification. The logical reasoning of why

a design should work is built into the tool development process, thus if the verifica-

tion problem fits within this tool’s model framework, the validity of the verification

approach will not have to be repeated.
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1.5 High-level to Low-level Verification Gap

At the later stages where the formalization of the abstract protocol may not re-

quire much change, a formal abstract model with a more complete verification may

be attempted. However, the problem with making sure that the abstract model is

representative of the real design still exists. We propose a technique to verify the

correspondence between the implementation and its abstract model, by linking and

co-simulating the abstract model along with the implementation. At each simula-

tion step, a set of abstraction functions translate the concrete state to the abstract

state, and transition between the previous and current state in the abstract model is

verified.

This methodology is used to verify the coherence and synchronization protocols

in the Smart Memories’ multi-processor system. During this process, implementation

problems and abstract model inadequacies were revealed. Although this technique

was done before on the Alpha 21364 EV7 processor [38], we apply the methodology

during the design process as opposed to waiting until after the design has been com-

pleted. This gives the advantage that bugs are found early in the design process and

allows for correcting the design when the cost is low. In addition, we are able to give

feedback to the designers on how to correct their design to avoid corner case bugs in

the future.

1.6 Smart Memory Project

All the verification examples using TDV in this case studies are from a real world

design of the Smart Memory Project [18]. In particular, TDV verification contributed

to the verification to the the different sections and aspects of the memory system of

the project. Since the CPU core of the project is an tensilicia core, the verification

of the CPU is not a concern to the people in this team.

Smart Memory is a modular computer with array of processor tiles and memory

mats. The tiles are connected with high-speed links and the memory can be configured

to support various memory models depending on the application. Each tile contains
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two CPU cores and 8 configurable memory mats.

A quad is a collection of 4 tiles. Each quad have a cache controller which can

interact directly with the memory mats in each tile as it receives commands from

each processor or the memory controller. The memory controller controls the interface

between different quads and gives access to the main memory.

1.6.1 Cache Coherence Mode

When the memory mats are configured in cache coherence mode, the MESI protocol

is used to maintain communication between different processors [28]. When a mem-

ory request is initiated, the cache controller is responsible to bring in the the cache

line while maintaining the MESI invariants. In order to do so, the cache controller

performs a series of operations on the memory mats and requests to the memory con-

troller. These operations may include probing the state of a cache line in the memory

mat, changing the status of the cache line, moving or copying the data content of the

cache line, and/or request to memory controller to initiate operations on the other

cache controllers.

The memory mats are configured such that each cache line have a tag bits asso-

ciated with the cache line. Tags of the cache line identify whether the cache line is

in the invalid(I), shared(S), exclusive(E), or modified(M) state corresponding to the

meaning in the MESI protocol. In addition, the tag may also be in the reserved(R)

state to indicate that the cache location have invalid data, but it is being reserved by

the cache controller so that the cache line location will be available after it completes

fetching the data from another location.

1.6.2 Streaming Mode

When the memory mats are configured in the streaming configuration, the cache

controller’s DMA engine is responsible for copying the data from one memory mat

to another memory mat. The control for data copying is controller by the software,

thus the hardware support for streaming mode is relatively simple.
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1.6.3 TCC mode

In the TCC configuration, the memory mats are configured to support transaction

memory coherence and consistency model [13]. The TCC model provides the execu-

tion of transactions in an atomic manner in a parallel environment. It does so through

speculative execution of a transaction, when the transaction is completed it will com-

mit the execution changes to the system. If, however, the speculative execution is in

violation with another process, the transaction will roll back to the beginning of the

transaction execution and try again.



Chapter 2

Perspective Based Verification

This chapter will describe the idea of perspectives and how using a perspective ap-

proach will allow formal verification to be used early in the design process.

2.1 Perspectives

A perspective is a lightweight, partial formalization of a design that captures the

abstract models from the designers with respect to one property class. The idea of

perspective based verification is that instead of finding and developing one formal

verification technology to apply to all formal verification projects, the designers and

the verification engineers should divide the verification problems into property classes

and choose different formal modeling techniques and tools for verifying the properties

in those property classes. The following sections will describe the characteristics of a

perspective in detail as well as further develop the notion of what is a perspective.

2.1.1 Abstract models from designers

During the early design process, the designers typically have an unstated high level

model that they consider and analyze. This could be in the form of whiteboard

sketches, informal design descriptions, or simply ideas that are still in the minds of

the designers. The idea of perspective based verification is to capture enough details

16
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about these high level informal models to analyze the correctness of these ideas while

maintaining the brevity of the high level model. Building models at this point in the

design stages allows for formalization of the designer’s abstract view of the design.

In addition to the informal design model, the designers also have an idea of why

the design is correct at the concept design stage. By choosing the correct perspective,

the designer’s reasoning of the correctness of the design can be used as part of the

reasoning process in doing formal verification on the model.

2.1.2 With respect to one property class

Each perspective captures the high level model and correctness of design intuition

using different theories. Since the different theories are not necessarily compatible,

perspective based verification is useful only when one property class is considered at

a time. A property class is a set of properties that

1. Describes the property on the same level of abstraction

2. Can be concisely expressed by the same modeling technique

3. Have the same reasoning of why the property is correct

By restricting the verification scope of each perspective, the correct tools Can be

identified and used efficiently for each verification problem.

2.1.3 Lightweight, partial formalization

By dividing the verification problems into perspectives where the problem are effi-

ciently captured and proved by the proper models and tools, the complexity of the

problem description are greatly reduced. The models under perspective based verifi-

cation are therefore small and easy to follow by the designers and the verifiers. This

is what is meant by lightweight models.
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Figure 2.1: Memory System Dependence Graph

2.2 Example Perspectives

2.2.1 Dependency Perspective

The dependency perspective is used to model the wait conditions that can occur

in the system. It is often the case that in the design of a protocol or a network

contains such dependencies. Protocol often require one command waiting for another

command to finish before execution. Network also may have such dependencies due to

traffic on the network and limited buffer space. The dependency perspective focuses

on capturing these protocol and resource dependencies, and it verifies that there are

no cycle in these dependencies, thus causing a deadlock situation.
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Figure 2.2: SyncOp deadlock bug

2.2.1.1 Example

Figure 2.1 is the dependency graph of the memory system in the Smart Memory

Project. Because the dependence perspective only models dependencies, the graph

can be made simple, easy to analyze, and easy to change as the design changes. Yet

at the same time, this graph is able to capture both the network dependency, the

protocol dependency, and the cache controller implementation dependencies. The

combination of these dependencies are usually overlooked by the designers as a place

for corner case bugs, and by using the dependency perspective, several bugs was

caught using this model early in the design process.

2.2.1.2 Bugs found

Figure 2.2 shows an example corner case bug found in the synchronization opera-

tion using the dependency perspective. The synchronization operation is one of the

mode of Smart Memory that make sure that provide synchronization between dif-

ferent threads on different CPUs through the use of shared memory space. When a

synchronization operation occurs, it can either be successful, or unsuccessful. In the

case that the synchronization operation is unsuccessful, it the memory system will put

the thread on hold until the right condition occurs for the synchronization operation

to try again. Figure 2.2a list some of the basic operations that the synchronization

operation protocol uses.
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1. SyncOp Unsuccessful occurs when the synchronization operation is attempted

and unsuccessful.

2. In such case, a syncmiss command is sent to the memory controller to keep

track which thread have a pending synchronization operation.

3. The Syncmiss command is stored in the memory controller for future replay

4. A SyncOp command can be successful

5. When a synchronization operation is successful, and if there are waiting oper-

ations pending, a wakeup will be sent to the memory controller to replay the

waiting operation.

6. When the memory controller receives a wakeup, it will re-issue the syncOp

command to replay at the cache controller.

The protocol itself is simple and seems to have no problems. However, when the

dependencies of the protocol is combined with the dependency in the implementation

of the cache controller, unexpected deadlock scenario can occur. Figure 2.2b shows

such a deadlock discovered when the dependency graph of figure 2.1 is analyzed for

cycles. To see the circular dependency, first we note that all of the messages described

in figure 2.2a can be sent and received by any of the cache controller. In particular

6. Replay message can be sent to any cache controller. The internals of the cache

controller is such that if the virtual channel for wakeup is congested, then it have no

buffer space to receive replay. And on the memory controller, the original design is

such that if the replay message channel is congested, then it have no buffer space to

receive a wakeup, causing a loop in the dependency graph, thus causing a potential

deadlock situation.

In this example, it is demonstrated that the use of perspective allow different lay-

ers of design to be modeled when there is a potential bug caused by the interaction

of the two layers of design. In the synchronization operation case, it is the interac-

tion between the synchronization operation protocol and the architecture design of

the cache controller and the memory controller that cause the deadlock. But more
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Figure 2.3: Messaging System Model

importantly, this is easily modeled because there are many detailed information such

as the fact that there could be multiple cache controllers and multiple memory con-

trollers that will complicate the model, but do not add much in terms of finding the

correctness of the design with respect to the deadlock free property of the system.

2.2.2 Message System Protocol Perspective

The correctness of the synchronization protocol itself was also verified through the

perspective based verification. The correctness of the protocol depended on the action

of the memory controller and the cache controller when it receives a message in

conjunction with the ordering requirements of the messages themselves. The Message

System Protocol Perspective is recognized as a useful perspective for verifying these

types of designs.

2.2.2.1 Model

The Protocol Messaging System model consists of nodes and message conduits, which

is illustrated in figure 2.3a. Nodes are simple mealy state machines with the mes-

sages being the input to the machine. Conduits passes the message as it is, but places

restrictions on the ordering of the messages. Figure 2.3a shows that if the ordering

between message class x and message class y at the input can be captured by predi-

cate P (x, y), then the output ordering for that conduit must satisfy Q(x, y) between

message class x and message class y. Message class is a set of all messages that satisfy

a particular property definable by a predicate.

These elements of nodes and conduits are combined together into a network as

shown in figure 2.3b, and safety properties of the states in the nodes or end-to-end
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orderings can be proved using this model. The Message System Protocol Perspective

simplifies the verification of messaging ordering properties or protocols which depends

on the message ordering specifications of the network.

2.2.2.2 Bugs found

The Synchronization protocol maps easily into the Message System Protocol Perspec-

tive, and the correctness requirement of making sure every synchronization operation

is serviced was verified. Using this perspective, a previously unknown requirement on

the synchronization operation protocol was found. Figure 2.2a shows that either a

wakeup or a syncmiss message can be sent from the cache controller depending on the

success of the synchronization operation. By modeling the synchronization operation

protocol in the message system protocol perspective, the requirement that wakeup

message cannot get ahead of the syncmiss message (but the syncmiss message can

and must be allowed to get ahead of wakeup message to avoid deadlock) is found early

in the design process. The ability to construct a model early allowed the designers to

change the processor-cache controller communication protocol to fix this bug before

much details about the processor-cache controllers have is finalized.

2.2.3 State transitions with safety properties

Model checkers have been very successful in verifying safety properties and some tem-

poral properties of low level designs. Yet applying to larger designs with different pro-

tocols have pretty much been hit-or-miss. Model checkers have been applied to some

projects with ease, while it was difficult for verification of some other projects. The

idea of perspectives gives a framework for explaining why some verification projects

have worked well and why some have not.

Section 2.1 described that the characteristic of a good perspective is that it capture

the model used by the designers, it verify properties that is of the same property

class, and it capture the verification problem efficiently. Thus, the reason why model

checkers do well on low level control designs is because low level design descriptions

are most efficiently represented by a state machine representation. The property class
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being verified by model checkers are safety and some temporal properties. And as

long as the design remain relatively small, model checkers is a good tool to verify low

level control designs.

It is also well known that data-path designs are hard to verify using model checker

verification techniques. This is because data-path designs are not represented effi-

ciently by state machines, thus model checker is the wrong perspective to use to verify

data-path designs. By understanding the concept of perspective based verification, it

will help the verifiers to know when to apply traditional verification techniques, and

when to apply techniques that are developed for other types of perspective verifica-

tion.

2.2.4 Parallel Transaction Perspective

One of the verification issue that still plague designers is the complex interaction that

occur when multiple transactions are executing in parallel, and thus might interfere

with each other. Although each of these transactions, when taken into consideration

by itself is easy to design correctly, it is unclear that correct behavior is maintained

when multiple occurrences of the process are executed at the same time due to the

wide range of execution order and resource access patterns that are possible. TDV

is designed to verify designs with this type of concerns, that is, designs with simple

single process execution, but complex multiple process execution on the architecture

design level.

Generally speaking TDV, is designed to verify the design as described by a Trans-

action Diagram. The Transaction Diagram describes the behavior of a single process

execution. If TDV is to be used as part of the verification along with design method-

ology, the TDV models needs to be easy and quick to build. This means that the

Transaction Diagram for one transaction must be simple so that the model can be

constructed quickly. Thus TDV is practical to designs which have simple single pro-

cess descriptions, but TDV is able to verify designs that are difficult to implement

correctly due to the interacting behavior of multiple transactions.

There is no set definition of what constitutes a “simple description” that will work
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with this methodology. A more complex description of the process means that more

time must be spent in building the model, and this may or may not be acceptable

depending on the circumstances of the project. Chapter 5 describes some real world

examples where the transaction description is simple enough to be useful.

2.3 Uses of Perspectives

2.3.1 Why do perspectives work?

The goal of perspectives is to find corner case bugs while maintaining a simple model

so that it may be understood and modified by the designers and the verification

engineers as the design changes. Perspectives are built so that it is lightweight,

achieving this objective. The two reasons why the idea of perspectives is able to

accomplish this is because it applies constructive modeling to the formation of the

formal model, and it follows the designer’s intuition on the workings of design. The

rest of this section will describe characteristics of perspective based verification that

allow models constructed in this framework to be lightweight.

2.3.1.1 Constructive modeling of small models

Instead of taking a design and abstracting away information until it reaches a man-

ageable level, perspective based verification build a model until it contains enough

information to prove the property of interest. This approach motivate and allows the

verification engineer to keep the model simple not only for the purpose of having the

ability to run formal tools on it, but also for the purpose of achieving maintainability

as the design changes. This same approach is also recognized by Suhaib, Mathaikuty,

Berner, and Shukla [36] to achieve an agile model which can change with the design.

However, our experience have shown that without the correct specification frame-

work for the problem under verification, achieving small model formal verification is

not possible. This is because without the correct modeling framework, much of the

model specification and model construction time is spent on properly converting one
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model framework that is natural to the problem at hand into another model frame-

work that is available by the formal tools, thus making the formal model large and

hard to change. By recognizing a set of commonly encountered verification problems

in today’s design, the correct tool which targets toward a specific level of abstraction,

uses a specific model, and captures the reasoning of the correctness of the design can

be chosen, making small model construction possible. This means that no single one

formal tool should be used in a large design across multiple abstraction levels because

it contains verification problems that belongs to different perspectives. Instead, the

verification problem should be broken up into multiple perspectives and different tolls

should be used order to verify the various properties of interest in a design.

2.3.1.2 Designer’s intuition

In constructing the formal model for finding corner case bugs, perspectives allow the

capture of the designer’s concept of the design and the designer’s correctness argument

efficiently with a formal model. This is because many unnecessary details that are

not relevant to the correctness of the property in a perspective can be thrown out and

not included in the verification model. Since a designer’s model typically represent

an efficient encoding of the design, thus a formal model which parallel the designer’s

model are also small and lightweight.

By allowing the perspective to capture designer’s intuition, it further insulate the

model from changes to the design during the design process because any changes

to the design will not usually change the intuition of the correctness of the design.

However, if major changes are required, changes that follow the designer’s intuition

will also require major change to the design. Thus the cost of changing the perspective

parallels with the cost of a design change. As the result, the designers will less likely

to make changes that will require major change to the verification models since it will

be equally costly to them to make those changes in the design.
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2.3.2 How to choose the right perspective?

Different perspecties are required to capture the different ways the designers think

about their high level model and they way they think about why their design is

correct. The idea of perspective based verification is to identify a set of perspectives

commonly encountered in design, and develop the right tools and modeling techniques

so that verification problems encountered can use the right perspective model and

tool in an efficient manner. Thus, a important aspect of making perspective based

verification work is finding the correct perspective, and therefore the correct model

and verification tool for a given property class that the designers wish to verify.

A useful way of choosing the correct perspective is to ask the question “Why is

the design correct?” The following examples shows how each perspective is suited to

how the correctness question is answered.

1. Dependence perspective: A design is deadlock free if there are no dependency

cycles can occur in the system. For designs with static dependency, this property

can be verifyed by drawing out the dependency graph and check for cycles.

This correctness verification is what the dependence perspective captures in its

model.

2. Message System Protocol Perspective: The correctness of a protocol such as

the syncronization operation protocol depends on state machine changes and

ordering of the messages. The message system protocol perspective provide a

mechanism for modeling these two properties as well as provide a framework

for integrating them.

3. State Transition with Safety Properties: In this perspective, the design is argued

to be correct because the complex description of the state behavior should not

bring it to an error state. The specification used by many model checkers

provide a mechanism for describing state transitions as well as valid or invalid

states.

4. Parallel Transaction Perspective: To verify that parallel transactions do not

interfere with each other, the intuitive correctness argument is usually based on
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a combination of how one transaction’s actions will not affect another or an-

other mechanism ensures that interfering transactions does not take place. The

parallel transaction perspectives focus in on allowing the user to encode those

arguments simply in the model, thus the parallel transaction perspective have

been a good model to use for verification of the cache controller architecture.

2.3.3 Abstraction Layers

Perspectives target finding corner cases for a particular property class and at a partic-

ular abstraction level. The model built to represent the design will be an abstraction

of the actual design, but with enough details to capture the corner case bugs that are

introduced at that level of abstraction. As the design progresses, more details about

the implementation of the abstract model will be made known to the designers. The

abstract model constructed for verification purposes can now help with the verifica-

tion of the detailed design by having a formal specification for the requirements of the

implementation. That is, the model and the assumption used by the abstract model

is now the specification requirements for the next level of implementation.

Requiring formal proofs for all the proof obligations generated by the abstract

levels is practically unfeasible on a large design project because each abstract level

usually increase the number of proof obligations exponentially. But instead, one

should focus on the proof obligations that may produce unexpected behaviors in the

next level of abstraction. This methodology works well in practice because most of the

proof obligations created at an abstract level can be easily verified using traditional

simulation techniques, but it allows for verifying the unexpected interactions between

abstract levels which typically result in many corner case bugs in design projects.

2.3.4 Perspective trade-offs

The idea of using perspective works by reducing the model size by targeting the

model for a particular property class and abstraction level. However, by dividing

up the problem into perspectives, it requires two trade-offs compared with complete

formal verification methodologies.
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The first trade-off is that since the models are abstracted version of the actual

design, and no formalized process exists to verify that the design implements the

abstract model, one cannot say that the entire design is completely verified. However,

the perspective verification idea makes protocol and architecture level verification of

corner case bugs possible early in the design stages.

The second trade-off of using different tools and models is that the different de-

scriptions of the design are not easily linked with each other because they are using

different theories that may not be compatible with each other. Under the assume-

guarantee reasoning, assumption of the input of the model is the guarantee of it’s

neighboring modules, or the assumption of the abstraction level is the guarantee of

the lower level implementation. With perspective based verification, they are com-

posed of different models, and the assumption and guarantees of one perspectives is

not directly translatable into the model of the neighbor or different abstraction level.

Thus a formal link that the assumption of one model is ported to be the guarantee

of another model is hard to do with perspective based verification.

2.3.5 Model Checkers and Perspectives

At a fundamental level, model checkers are designed to verify that an execution does

not reach an error state in a complex state machine execution. Since most verilog level

designs are modeled as state machines, and all designs are computationally equivalent

to state machines, it have been widely used as the base of formal verification models.

As the result, model checkers have been used as the tool to verify designs with

different perspectives. In addition, model checkers have been successful at it because

model checkers have developed techniques to reduce the problem size to deal with

verification problems with different perspectives. However, two problems remain with

using just model checkers to solve problem with different perspectives. One is that

model checker do not have the capability to solve all perspectives that might be

needed. The difficulty of using model checker to verify data path design is an example

of a perspective that model checker is not well suited for. The second is that the input

representation to a model checker is not concise and efficient way to represent the
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abstract design and the designer’s intuition. This will cause the model to be too large

and not easy to change early in the design phase, where lots of changes are occurring.

However, many of the tools developed for each perspective may be built on top

of a model checker, leveraging the research that have gone into them which makes

them efficient and fast state machine verifiers. The advantage of perspective is that

each tool can, first of all, incorporate proof ideas that are developed during the tool

development time. This way, the model checker does not have to deal with the

complexity about the perspective that it is not suited to solve. Secondly, the input

specification for each perspective tool are geared toward efficient representation of the

designer’s abstract design and intuition. The tool may translate them into equivalent

model checking problems to solve them, but the perspective tool allows the model to

be kept simple and easy to verify along with the design.



Chapter 3

Transaction Diagram Verifier

The Transaction Diagram Verifier (TDV) is the tool that was used to correctness of

design with Parallel Transaction Perspective. This chapter will describe the model of

the Parallel Transaction Perspective and the use of TDV in verifying the correctness

of this model.

3.1 TDV modeling

3.1.1 Transaction Model

TDV models a transaction based system. A transaction, as shown in figure 3.1,

represent the behavior of the system when a command or request is received. TDV

analyzes a system where arbitrary many transaction are occurring at the same time.

A transaction consists of transitions as represented by the blocks in the figure, and

links as represented by the arrows in the figure. The links represent the possible

ordering of execution that can occur for a transaction.

Each block (representing a transition) is composed of guards and actions, which

describe the atomic execution step of the system when the transition represented by

that block is executed. The guards specifies that the design which the transaction

diagram is representing will not execute the transition associated with that block

unless the guard is true. The action describe the state change behavior when the

30
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Return Result not found
Return Result
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Mem 1
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found not found

found

Figure 3.1: Example Transaction
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Exit critical region

Access Block 1 Access Block 2

Shared Resource

Requests Requests

Get a number

Request for Enter

Wait for serving number

Wait for priority among
processes with same number

Critical Region

No increase of serving number

Increase serving number

Figure 3.2: Example Design

transition associated with that block is executed.

3.1.1.1 Example

This section will give a example description of a TDV model for a simple mutual

exclusion algorithm as an illustration of using TDV to verify a design. Figure 3.2

illustrate the example where two blocks of a system is trying to access the shared

resource. The desired property to verify is that the two blocks in the system does not

access the shared resource at the same time.

The transition diagram on the right side of figure 3.2 implements the Bakery Al-

gorithm for mutual exclusion for multiple processes. The mutual exclusion algorithm

works by sequencing the processes trying to enter the critical region. Each process

requesting access to the shared resource will obtain a sequence number indicating the

order which the competing processes will access the critical region. It is possible,

due to parallel transactions occurring at the same time, to have multiple processes

obtaining the same sequence number, in such a case, the tie is broken by looking

at the process id, which is unique among the different processes. A common vari-

able, the serving number, will control which processes is allowed to enter the critical
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region. That is, if the processes’s sequence number is equal (or smaller) than the

serving number, then it may enter the critical region (if it have the lowest process id

among all other processes that are allowed to enter). Once the process finishes with

the critical region, it will increment the sequence number if there no more processes

are allowed into the critical region with the current sequence number.

3.1.2 Variable Access

The guards and actions of a transition block are specified using boolean expressions

on the state of the system. This section will describe how the state variables can be

referenced by these boolean expressions that represent the behavior of the system.

The state of the system is divided into two categories–the private state variables

and the shared state variables. In the system where multiple transactions are occurring

at the same time, the private state variables are variables that are unique to each

transaction, and the shared state variables are variables that are have shared access

among all the executing transactions. Examples of private state variables include the

flow control information, read and write results, or branching information. Shared

variables contain state information that are not specific to any process. Example of

shared variable includes the shared memory space.

In TDV, each transaction can reference its own private variables, the shared vari-

ables, and variables of another arbitrary process. References to its own private vari-

ables will be given the prefix pri., references to another arbitrary process’s private

variables will be given the prefix po., and reference to shared variable will be given

the prefix shr..

Consider the example started in figure 3.2 which implements the Bakery mutual

exclusion algorithm. Each process will have a state information of whether it is

attempting to enter the critical region (pri .entering), the obtained sequence num-

ber (pri .seq num), and a helping variable to flag whether it is in the critical region

(pri .critical)). Each process also have a unique process id (pri .id). Note that these

private variables does not reference to the state of a specific process, but it represents

the state of any generic process.
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When a process tries to obtain a sequence number, it will get the value that

is greater than all of other processes sequence number which can be expressed by

po.seq num. The service number is the shared variable (shr .serv num).

To determine if a process will be next in entering the critical region, that process

must have a sequence number lower or equal to the serving number

pri .entering ∧ pri .seq num ≤ shr .serv num

, and it must have the lowest process id among all other processes whom also have a

sequence number lower or equal to the serving number

po.entering ∧ po.seq num ≤ shr .serv num → pri .id < po.id

Note that the three appearances of the po. prefixed variables in the above expression,

refers to the private variables of the same other process even though the process

is arbitrary. Also note that although the above expression only makes comparison

with one other process (process po), because process po represents an arbitrary other

process, the above expression represent that the current process will enter earlier than

all other processes, that is, it is going the next in line to enter the critical region.

3.1.3 Guards and Actions

The guards and actions are represented by boolean expression predicates over vari-

ables. Each transition contains a predicate expression representing the condition for

execution of that transition (guard), and a predicate expression representing the state

change due to the execution of that transition (action).

For example, the transition “Wait for service number” is represented by the the

guard for that transition by the predicate pri .seq num ≤ shr .serv num, that is, the

transition will not execute until the serving number is greater or equal to the sequence

number obtained by the current transaction.

The action expression is expressed as a predicate on the current state variables

and next state variables. The next state variables will be given the prefix pri ′, po ′,
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and shr ′.. The set of variables that the action may change as the result of executing

the transition is the action variable set.

For example, the transition “Request for Enter” sets the variable pri .entering

to true, and thus it is expressed as pri ′.entering = true with the action variable set

{pri .entering}. This present that the execution of this transition will change the

variable pri .entering, and it will change the variable in such a way that pri ′.entering

will equal to true (in another words, next state of pri ′.entering will be true).

3.1.3.1 Non-deterministic assignments

Using this format, non-deterministic assignments or partially deterministic assign-

ment may be expressed. For example, the transition “Get a number”, expressed

as

pri ′.seq num ≥ po.seq num

with action variable set {pri .seq num} states that pri .seq numwill be set to any value

as long as it is greater than the sequence number of all other processes.

To express a non-deterministic assignment, the action predicate will simply be

the boolean value true. For example, an action with the action variable set of

{shr .critical loc} with the action predicate of true represent a non-deterministic as-

signment to the variable shr .critical loc when the transition is executed.

It is possible to write a description of an assignment such that it not a model of

any system. That is, as action predicate which reduces to always false will result in

no possible assignment possible by any model. Since any scenario which this happens

means that there is a problem with the action description, TDV tool will verify that

all action predicate is satisfiable during the verification stage.1 This places a sanity

check on the TDV model construction, although it does not guarantee that the TDV

model accurately represent the design under verification.

1In reality, it verifies that the antecedent of an implication statement is satisfiable, which will

include the check for the satisfiable check for action predicates.. This will be further explained in

Chapter 4.
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3.1.3.2 Atomic Execution

Transitions represented by blocks in the transaction diagram are modeled as an atomic

execution. That is, when there are more than one variable in the action variable set,

the assignments to the next state variable for all the variables in the set are done all

at the same time, according to the behavior described in the action predicate.

Not only the actions are atomic, the guards and the action are also atomic. That

is, the check that the guard is true for a transition to execute and the actual execution

of changing of state of the system is done at the same time.

For example, the transition of “Increase serving number” will increase the serving

number if all transactions attempting to enter the critical region have higher sequence

number than the current serving number. This condition is represented by the guard

po.entering = true∧po.seq num > shr .serv num

If this condition is true, then the transition block will increase the serving number:

po.entering = true →shr ′.serv num > po.seq num

with the action variable set of {shr .serv num}. (This will actually increase the serving

number to include all current waiting processes.) Because this transition is atomic,

the check and the assignment of shr .serv num occurs without interruption from any

other process. If the user of TDV wishes to model these two actions as interruptible

events, he may easily do so by splitting the “Increase serving number” transition

block into two blocks in the TDV model.

3.1.4 Links

The order of execution for any transaction in the system is modeled using links. A

link is a directed edge between transition blocks representing possible next execution

blocks for a process after the current block executes. It is possible to have more than

one link coming out of a block. In this case, the next execution may be any one of the

blocks pointed to by the links as long as the guard is satisfied. The choice of which
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block the transaction will actually take is non-deterministic, but it the choice can be

modeled by specifying the guard of the the links are pointing to.

For example, after the critical region, the execution can either incrementing the

serving number or not, depending on whether the serving number needs incrementing.

In figure 3.2, there is a link from critical region to both of those transition blocks. As

seen in the previous section, the guard for “Increase serving number” is

po.entering = true∧po.seq num > shr .serv num

, which if true, will increment the serving number. The guard for “No increase of

serving number” then, is the opposite expression

¬[po.entering = true∧po.seq num > shr .serv num]

. Thus the execution either take one path or the other depending on the state of the

system.

3.1.5 Invariant Modeling

The properties that TDV verifies are given in the form of pre- and post-conditions of

a transition block. Pre-conditions of a block are boolean expression assertions that

are expected to hold when any process is poised to execute that transition block.

This is in contrast to guard of the block, where the expression could be false when a

process is poised to execute, but will not execute unless expression is true. Likewise,

post-conditions of a block are boolean expressions assertions that are expected to

hold when the system have just executed that transition block.

Because TDV does not analyze the model based on previous execution history,

any information about the state of the system that is required to execute transition

correctly are specified using pre- and post-condition boolean expressions.

For example, the execution “Wait for serving number” transition ensures that

the process’s serving number is less or equal to the current system serving number

before it is allowed to enter the critical region. In another words, the post-condition
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of “Wait for serving number” is pri .seq num ≤ shr .serv num. This condition must

also be true when the process enters the critical region. Thus the pre-condition

of “Critical Region” is also pri .seq num ≤ shr .serv num . In order to model this

condition is maintained from the execution of block “Wait for serving number” to

“Critical Region”, this assertion is also the pre-condition and post-condition of the

block in between these two events “Wait for priority...”.

Note that “Wait for priority...” block itself does not actively ensure that the

condition is satisfied, but this specification states that this property will be maintained

through the transition block, and thus TDV will perform the verification for this

property under the multi-process executing environment.

3.1.6 Exclusive Property

Recall that the prefix pri . refers to the private state variable of its own process, po.

refers to the private state variable of another arbitrary process, and shr . refers to

the state variable shared by all processes. In addition to these prefixes, the exclusive

prefix can also be used in TDV to reference to a process with an particular definable

property.

Consider a system where a token is being used to indicate which process can have

access to the resource. Also consider that we wish to express the property, the process

who have the token have flag variable set to 0. This property is expressible under

TDV using the exclusive property prefix.

The exclusive property prefix can be used in TDV to refer to the process with

a particular property, but this process must be exclusive in the sense that there is

at most one process in the system with such a property at any time. Considering

the token example, in order to reference the process with the token, the system must

ensure that no two processes can have the token at the same time. The user of TDV

defines this exclusive property A, pri .token = true, which tells the TDV system that

only one process should have property A at any time. The user then associates a

prefix, for example pA. with this exclusive property. Then whenever the TDV model

uses the state variable with prefix pA., then it is referring to the process with the
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exclusive property.

TDV will automatically insert the invariant that property A is indeed exclusive

as the pre-condition and post-condition for every transition block. The invariant is

constructed by taking the exclusive property, replacing the references to pri . with

po., negate it, then ANDing it to the original exclusive property. In our example,

pri .token = true ∧ ¬(po.token = true) would be the invariant that will be added to

the pre- and post-condition of every transition block.

Now we may express the property that the process with the token have flag variable

set to 0 by

pA.flag = 0

Although in this particular case, the expression po.token = true → po.flag = 0 can

capture the same property, in practice, it is helpful to be able to model the exclusive

process with a different reference prefix than po. so that the TDV model may still

reference an arbitrary other process in its expressions in addition to the exclusive

process.

3.1.7 TDV Verification

TDV verifies that the pre-conditions of all blocks are true for any process that is about

to execute that block. It also verifies that the post-conditions are true whenever a

process have completed the execution of the block. It does so by verifying that these

conditions are maintained for any process execution that may occur in the system,

given that these process executions follow the the links, actions, and guards of the

blocks specified in the TDV model.

TDV verification is conceptually divided into two verification tasks. One task is

to verify that pre-conditions and post-conditions hold under single process execution.

The other task is to verify that pre-conditions and post-conditions hold when multiple

process can execute at the same time. In single process execution verification, TDV

verifies that when the pre-condition of the block is satisfied, if the transition is al-

lowed to execute because the guard is true, and when the transition state behavior is

described by the action of that block, then then the post-condition of that block will
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become true. TDV also checks that if there is a link from block A to block B, denot-

ing transition block B may execute after transition block A, then the pre-condition

of block B can be derived from the post condition of block A.

To verify that pre-condition of a block holds in a multi processor environment,

TDV assumes that the pre-condition of a block is true. Then TDV execute any other

transition block for any other process and verifies that the pre-condition is maintained

after this execution. The formalization of the correctness that these checks will prove

that pre- and post-conditions is maintained for all possible executions is presented in

chapter 6.

3.2 Properties of a TDV model

There are several properties to the way TDV models the design that make it better

suited for multi process architecture verification compared to existing tools. These

properties are selected during the design of TDV in order to balance expressiveness

of the model and the speed of verification for the target application.

Since the target application is architecture level verification, an abstract descrip-

tion of the circuit is necessary to describe the design in TDV. This is accomplished

by allowing course grain execution description for the transition blocks. Each of the

blocks in the TDV model can represent an abstract execution, which allows for more

than one state variable to change in an execution. So concepts such as “write data

into cache,” which is composed of updating the address field and the data field can

be described as one operation under the TDV model. Allowing abstracted block

description is necessary in order to keep the model simple by not including every

implementation detail in the TDV model. In TDV, allowing multiple state variable

assignment is accomplished by including multiple variables in the action variable set

of the block.

Another property of the TDV model which allows for abstract description is non-

deterministic modeling of the properties in the block, especially for assignment. As

detailed in section 3.1.3.1, the assignments can be fully non-deterministic, partially

non-deterministic, or deterministic.
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Although the whole TDV model may have a large state space for each process,

most of the time, a specific block in the model will only probe and assign a small

number of states in the system. By capturing all the required information needed to

prove the correctness of a transition in the pre- and post-conditions, TDV does not

need to enumerate and keep track of the entire state of the process. The term frame

condition will refer to the fact that the irrelevant state variables are not changed

during an execution of a block. Since for most transitions, most states remain un-

changed, the behavior of the system are efficiently represented through the use of

the action variable set, where only variable that are changing by the transition are

explicitly expressed.

It is interesting to note that not all assignments will have to be explicitly stated in

the TDV model. For example, if a transition clears the lock, from a TDV correctness

point of view, it may non-deterministically clear or not clear the lock. While this

may cause deadlock in the real system, the safety properties may still be completely

verified using this simplified model of the design.

Part of why this form of specification works is because TDV does not carry state

information from the execution of one block to the next cycle, instead it only depends

on pre- and post-conditions for assumption about the state information. Thus, the

lack of post-condition concerning the state of the automatically implies that a tran-

sition may non-deterministically change the lock variable. This is another way for

the user to avoid putting in non-relevant details about the model which speed up the

TDV model building process.

TDV is able to verify multi-process model quickly because the input property

are restricted. Yet this model is powerful enough to model most of the abstract

architecture verification designs. By allowing the expression to access the state space

of two arbitrary processes and the process with exclusive property, TDV restricts the

input property so that efficient verification algorithm may be used, but it also allows

enough expressiveness to write the properties of interest that usually require explicit

quantifiers in other tools.
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3.3 TDV Contributions

TDV is a practical application of verifying interference free execution of programs

that first presented in a paper by Owicki and Gries [25]. This technique have fallen

out of favor because the previous application of this technique was applied to designs

that are too large and too complicated for this technique to be practical.

Several properties about perspective based verification that makes this technique

well suited for TDV. One is the perspective based verification uses small models.

Two is that the TDV perspective captures the designer’s reasoning of why parallel

transaction should not interfere with each other–namely that the executions should

be interference free. This reasoning parallel with the technique used by the TDV tool,

thus using TDV to verify problems in the parallel transaction perspective result in

efficient verification in terms of tool runtime and modeling time.

The use of the TDV tool can be viewed as a theorem prover with automated

verification for interference free properties. The user guide the verification process by

specifying the invariants that will complete the proof. TDV then automatically ana-

lyzes the verification conditions with respect to the invariants given by the user. Thus,

although TDV is not as automated as a model checker, it have several advantages

over model checker tool. One is that the user is able to better control the verification

process, and thus able to capture the designer’s intuition of why the design is correct

and use it to guide the proof. Two is that TDV is able to verify interference free

properties of arbitrary number of processes.

One of the idea that make TDV possible is restricting access to private variables to

only a “self” process and an “other” process. This reduces the reasoning required by

the tool, thus allow verification to be performed fast, yet it gave enough expressiveness

to apply to most of the verification problems that we have encountered.
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3.4 Limitations

3.4.1 Variable Access Limitation

As described in section 3.1.2 the TDV model allows access to private variables to

one process and an another arbitrary process in addition to the shared variables.

This means that properties that are expressed in the TDV model are restricted to

expressions that are expressible with these variables. Properties that depend on the

state of three processes are not expressible. For example, expression such as “If a

process have property A, and if another process have property B, then the transition

is allowed.” is not easily expressible in TDV.

3.4.2 Invariant Specification

The TDV model presents an obligation for the user to provide invariants of the proof.

Thus practically, TDV is geared only toward applications where invariants can be

specified easily.

From the experiences of using the TDV tool, we have discovered properties of

some verification problems have invariants that are hard to express. One example is

when there are complex communication between the different threads such that the

status of the communication cannot be captured by simple invariants. For example,

consider a design where a message is passed from one process to another, making

incremental changes to the message for each process, and eventually pass back to the

originating process. The originating process must have an invariant that keeps track

the possible changes that the other process is making to the message and the different

combinations of events that can happen. This invariant is not a simple expression,

and thus greatly complicates the invariant specification process.

Another case where the invariants may be hard to write is when the invariant

for one process is dependent on the state of another process. The reason this might

lead to complicated invariants is for similar reasons as before. Invariants such as “If

another process have property A, then invariant a holds, otherwise, invariant b holds.”

Although the example given is manageable by the TDV model, when too many such
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case is needed, the invariants will become hard to manage. Verifying a pipeline

architecture is an example of needing complex invariants. The invariants required to

verify a pipeline will require many different cases, depending on the bypass states and

conditions of the pipeline. This means that for each bypass case, the invariant will

have to account for that case to grab the data from the correct bypass location.

However, as with all engineering problems, this isn’t a firm rule about the usability

of TDV on designs. There are cases when the invariant is dependent on the state of

another process, but it does not produce complex invariants either because the other

process does not change their related states much, or the other process is prevent

from doing so using some other mechanism. There is a range of trade-offs between the

complexity of the invariants (and thus verification time) verses the range of problems

that TDV can be used practically. In addition, there might be the possibility of

finding another way to model the design such that invariants will not be hard to

write. Whether this can actually be done and still maintain the accuracy to the real

design will depend on the design in question.

A helpful design technique that may help in producing simple models is design for

verification. That is, instead of matching a model to the design, we allow the models

to be constructed in the simple way, and check that the design can match the model.

Chapter 5 described the verification effort done using this methodology on the Cache

Controller architecture design. By using this technique or modeling the design in a

different manner, it may be possible to avoid complex invariants that hamper the

verification speed when using TDV.

3.4.3 Non-interactive Concerns

The advantage of TDV was to reduce the verification problem of interactive free

property and reducing it to simple to verification rules that can be analyzed by

the tool. For properties that do not fall into this category, TDV does not offer

any advantage over existing formal verification tools. One example of this is the

verification of the correct execution of a single process,

The Cache Coherence protocol of the Smart Memory processor is an example
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where the primary concern for correctness does not come from interacting processes.

At this level of description, the designers are concerned with the rules and the action

of each process will maintain the description given by the MESI protocol. That is,

the transformations used by each process will keep a global invariant of the MESI

protocol. Although TDV may be used to verify this property, it does not offer any

advantage compared with other tools which are also invariant based. This is because

the verification task does not involve detecting conflicts with the interacting processes,

and the mathematics behind the TDV tool have only improved upon the method for

detecting conflict with multiple processes, thus any other invariant based tool will

work equally well as TDV.

3.4.4 Quick Model Construction

To use TDV in a verification along with design setting, the model must be able to be

constructed and verified quickly. Thus it is suitable for verifying designer’s ideas with

simple single process state machine, but it is not suitable for designs with complex

state machines. A model checker is better suited for those verification problems.

However, it is possible to simplify a single process state machine to a simpler model

using other means of verification or abstraction, then use TDV to verify the interaction

between these processes. Whether this is possible will be dependent on the design

and the ability to abstract the model.



Chapter 4

TDV Internals

This chapter will describe how TDV represent the model as described in chapter 3

and how it verify the invariants of that model.

4.1 TDV Input Organization

Currently, an API C++ interface is used to construct the TDV model that will be

described in the following section. The TDV model represents a transaction diagram

that models the execution of a process. Each execution step is represented by a block,

and the possible execution path is given by the links. Each block consists of the guard

and the action property, which represent the design under verification. Each block

also consists of pre- and post-condition properties, which represent the invariants to

be verified by TDV.

4.1.1 Boolean Expression

Boolean expressions are the basic building block of the TDV model, for they are the

predicates that are used to express pre-conditions, post-conditions, and guards of the

blocks. The TDV tool offers an API interface which is used to construct Boolean

expression in the TDV system. TDV offers the standard Boolean connectors of NOT,

AND, OR, Implies, If-then-else over terms. A term consists of equality or inequality

46
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comparisons between two variables.

A special class of Boolean expressions represent assignments in the TDV model,

which are the actions of the transition block. In addition to the Boolean formula,

the assignment also consists a list of variables which is the action variable set (see

chapter 3).

TDV uses these Boolean expressions, which represent pre-conditions, post-conditions,

guards, and actions, to construct verification obligations, which are then proved us-

ing STP. That is, TDV takes the Boolean expression and construct equivalent STP

expressions for verification.

4.1.2 Variables

The terms in TDV are composed of equality or inequality comparisons of variables.

Since TDV uses the STP as the backend of its logic, it supports terms that are sup-

ported by STP. Which include bit-vector and arrays of bit-vectors. Boolean variables

are represented in TDV as bit-vector of length 1. Multi-dimensional array expression

are also supported by TDV.

When the variable is being used in the context of a property under verification,

it represent the possible values of that variable at particular point in time in an

execution. Thus separate variable is used in the property expression that represent

the value of the variable in the current clock cycle and the next clock cycle. In

TDV, this distinction is represented by adding the tick symbol (’) to the prefix of the

variable representing the next clock cycle. For example, if pri.A represent the current

value of the private variable A, then pri′.A represent the value of the private variable

A at the next clock cycle. An expression of pri.A = true ∧ pri′.A = false represent a

transition with the behavior that that A goes from high to low during the transition.

TDV also support the use of constants, which allow the naming of a specific bit-

vector pattern. For example, a very useful constant that is built in the TDV tool are

the constant true and false which is a short hand for bit-vectors of length 1 and have

the value 1 and 0. Other uses for constants in the TDV model are to represent the

state of the system using descriptive names in the Boolean expression instead of the
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number encodings.

4.1.3 Frame Condition

TDV contains subroutines which automatically compute the frame condition for a

given state transition. Recall that under the TDV model, any variable not explicitly

listed in the action variable set will remain unchanged. This frame condition is used

when TDV computes the Boolean expression that represent the next cycle property.

Consider the Boolean expression P (st) that represent the property of the system

at time t, and it execute a block which the action is described by A(st, st+1) with the

action variable set S. This represent that the execution will set the variable in set S

such that A(st, st+1) is true when P (st) is true. The basis for TDV verification comes

in the form P (st) ∧ A(st, st+1) → Q(st+1). Where Q(st+1) is the property the model

should maintain after the execution.

The variables in P represent the state of the current cycle (variables in its Boolean

expression doesn’t have tick mark in its prefix), and variables in A represent the state

in the current and next cycle in the expression (Boolean expression contains variables

with and without the tick mark). The variables in Q needs to be renamed by TDV

so that it represent the variable of the next state (change the variables in Q from no

tick mark to tick marked prefix).

The frame condition states that all variables not explicitly expressed in the action

variable set will not change value. In another words, pri.B = pri′.B if pri.B is not in

the action variable set. Instead of putting this expression explicitly in the TDV, TDV

simply avoids renaming pri.B into pri′.B in the Boolean expression Q. Or in another

words, TDV will rename the variables in Q into its next state variable expression only

if it appears in the action variable set.

For variables in the action variable set which are array variables, the renaming

expression gets more complicated because the index, thus the variables that will

change, might depend on the state of another variable. For example, suppose the array

variable pri.A[pri.c] appears in the Boolean expression Q(st+1) and action variable

set for a particular transaction is {pri.A[pri.b]}. This represent that the pri.b’s array
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entry to the array pri.A will contain a new value, while the rest of the array entry

will stay the same. Thus, to rename the expression pri.A[pri.c] that appears in Q, it

must be replaced with the expression

if (pri.b = pri.c)

then pri′.A[pri.c]

else pri.A[pri.c]

which capture the frame condition appropriately.

As an interesting note, if the action variable set is {pri.A[pri.b], pri.b} then the

expression pri.A[pri.c] in Boolean expression Q will be replaced by

if (pri′.b = pri.c)

then pri′.A[pri.c]

else pri.A[pri.c]

because pri.b in Q will also be renamed to pri′.b for it is part of the action variable

set.

4.2 TDV Model Constructions

The fundamentals of the TDV models are composed of transaction blocks, made up of

pre-conditions, post-conditions, guards, and actions, expressed in boolean expressions.

The constructs that will be described in the following section are ways to organize

these information and provide routines for entering common patterns easily into the

TDV model.

4.2.1 Sub-Blocks

Sometimes, there are situations where the behavior and the assertions of the transition

blocks are the same except for a few differences. To help with the input of the model
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in this case, the concept of sub-blocks is used in TDV. A sub-block automatically

inherits the pre-conditions, post-conditions, guards and actions of the block it is

derived from. In addition, the user may specify more properties of the sub-block.

In this manner, the user may create multiple sub-blocks that is derived from the

same main block, thus avoiding having to repeat the same behavior pattern for all

of the blocks. But at the same time, the different sub-blocks derived from the same

block may contain different properties that distinguish one sub-block from another.

In TDV, the sub-blocks are created by naming a block “mainblock.subblockname”,

which denotes that the sub-block is derived from “mainblock.”

Internally, TDV handles the sub-blocks as completely separate blocks, so all of

the logic of correctness associated with it are considered as separate blocks. All of

the properties, including the links are automatically copied into the sub-block.

As an example, suppose one of the transition block reads the status from the

system, but does not act on the result of the status until later. All the transition

blocks between these two events behave the same way except that it is pre-destined

to act on the result of the status at a future point in time. Sub-block can be used

in this case to distinguish the status results, yet these sub-blocks can inherit from

the main block which contains all of the behavior independent from the status result.

This way, the user does not have to manually create multiple almost identical blocks,

instead by using sub-blocks, TDV will automate this process.

4.2.2 PropertySet

A propertySet is a set of Boolean expressions that can be manipulated and reference

as a group. It is equivalent to a a Boolean expression composed of the conjunction of

all the Boolean expressions that are in the set.

4.2.3 PropertyClassSets

A common characteristic of TDV models is that a property P becomes true at one

point in the execution, and that property must remain valid until another point in the

execution of a process. The block execution which the property P should become true
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is named the begin block. The block execution which property must hold property P

is named the maintain block. The block which property P no longer needs to hold

after the execution of the block is named the end block.

PropertyClassSets is the API construct that allow the automatic repeat of inser-

tion of property P among the pre- and post-conditions of the transition blocks to

achieve this behavior. And this is done by making P the post-condition of the begin

blocks, making P the pre-condition of the end blocks, and making P the pre and

post-condition of the maintain blocks.

The user specify the set of properties using PropertySet. And the user specified

the region which this property holds begin blocks, end blocks, and maintain blocks

through the PropertyClassSet API. Then TDV tool will automatically generate the

appropriate pre and post condition and verify that they are maintained with respect

to the design.

At the begin block of the TDV model, the user usually have to specify actions or

guards (underlying design model) such that property P become true. This can be

done in TDV by specifying an action variable set in addition to the property P . Then

TDV will insert the assignment into the begin block in addition to adding it to the

post-condition of the begin block. A common example of its use is to make sure that

any value written at the begin block will not be affected by other processes until the

end block. Then the boolean property of the assignment will become the pre- and

post-conditions of the maintain blocks.

4.2.4 Construction of maintain blocks of PropertyClassSet

The “maintain blocks” in the PropertyClassSet specifies which block should inherit

a particular property from the previous execution block, and maintain this property

when it executes. Commonly, the designer’s view is that a particular property is true

from this point until another point. Thus, the maintain blocks are simply all the

blocks which can be part of the execution path from the begin blocks until the end

blocks. So instead of having the user specify the maintain blocks manually, a function

is provided by TDV that automatically adds the blocks which are part of the path
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from begin block until end block to the maintain block set.

Using this function reduces the number of changes required when the TDV model

changes. Because the maintain blocks are automatically constructed, any changes to

the TDV model with respect to links and blocks will automatically updated.

4.2.5 Inverse PropertyClassSet

A PropertyClassSet, say A, describes which blocks will cause a property P to become

true, which blocks will maintain the property P , and which blocks will drop this

property. It is common to also specify the inverse of this property, ¬P , for all of the

other blocks. That is, when the property P becomes true at begin blocks, ¬P becomes

false. This is equivalent to having an inverse PropertyClassSet, say A, where the begin

blocks of PropertyClassSet A is the end blocks of the inverse PropertyClassSet A.

In the same manner, the end block of PropertyClassSet A is the begin blocks of

PropertyClassSet A. The maintain blocks of PropertyClassSet A does not provide

any requirements on the equivalent blocks in PropertyClassSet A, but the blocks

which was not mentioned in A becomes the maintain block of A. Because of the

availability of sub-blocks, the construction of the inverse PropertyClassSet is not as

straight forward. But a function is provided in TDV to automatically construct the

inverse PropertyClassSet so that property ¬P can be added to the TDV model for

all the blocks which does not hold property P .

4.2.6 Unchanged Value Property

One of the patterns that exists in proving interference free property of parallel pro-

cesses is that a value, once read or written by a process, will remain the same until

a specified operation is completed. To verify this property, a copy of the variable

is made when this variable is read or written by the process. Since this is a fresh

variable, no other process should have access to this copied variable. To check that

the variable does not change, TDV simply verifies that the content of the variable is

the same as the copy of the variable.

The TDV tool have a function that automatically put in an action that creates a
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copy of the variable at the begin block (block which the requirement that variable is

unchanged starts). And it adds the verification condition that the variable have the

same content value as the copy for all the blocks which this variable needs to stay

unchanged.

4.2.7 Global Invariant

This provides a way to insert invariants into all of the blocks in the model. It’s an

invariant that must be held true at all point of the execution by a process.

Since TDV does not have construct for functions, global invariant can be used as

a way to mimic the function behavior. By defining an array variable, the array index

acts as the parameter to the function, and the array value acts as the function return

value. Since the global invariant means that the pre- and post- condition contains this

property, and since there are no action that changes this variable array, the content

of the array stays the same at all time globally. The array index can then be used as

a easier way to reference expressions in other Boolean expression properties.

4.2.8 Block Regions

Block regions are a group of transition blocks that are mostly different, but they have

a few properties in common. These blocks can be grouped together through the use

of a Boolean flag, where the flag is on for all the blocks within the same region group.

Using the PropertyClassSet, the user can specify a group of blocks which is of the

same group. TDV can take this group, and create a model which will modify the

flags at the appropriate times such that whenever the execution of a process reaches

those blocks, the flag will be on, and when the execution of a process is not at those

blocks, the flag will be off.

There are two ways to specify properties which belongs to the group of blocks as

identified by a flag. To specify that all the block in the group have property P , the user

can use the global invariant to add to every block the property (pri.f lag = true) → P .

The other way to use the group block is that TDV can add the property pri.f lag∧

po.f lag → P for all the blocks in the region. This construct states that no two
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transitions which have the property P can be in the region at the same time, and it

is used for specifying mutual exclusion properties.

4.3 Verification

The previous section describe the input the user can use to construct the TDV model

and the verification task into the TDV system. This section will describe how TDV

verifies that the pre and post conditions from model, as well as some of the control

that the user have over the verification process.

4.3.1 TDV Verification Basics

Conceptually, TDV validates the following three things

1. if the pre-condition is satisfied when a process executes a block, then after the

execution, the post-condition is satisfied.

2. If the execution of a process passes from block A to block B (there exists a link

between block A and block B), then the pre-condition of block B is implied by

the post-condition of block A.

3. For a process a about to execute block A for which the pre-condition holds, if

another process b interrupts and executes another block B, the pre-condition of

block A will still hold even after the execution of process b.

Verification of these three conditions is sufficient to show that the invariants will hold

in the model environment where parallel processes are running. Similar reasoning is

used by Owicki and Gries [25] for their work on verifying concurrent programs by

proving non-interference between processes.

Section ?? will give a more formal description of the three verification obligations

as well as the proof that these three verification conditions will verify the pre- and

post-condition invariants.
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4.3.2 Verification layers

During the process of creating a proof strategy, one might encounter a situation

where a non-trivial sub-proof is required. Instead of requiring the user to complete

the whole proof, TDV allows the user to assume properties in order to prove the rest

of the invariants. This allow the user to concentrate on one aspect of the proof at a

time, and return later to construct the proof for the assumed properties.

This technique is also useful for properties about the design that are easy to prove

using traditional simulation techniques. These proprieties can be assumed by TDV

which can be verified using an external proof tool.

4.3.3 Vacuity checker

TDV perform some sanity check to make sure that the proof it is doing is not true

trivially because the model description is a model of an impossible design. TDV

verifies statements that are representative of the verification statements presented in

section 4.3.1. As seen in that section, each of the verification statement verified by

TDV is in the form of an implication statement, where the antecedent is a descrip-

tion of the current state of the system. The trivial case is when the antecedent is

provability false, which implies that the antecedent contains a contradiction. This

will allow TDV To prove its proof obligation, but it represent a model of the design

which is unimplementable. Thus, it is important to catch these cases where the proof

is completed trivially to make sure that the design is correctly modeled in TDV. TDV

does so by verifying that for all the statements that TDV uses to prove the correct-

ness of the design, the antecedent of the statement is satisfiable. If TDV detects that

an antecedent is not satisfiable, TDV will mark it as a bug in the description of the

design.

The other sanity check verifies that the description of the model cannot allow

TDV to conclude that there is more than one transaction with the exclusive prop-

erty. Because the TDV must prove that the exclusive property is exclusive to one

transaction, if TDV is also able to prove that more than one transaction can have the

exclusive property, it suggest that there is an error in the description of the model.
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TDV Case Studies

In this chapter, several verification project using TDV, both successful and unsuc-

cessful, will be presented.

5.1 Cache Controller Architecture Verification

The cache controller of the smart memory project manages the memory mats in the

system. This section describes the verification of cache controller design when it is

operating in the cache coherence mode to ensure that the cache controller service of

the requests will maintain the requirement of the MESI protocol.

5.1.1 Architecture Description

The cache controller service requests from the processor or the memory controller

by routing the request through each of the internal blocks. Each internal block

have access to a specific part of the system. For example, the S-Unit deals with all

the operations that require access to the tag portion of the memory mat. The cache

controllers is programmed such that each request will initiate a sequence of commands

executing in the internal blocks to complete the request. The internal blocks of the

cache controller is shown in figure 5.1.
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Figure 5.1: Cache Controller Architecture

5.1.1.1 Cache Line Access

In order to keep cache line request from interfering with each other, yet maintain

the ability to service non-interfering requests in parallel, the cache controller design

enforces a number of access restriction rules to the cache line. The rest of this section

will discuss these restriction rules that allows for the non-interfering execution of

multiple cache requests.

The first restriction limits the execution of processes with the same cache line

request. Most of the time, the cache controller will not accept a request if it is

currently processing another request with the same cache line. The one exception

to this is when a process in the cache controller is waiting for a reply from the

memory controller. This process is said to be in the waiting state. An important

property about the design is that only requests originating from the processor can be

in the waiting state. If a process in in the waiting state, then the cache controller

is allowed to accept another request from the memory controller even if it have the

same cache line address. This behavior is to prevent deadlock in the memory system.

The verification problem is to verify that this exception will not cause consequences

not intended by the designers. Indeed, the application of TDV found a bug due to
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the complexity introduced by this exception. This bug will be described in section

5.1.6.1.

The second restriction limits processes with the same index from executing certain

commands at the same time. Because any process can potentially access the line

of another cache line of the same address through eviction, the index lock governs

when the cache controller cannot accept another request with the same index because

of potential conflicts. Recall that each request is broken down into a sequence of

commands executed by the cache controller; index locked commands refers to the

set of commands that should have the index locked during execution. By ensuring

that the cache controller do not allow two process with the same index to be index

locked at the same time, it should prevent processes from interfering with each other

due to eviction. The specification for verification includes how the cache controller

achieve this and which commands are classified as index locked commands, and section

5.1.6.1 is a corner case bug found by TDV caused by the incorrect classification of

index locked commands.

The third restriction prevents requests with the same index and from the same

processor from being processed by the cache controller at the same time. This is be-

cause the access patterns among requests from the same processor are different than

access patterns among requests from different sources. This places additional restric-

tion than what index locked can provide. Having the cache controller not accepting

any requests if it is already processing another request from the same processor with

the same index make sure that these processes do not interfere with each other.

5.1.1.2 Acceptance Conditions

The following summarizes the accepting conditions based on the cache line access

restriction given in the previous section. The cache controller will accept a new

request if the following are NOT true:

1. If there is currently a process with the same address that is not in the waiting

state.

2. If there is currently a process with the same index that is still in the index
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locked region

3. If there is currently a process with the same index that have the same requester.

The verification task is divided into two sections. One is to make sure that the

cache controller follows these accepting conditions. Two is to make sure that these

accepting conditions will result in a non-interference execution for arbitrarily number

of processes processed by the cache controller.

5.1.2 TDV model

A TDV model was constructed to match the architecture design of the cache con-

troller. Figure 5.2 shows the TDV model for the cache controller when operating

under cache coherence mode. Each block in the figure represent the execution of a

command of the sub-unit drawn in figure 5.1. The sub-unit of the cache controller

receives a command from the previous unit, process the request, then sends the com-

mand to its neighbor unit. The links between the blocks in the TDV model (figure

5.2) corresponds to possible command sequence of a requests to the cache controller.

The blocks in the index locked region as labeled in figure 5.2 represent the in-

dex locked commands. The commands in the outstanding region represent that the

process is in the waiting state.

Each block in the TDV model represents a transition action of the cache controller.

Each of these transition action is represented by a corresponding state change in

the TDV state. The acceptance condition are implemented as guard at the request

acceptance block. The possible paths that a transaction can take are dependent

on the result of the transitions that occurs in each transaction. Some of the path

choices are modeled by the guards of the transition blocks, but most path decisions

are modeled as a non-deterministic choice since the correctness of the properties of

interest does not depend on the path of the transaction.

In addition to the actions that are related to the operation of the cache line, there

are also actions that relates to the status of the process. The status variables is

what the cache controller uses to determine whether the request should be accepted



60 CHAPTER 5. TDV CASE STUDIES

Figure 5.2: Cache Controller Transaction Diagram
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to avoid conflict or not, and it is what TDV uses to verify that processes do not

interfere with each other in unexpected ways. The status state include information

such as if the process is finished, if it is currently index locked, or if it is currently

waiting for memory request response.

The correspondence and verification that the TDV model accurately represent

the cache controller architecture is done through manual inspection. Although this

process is not formal, various design flows was found through process because the

designs must still adhere to a precise definition of the TDV model.

5.1.3 Verification Task

Most of the time, the correct execution behavior of each process will depend on the

result of the previous commands. In a single process environment, there is usually

no problem with this behavior. However, in a multi-process environment, another

process might change the state of the system, thus any decision by a process that was

based on previous information may no longer be valid. If this occurs, the behavior

of the process will no longer be correct. The verification task is to make sure that

the information each block uses to make its decision is still valid when the decision is

being made.

The decision that a process will make based on previous block executions are called

assumption information. An example of this assumption information is the status of

the cache line, which is obtained by the “Search & Tag Update, Evict” block. As an

example of a property to be verified based on assumption information, if the cache

line is found in a particular tile in a shared state, the process expects that the line

will stay valid until it reads the data from that tile. The assumption information is

that the line is in a valid state when it executes the transition blocks up until when

the line is read. If another process interrupts this and invalidate the line, it will cause

an error and the assumption information is no longer valid.

In addition to keeping track of the status of the line that will be read in the future,

there also exist assumption information about the destination cache entry (where the

line will be written to in the future). Namely, the cache controller is going to find



62 CHAPTER 5. TDV CASE STUDIES

an memory location to fulfill the cache request, and that memory location will be

reserved and untouchable by other processes until the current process is finished with

the fulfillment of the request.

Part of the design that keeps one process from interfering with another process is

through the use of locks and conditions for execution of the hardware. This part of the

TDV model is necessary to prove that assumption information remains unchanged.

In addition, the locking and mutual exclusivity algorithm implemented by the design

will also need to be verified. TDV is also used to verify both of these properties.

5.1.4 Manual Reasoning of Correctness

This section will describe how the accepting rules in section 5.1.1.2 will keep one

process from interfering with each other. One process interfere with another when one

process changes the state variable (either shared or private) such that the assumption

information are also changed.

In the cache controller, the most problematic case is trying to maintain the as-

sumption information about the status of the cache tag. Many of the execution

decision for a process is dependent on the status of the tag, thus the status is the as-

sumption information for many of the blocks. There are also numerous blocks which

can modify the cache tag, either in a cache which have the same address as the process

request, or in a cache with the same index as the process request. The verification

task is to make sure that one process does not change the tag of a cache line that is

currently being accessed by another process.

As an example, consider the verification task that the tag status from another

tile with the same address will remain the same until data have been read from

it (neighbor tag property). A parallel verification task is that the tag status of a

reserved line will remain the same until the current process finishes updating the data

(destination tag property). The blocks which can violate this assumption information

are blocks which writes to the cache tags: “Search & tag update, Evict”, “Reserve

line”, “Reserve Line w/ cache op”, and “Destination Tag Update.” The “Destination

Tag Update” can modify cache tags if it is accessing the cache with the same address,
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while the blocks “Search & tag update, Evict”, “Reserve line”, and “Reserve Line

w/ cache op” can modify cache tags with the same index. The process which the

assumption information should hold will be called the interrupted process, and the

process which will be executing one of the above block which may change the cache

tag will be called the interruptee process.

Assume that no two processes with the same index can be in the index locked

region at any time (index exclusivity assumption), no two processes with the same

address can be executing in the non-outstanding region at the same time (address

exclusivity assumption), and no two request from the same tile can have the same

index active at the same time (index same tile exclusivity assumption). The regions

are as marked in figure 5.2. The proof of maintaining the cache tag after read can be

divided up into the following cases:

1. Consider the interrupted process that is about to execute a block that is in

the index locked region. Since no other processes is can also be in the index

locked region with the same index (index exclusivity assumption), the only

other process that might cause trouble is if the interruptee process executes

“Destination Tag Update” because “Destination Tag Update” is the only block

which can write cache tags that is outside the index locked region. However,

the address exclusivity assumption ensures that the interrupted and interruptee

process does not have the same address and thus cannot change the tag status

from another tile. Thus the neighbor tag property is satisfied. For destination

tag property, note that the “Destination tag update” will only modify the des-

tination cache line’s tag. And index same tile exclusivity assumption ensures

that two processes requesting from the same tile cannot have the same index.

Since the “Destination Tag Update” can only update cache lines with the same

index, the destination tag property is maintained.

2. Consider a process that is about to execute a block that is outside the index

locked region. The neighbor tag property is no longer need to be valid because

according to the TDV model the neighbor data is read before process exits the

index locked region. Address exclusivity assumption implies that the interruptee
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process have a different address than the interrupted process. “Reserve Line”,

“Reserve Line w/ cache op”, and “Search & tag update, Evict” can all change

the tag information of the cache tag for different address but the same cache

index. However, the only tag information it may change is the cache line from

the requesting tile. Index same tile exclusivity assumption states that if two

processes request are from the same tile, then their index must be different.

Thus it is not possible for the interruptee process to change the tag of another

process with the same index.

3. The above condition have an exception: A process in the outstanding state

may be interrupted by another process originated from the memory controller.

And these two processes may have the same address. However, if the process

in is the outstanding state, it means that the tag of the cache line of interest

is in reserved or shared state (TDV model will change it to reserved or shared

state before it puts the process into outstanding state). No request from the

memory controller can turn a reserved state tag line into something else, and if

the request from the memory controller can turn the shared tag into invalid, it

will also change the assumption information of any other process with the same

address. In another words, the second process will be notified of such a change

and when it exits the outstanding state, it will perform the appropriate action

based on the new information.

This conclude the reasoning why one process is not going to interfere with the as-

sumption information of another process inside the cache controller. Note that there

are many details that still requires to be expanded when it is represented by the

TDV model. These things include making sure that the locking regions corresponds

correctly to the locks being turned on and off by the cache controller for a process,

and appropriate state modification and information gathering by the blocks. Some

of these details have a clear correspondence to the design hardware, and things such

as locking regions require further proof by the TDV to reduce the description that

corresponds to the underlying hardware.



5.1. CACHE CONTROLLER ARCHITECTURE VERIFICATION 65

5.1.5 Using TDV

The manual reasoning above gives the basis for forming the pre-conditions and post-

conditions in the TDV model. The assumption information in the manual proof above

are the pre- and post-conditions of selected blocks in the TDV model. For example,

the neighbor tag property is valid from the point where the neighbor tag information

is read until when the neighbor data have been read by the cache controller. Thus, all

the blocks in the TDV model between “Search & Tag update, Evict” and “Read Cache

Line” will have the neighbor tag property as its pre-condition and post-condition.

Similarly, the destination tag property will be the pre- and post-condition of all

blocks between “Reserve Line” or “Reserve Line w/ cache op” and “Destination Tag

Update.” Various other pre- and post-conditions mostly have to do with the status

of the index lock is also added to the TDV model.

The actions that are required and designed in the cache controller are easy to

form and is also incorporated into the TDV model. They correspond mostly to the

function of the block in the cache controller design.

5.1.6 Bugs found and corrected

There are two categories of design flows that was found using this technique. One class

of bugs is when the underlying hardware and thus transaction diagram representing

it contains a bug. This is the type of bugs that TDV will find when it is verifying the

transaction diagram. The other kind of bugs comes from the hardware not following

the action blocks of the transaction diagram or does not have atomic behavior. Both

of these bugs are catchable with the TDV modeling methodology.

5.1.6.1 Transaction Model Bugs

Eviction Writeback Lock after completion One of the design bug that was

found using this technique is the potential for incorrect fetch of data due to improper

release of the index lock. The situation occurs when the index lock is released before

the eviction writeback task completes, which can occur in the original design. If the

index lock is released early, another request with the same address can execute, find
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that the line is not in the cache (because it is in the process of being evicted), and

return that the line does not exist inside the quad. But this is incorrect since the line

does exist, although not in the caches, the line exist in the cache controller during

the process of writing back to the memory. This incorrect reporting will cause the

requesting process to fetch the incorrect data from main memory instead of waiting

until the writeback is complete before fetching the data.

Degrade notification TDV modeling also found that the original design violated

the invariant that forbids state changed by another process. This invariant is violated

when the interrupted process is in the outstanding state, thus an interrupting process

request from the memory controller with the same address is allowed to execute and

change the state. As mentioned in the third case of the manual reasoning in section

5.1.4, the interrupting process is responsible to notify the interrupted process if it

have made a change in the tag. The original design did not notify the interrupted

process of this change, thus the interrupted process will end up with the wrong state

information, and thus the correct data will not be fetched.

5.1.6.2 Matching Transaction Model with Design

Unlock at the beginning of D-unit rather than at the end of S-Unit An-

other situation where one process is able to change the content of another process in

the original design where the index lock is being unlocked too early. In the original

design, unlock occurs after the Search & tag update operation is completed by the

S-Unit.

D-unit operation are represented in TDV with the blocks “WB Read”, “Read

Line”, “Write Line”, “SyncOp”, and “Word Access”. Unlocking the index after the

S-Unit completion effective place the D-unit operation blocks in the index unlock

state.

Although the need to place TDV D-unit blocks inside the index locked state is

obvious in the TDV model, it is hard to understand why this is necessary without

constructing the TDV model. This is due to the fact that the D-unit operates in a

FIFO manner, so the designers did not expect an interruption by another process is
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possible. This assumption is actually true if the unlock occurs at the beginning of

the D-unit rather than the end of the S-unit, which is the fix for this bug.

This problem was caught when we attempt to correspond the TDV model to

the actual design. Without moving the unlock command to the beginning of the

D-unit, the TDV model with the D-unit blocks being in the index locked state does

not correspond to the actual design. Even with the correction in place, the natural

interpretation of the TDV model requires that the index unlocks at the end of the

D-unit blocks. However, using the FIFO property of the D-unit, it can be shown

that unlocking at the beginning or at the end gives the same consequent behavior

with respect with other interrupting properties. Thus one can conclude that the TDV

model can match the implementation with the additional FIFO property assumption.

Reserve Line w/ cache op requires previous result An incorrect reading of

the tag information within a process was found during the matching process which

can occur when reserving a cache line requires re-reading of the tag information from

the requesting cache (occurs in the “Reserve Line w/ cache op” stage). The reason

the destination cache need to be re-read is that there is a possibility of tag information

being changed between the previous stage and the current stage.

However, in the design, the designers thought of this operation as the same as

redoing the previous step (the “Search & tag update” step, with the additional op-

eration of evict. This turn out to be a problem as the previous step is a destructive

step. That is, the “Search & tag update” step may change the tag information in

addition to the read. Thus, any repeat of the previous operation will be incorrect, as

the tag information have been changed.

The reason why TDV model was uniquely suited to catch this design flaw is

that by design, the need to perform a re-read does not occur often in a real testing

environment. And even if a re-read occurs, most of the time, the erroneous data will

only cause a re-fetch of the cache line from memory, thus the overall data operation

is still correct, although performance is impacted. Yet, there are few cases where the

incorrect data will be fetched, but this corner case is not guaranteed to be exercised

by simulation test. This design flaw occurred as the designers are fixing another
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corner case, thus the correctness of the change with respect to the whole design is

not considered fully. The construction of the TDV model and the need to match it

provides a systemic way to verify that all design changes are considered for correctness

with respect to the overall protocol.

The solution to this bug to perform a re-read on the reserving cache line at the

“Reserve Line w/ cache op” stage, but the tag from other caches are read only during

the “Search & tag update” stage. The result of this read must be forwarded to the

“Reserve Line w/ cache op” stage, so that a re-read is not performed.

Clear Valid flag only after all sub-processes have completed The valid flag’s

function is to prevent processes which will act on the same address from executing in

the cache controller at the same time. A design flaw was found using the TDV model

which allows the valid flag to be turned off before all the execution of a process have

been completed.

This problem occurred in the design because it is possible for each process to

fork into different parallel threads that are going to different processing units. The

original design turns off the valid flag when the main thread finishes. However, the

main thread finishing does not guarantee that other forked thread have finished.

When the valid flag is turned off, it allows other processes with the same address to

start executing in the cache controller. In some instances, this can cause problems

and conflict with the existing process.

The fix is to make sure that all the different forked threads have a way to notify

the main thread that it is finished. The valid flag cannot be turned off until all the

threads have been completed.

5.2 Cancel Operation

5.2.1 Protocol Description

The cancel operation is part of the memory synchronization operations (SyncOps)

that are used as semaphores or enables the programming of the TCC protocol. The
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Figure 5.3: Synchronization Command Paths

syncop commands can either be executed right away or must be held until the ex-

ecution condition are correct. The commands that are being held for execution are

called waiting process. The system must keep track the waiting processes so that it

can enable them (wake up) when the conditions are correct. The cancel command

clears the memory system of all the syncop requests from a particular processor. To

clear the memory system, it not only needs to clear the database of waiting processes,

but it also need to clear the syncops that are currently active in the system. A syncop

command is called active if it is currently in the system which more processing can

be done without waiting for an outside condition. Assume that any processing of a

request can be done in one cycle (take it off the input queue, process it, put it on the

next queue in one cycle), then an active process could located in the queue linking

from one block to another.

The term path segment will be used to refer to the following queues:



70 CHAPTER 5. TDV CASE STUDIES

1. SyncOp request/syncmiss message from processor to CC

2. SyncOp request message from CC to CC

3. In CC waiting for line to be fetched to local cache

4. Syncmiss message sending from CC to MC

5. Waiting in SyncOp queue in MC

6. SyncReplay message sending from MC to CC

7. In CC performing the SyncOp operation

8. SyncSuccessful message from CC to CC

9. SyncSuccessful message from CC to Processor

10. SyncWakeup message sending from CC to MC

The cancel operation, when completed, will ensure that there are no syncop commands

in the system from a particular processor. This operation is complicated by the fact

that the processor are free to generate new syncop requests, and old requests may

always be active and looping in the system. The cancel protocol also will need to

make sure that requests which have completed their operation is not dropped, but is

able to return the result to the requesting process.

There are three modes of operation that will affect the pathways of syncop com-

mand and requests. The first mode is to cancel requests for memory addresses on the

cache coherent region. Figure 5.3 shows the pathway that a syncop command of this

mode may follow. The figure also demonstrates that a syncop request may loop in

the system. This loop is caused by a consistent failed replay and consistent wake up

by another processor’s syncop.

Because each queue is FIFO, if no syncop command enters the queue after the

cancel enters the queue, then when cancel exits the queue, the queue is free of syncop

commands. Thus, if the cancel process can do this with all the queues, then it can

guarantee that the system is free of syncop commands. To do so, the cancel command



5.2. CANCEL OPERATION 71

will follow the pathway of the syncop command while maintaining that no new syncop

commands can be injected into the system. The location which is marked “STOP” in

the diagram are the places where the hardware can ensure that any syncop requests

will be dropped and will not enter the next queue. The cancel command will activate

or cancel the dropping mechanism, depending on the state of the command.

5.2.2 TDV Model

Although the description and the design of the cancel protocol doesn’t derive from

a transaction diagram, the transaction diagram can be used to model the interesting

properties concerning the successful completion of the cancel command. This TDV

can be used to find bugs in the cancel protocol design by building the appropriate

cancel protocol TDV model.

The cancel protocol can be modeled as a series of states which represent the

clearing status of the memory system, which are blocks in TDV model. The clearing

status indicates which path segments are cleared of the syncop commands. Thus, each

block’s action and post-condition is that a certain path segment is cleared of syncop

commands. Each block will also represent which path segments have already been

cleared in order to reach the current execution block. This information is encoded in

the TDV model as pre-conditions of the block. Upon the end of the cancel execution,

the ending block should have the pre-conditions that all path segments are cleared,

which is the property of interest.

The TDV model also contain blocks which represent the insertion and the move-

ment of syncop commands. Each of these syncop command blocks represent part of

the circuit taking a syncop command from a queue, performing an action, and putting

it on another queue. Each of these blocks also contains guards so that the dropping

behavior is modeled when the cancel protocol turns on the drop flag.

TDV checks the interaction of the cancel protocol blocks with the syncop command

blocks to make sure that the property all path segments are cleared when cancel

protocol finishes.
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5.2.3 Design Constraints Found

5.2.3.1 Allow syncop completion

One potential bug that was found during the construction of the TDV model was the

discovery that syncop operations that have been completed needs to be acknowledged

by the processor instead of being canceled through the cancel protocol. This bug

actually cannot be detected with the TDV model because it is not just a protocol

issue, but arises from the an interaction problem with the user programming level.

In order for the system to be deadlock free, the number of sync loads commands

issued need to equal to the number of sync store commands. This constraint is to be

satisfied at the application level, that is, the user must make sure that the application

is written so that the number of sync load equal to the number of sync miss. However,

this requirement at the programming level itself is not enough. The hardware need

to ensure that all sync loads and all sync stores are executed to completion if it is

executed at all. The original design of the cancel protocol does not guarantee this

condition.

This design flaw is hard to catch because on the application level, the syncop

commands are re-issued after a cancel because cancel is supposed to drop ongoing sync

op commands. However, if the syncop have already been completed, this information

needs to be convey back to the user so that the command will not be re-issued upon

the restart of the application.

Finding this bug demonstrates that by constructing a simplified model of the

design, this simple model can be used to analyze the interaction between different

programming models. Just like parallel processes can cause unexpected bugs when

put together, different usage levels of the design can cause unexpected bugs when

used together. The simplified design allow the verification engineer to analyze the

nature of the interaction between different programming levels and thus make finding

the correct constraints to verify and finding bugs easier.
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5.2.3.2 Pitfall avoided

Although no bugs on the design itself was found using the TDV tool, this is due to

the fact that the design is not yet completed during the time the TDV tool was used

on the design. By having a verified TDV model, it is able to produce constraints so

that when the designers refine their design, they can have guidelines that will prevent

them from introducing bugs, which the designers did fine helpful.

One such constraint is derived from the TDV block where cancel is accepted from

the processor (path segment 1) by the cache controller, and the cache controller will

send this cancel on the replay path (path segment 7). This is also represented by the

“STOP” in the diagram where the cancel command will flip a flag that instruct the

dropping of incoming syncop commands. Since TDV model’s block are atomic, the

receiving of the cancel command, turning on the drop flag, and sending out of the

cancel command on another path must have atomic behavior. Being able to represent

the cache controller such that atomic behavior is observed requires certain parts of the

cache controller having FIFO behavior. This FIFO behavior is not immediate obvious

as a requirement as it is part of the computational data path. But the need for the

FIFO constraint on part of the data-path was made clear through the construction of

the TDV Model. So having a clearly defined constraint through the TDV modeling

process helps the designers to avoid introducing bugs into the design.

5.3 Unsuccessful TDV efforts

5.3.1 Cache Coherency Protocol

The cache coherency protocol verification refers to verifying that the interaction be-

tween the processor, cache controller, and the memory controller will maintain the

MESI protocol with the caches on the system. This verification have been previ-

ously done using theorem prover PVS to argue about the structure of the state space

in conjunction with SMV to prove that the structure is maintained. Even though

this exercise found bugs in the design, this verification effort was a painstaking long

process.
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It was hoped that TDV is can be used to verify the cache coherency protocol more

quickly. However, it was discovered that during the modeling phase of TDV, the same

problem that was encountered of dealing with memory hierarchy in the PVS proof was

also present in the TDV model. Further analysis of the problem revealed that using

TDV to verify the cache coherency protocol will be as complex as using PVS and SMV

to verify the protocol as it was done previously. This is because the complexity of

the cache coherency protocol at this level of description does not come from complex

interactions between different processes. Rather the correctness derives from the fact

that each local node have a special relationship between it and the neighboring nodes,

and that local changes will maintain the global invariant. Thus TDV does not offer

any special advantage over existing tools in solving the cache coherence correctness

problem.

5.3.2 TCC Protocol

The TCC Protocol verification made sure that the design follows the transaction

programming model. This includes properties such as, “when a process commits, the

resulting change will effectively be seen by all the processes at the same time.” In the

TDV model, each process keeps a copy of the “ideal memory” in addition to the state

of the real memory representing the cache of the system. The behavior of the ideal

memory reflects the actions of the abstract transaction programming model. That is,

any changes to the local process’s memory is not reflected in the ideal memory until it

commits. When it commits, the changes are instantaneously reflected in all processes’

memory space (their ideal memories). It also keeps track of any memory that was

read by the process, and ensures that process cannot commit if the memory content

previously read is different from the current ideal memory. Thus, the the process must

be restarted if the read memory is different from the current ideal memory content.

Making sure that the memory read content is the same as the current ideal memory

if committing is one of the invariant to verify in the TCC TDV model.

There was difficulty using TDV to verify this above invariant. This is due to

various model extensions which reflect the real design. These extensions make the
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invariants required to prove the correctness complicated. An example of a model

extension occurs in the modeling of commit in the TDV model. During a commit,

the process in the design will update the value to the other caches for each address

independently. Thus, at a given point in time, the cache may contain updated commit

data or old data that is yet to be updated during the time when another process is

performing an update. However, in order to verify the invariant, the location of the

“ideal data” must be tracked to verify that this ideal data is not corrupted. Having the

ideal data located at different points for different addresses complicates the tracking

of ideal data in the system. This makes the formulation of the invariant in order for

verification to succeed hard.

Another complication is that the invariant “read memory is the same as the ideal

memory.” have exceptions. The exception occurs when the read occurs after a write

for the same process on the same address. In this case, the read value is not the ideal

memory value as seen by all the processes, but the read value should be the value of

the last write on the same process. These complications makes the invariant for the

TCC protocol hard to model in TDV. TDV is suited for handling parallel processes

that are complex if the single process execution is simple. In this case, the model for

single process execution is not simple.

There are several modification to the current TCC model that will make the

verification more manageable in TDV. One is to break up the TCC model into several

verification steps, TDV can be used to verify the TCC implementation with simple

single process description, while other formal techniques can be used to verify that

the single process description is being implemented correctly.

A second possible way to simplify TDV model is to extract and verify the assump-

tions of the TCC protocol instead of also verify the TCC protocol at the same time.

The TCC protocol have been designed and proved to give the correct memory model

given a certain abstracted behavior of the system. Instead of re-verifying this proof

using TDV as it is done with the current effort, a simpler TDV model can be used

that verify the implementation adheres to the protocol.

Third is that given enough time, TDV is able to verify the TCC model, however,

the trade-off between the advantage of TDV verification verses time spent on it must
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be balanced. In this case, the TCC verification project was not started after the

design phase, the interest in verifying the TCC implementation was not great enough

to warrant spending additional time on the verification effort.



Chapter 6

TDV Correctness

This Chapter will show that the verification conditions for TDV is sound in proving

the correctness of the invariant properties in the TDV model. The proof will be done

by specifying the TDV model in first order logic in a transition system and showing

that the invariants can be derived from the proof obligations proved by the TDV tool.

6.1 User level TDV modeling

6.1.1 Model Expression Representation

The state of a TDV system is divided into private variables, which are states that

are unique to each transaction, and shared variables, which are states that are shared

among different transactions. Thus, the state of the TDV system is said to be com-

posed of pri [i ] : PRIV STATES , which is an array of private state variables where

i is the transaction identifier, and shr : SHR STATES , which is the shared state

variables.

The expressions in TDV model can reference to the variables of one process, and

one other arbitrary process. Since the choice of the process are arbitrary, when TDV

model write expressions such as pri .lock ∧ ¬po.lock , it is really expressing the first

order formula ∀i, j.(i 6= j → pri [i ].lock ∧ pri [j ].lock), where i refer to one process,

and j refers to one other arbitrary process that is different from i.

77
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In general, TDV expressions are in a predicate of the form P (shr, pri, po). And

this is modeled in first order logic as

∀i, j.(i 6= j → P (shr, pri[i], pri[j])) (6.1)

As an example, TDV can express the idea that only one process have the lock by

with the first order logic equation of:

∀i, j(i 6= j → {pri[i].lock → pri[j].lock})

which can be expressed in the TDV model by defining P to be

pri.lock → po.lock

As a side note, all private variables used in the TDV model can also be modeled

as shared variables. For example, consider expressing the private variable pri.lock

as a shared variable. This can be accomplished by constructing an shared variable

array shr.lock[idx] where each process can access “its” private variable lock using the

process id as the index. (e.g. shr.lock[pri.id]). However, even though that from a

theoretical point of view, TDV can handle expressions not restricted by the above

form by making variables as shared variables, doing so will result in a more complex

model and harder to verify, it is not practical to do so in a real verification usage

environment unless the resulting expansion is kept simple.

6.1.2 Model Expression Representation with Exclusive Prop-

erty

With the addition of exclusive property process access, TDV can express certain

properties not possible with equation 6.1. Namely, TDV can use expressions that

refers to an transaction with the exclusive property in addition to the two processes

already named.

In this section, adding the reference to the transaction with one exclusive property
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will be explained, then the expansion to a more generalized form of allowing multiple

exclusive property will be explained.

The exclusive property can be expressed as

∀i, j.[i 6= j ∧ exl(pri[i]) → ¬exl(pri[j])] (6.2)

that is, no two transactions can both have the exclusive property at the same time.

This exclusive property is defined by the user, and the user also associates a prefix

along with the particular defined exclusive property. Now TDV may express equations

of the form

∀i, j.[i 6= j ∧ exl(pri[i]) → ¬exl(pri[j])]

∧ ∀i, j, x[i 6= j ∧ exl(pri[x]) → P (shr, pri[i], pri[j], pri[x])] (6.3)

the first conjunction clause states that only one transaction have the exclusive prop-

erty at a time, and the second clause states that transaction represented by x is the

exclusive transaction.

Suppose that there is no transaction with the exclusive property in the system. In

this case, an arbitrary transaction can be created as a placeholder with the exclusive

property. Since state of this transaction not related to the exclusive property is

non-deterministic, this is a safe generalization of the system under test.

To see that equation 6.3 is a more general form of equation 6.1, let the ex-

clusive property refer to the placeholder transaction only. That is, the exclusive

property will be true if it’s the placeholder transaction, false otherwise. The first

term ∀i, j.[i 6= j ∧ exl(pri[i]) → ¬exl(pri[j])] reduces to true by the definition

of the placeholder transaction. To eliminate the ∀x. term, consider when x does

not refer to the placeholder transaction. In this case, exl(pri[x]) is false, thus

the implication expression reduces to true. Thus the only case under considera-

tion is when x refers to the placeholder transaction. Since the placeholder trans-

action is non-deterministic, that is, the states of pri[x] is non-deterministic, thus

the predicate P (shr, pri[i], pri[j], pri[x]) should be independent of pri [x ], or that
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P (shr, pri[i], pri[j], pri[x]) = P (shr, pri[i], pri[j]). This reduces equation 6.3 to 6.1

when exclusive property extension is not used.

In general, more than one exclusive property may be used in TDV. The generalize

form of a property in TDV is of the form

∀i, j.[i 6= j ∧ exl1(pri[i]) → ¬exl1(pri[j])]

∧ ∀i, j.[i 6= j ∧ exl2(pri[i]) → ¬exl2(pri[j])]

∧ · · ·

∧ ∀i, j, x1, x2, · · · [i 6= j ∧ exl1(pri[x1]) ∧ exl2(pri[x2] ∧ · · ·) →

P (shr, pri[i], pri[j], pri[x1], pri[x2], · · ·)] (6.4)

where exl1, exl2, etc are independent exclusive properties, and P is defined by the

user through TDV.

6.1.3 Guards, Pre- and Post-conditions

The transition blocks of the TDV model consists of pre- and post-conditions, guard,

and action. The pre- and post-condition and guards of the transition blocks are

predicates on the shared variables states and two private variable states (self and one

arbitrary other process’s private variable state). These predicate defines the predicate

P used in equation 6.4.

Suppose the transition block is named B, then the guard of that block is denoted

by

B .guard(sshr, spri, spo, sexl1, . . .)

where sshr represent shared variables, and spri, spo, sexl1,. . . represent private variable

assignments. Suppose that A.guard is instantiated with A.guard(shr, pri[i], pri[j], pri[x]),

where pri[i] is the private state variable of process i, pri[j] is the private state variable

of process j, and pri[x] is the private state variable of the process x. The interpreta-

tion is that process i is poised to execute block A and process j is any other process

that’s not i, and process x is the process which have the exclusive property. The sys-

tem will be allowed to execute process i only when A.guard(shr, pri[i], pri[j], pri[x])
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is true.

Similar expressions are given for pre- and post-conditions of a transition block

B .pre(sshr, spri, spo, sexl1, . . .)

and

B .post(sshr, spri, spo, sexl1, . . .)

In TDV, sshr variables are prefixed by shr ., spri variables are prefixed by pri ., spo

variables are prefixed by po., and sexl? variables are given the prefix assigned by the

user when the user defines the exclusive predicate.

6.1.4 Assignments

The assignment of a transition block describes the behavior of the block when it ex-

ecutes. It is composed of a boolean expression and a set of variables, named action

boolean expression and action variable set. The execution of the transition block will

assign the variables in the action variable set such that action boolean expression will

be true. We will denote the action boolean expression as A.assign(sshr, spri, spo, tshr, tpri, tpo),

where tshr, tpri,tporepresent the state after the block have been executed.

The prefix representing sshr, spri, spo are shr. pri., and po., the prefix for tshr, tpri,

tpo in the action boolean expression expression are given the prefix shr′., pri′., and

po′..

For example to write that the execution of a block will increase count by 1, the

action boolean expression will be

pri′.count = pri.count + 1

and the action variable set is {pri.count}. Substituting this expression into equation

?? gives the transaction equation governing the behavior of the system:

∃i.∀j.(i 6= j → (pri′.count = pri.count + 1))
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6.1.5 Exclusive Condition

The actual representation of model expression of TDV is actually in the form of

∀i, j, x.[i 6= j → (exl(pri[x]) → P (shr, pri[i], pri[j], pri[x]))] (6.5)

which is similar to the form without the exclusive property. However, when the

exclusive property is defined, TDV will automatically generate the equation 6.2 as

pre- and post- conditions for all transition blocks in the system. That is, the property

exl(pri[i]) → ¬exl(pri[j])

will be added to the pre- and post-conditions. Or that

P (shr, pri[i], pri[j], pri[x]) ≡ exl(pri[i]) → ¬exl(pri[j])

∧Q(shr, pri[i], pri[j], pri[x])

. If the second term Q is dropped, equation 6.5 reduces to

∀i, j, x.[i 6= j → [exl(pri[x]) → (exl(pri[i]) → ¬exl(pri[j]))]]

which is logically equivalent to

∀i, j.[i 6= j ∧ exl(pri[i]) → ¬exl(pri[j])]

if there exist a process with the exclusive property (see section 6.1.2 to see how TDV

model can always guarantee this). This is the first part of equation 6.3.

To see how the second part of equation of 6.3 can be derived from equation 6.5, one

simply notes that there always exist a process with the exclusive property, and keep

the second term Q. Thus equation 6.3 is represented by the TDV model when TDV

automatically generate the exclusive condition as part of the pre- and post-conditions

for all transition blocks in the system.
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6.2 Internal TDV modeling

6.2.1 Property Blocks

The TDV model is represented by defining a predicate P as it appears in equation

6.3. However, in the TDV model, P is expressed on a per block basis. That is, the

user specify a property for a particular execution block, and the specified property

only applies if process i is about to execute that block. Or more formally

P (shr, pri[i], pri[j], pri[x]) ≡ pri[i].pc = BlockA → BlockA.P (shr, pri[i], pri[j], pri[x]) ∧

pri[i].pc = BlockB → BlockB.P (shr, pri[i], pri[j], pri[x]) ∧

· · · (6.6)

where pri[i].pc is the “program counter” that points to the block that process i will

execute next, and BlockA.P , BlockB.P , ... are the properties defined for each block

This expansion of P represent that if a process is about to execute BlockX, then

BlockX.P will describe the property of this process. This is why in equation 6.3, i is

given the interpretation as the process that is about to execute.

6.2.2 Frame Condition

The frame condition Frame(s, t, i, j, x) represent that all variables not in the variable

action set from the assign statement will not change its value, where i is the executing

process. In particular, the pc will not change if j is not the executing process, that

is, i 6= j → s.pri[j].pc = t.pri[j].pc. The same can be true for the arbitrary process

x, thus this equation follows from the frame condition.

Frame(s, t, i, j, x) i 6= j → s.pri[j].pc = t.pri[j].pc ∧

i 6= x → s.pri[x].pc = t.pri[x].pc



84 CHAPTER 6. TDV CORRECTNESS

6.3 Proof

The goal of the proof is to prove that the pre- and post-conditions holds for all exe-

cutions. The pre- and post-conditions will be represented by the predicate INV (st),

where st is the state of the system at time t. Then the goal is to show that ∀t.INV (st)

when st follows the transition behavior as described by the TDV model. The follow-

ing sections will expand the representation of INV and the transition behavior of st

to the equivalent representation of the TDV model.

6.3.1 Transition System

st represent the state of the system at time t. The transition system description

consists of an initial state s0 and a transition relation TRANS (st, st+1) which is a

predicate of the allowable transition from time t to time t + 1.

To show that the invariant holds for all execution at all times (∀t.INV (st)), it is

sufficient to show that

1. INV (s0)

2. ∀st, st+1.(INV (st) ∧ TRANS (st, st+1) → INV (st+1))

∀t.INV (st) is then true by induction using (1) and (2).

6.3.2 Expansion of INV and TRANS

In terms of TDV expression representation INV (st) is represented as

INV (st) ≡ ∀i, j.[i 6= j ∧ exl(s.pri[i]) → ¬exl(s.pri[j])]

∧ ∀i, j, x[i 6= j ∧ exl(s.pri[x]) →

∀B.[s.pri[i].pc = B →

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]

]] (6.7)
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The first conjunction term is the exclusive property–that only one process can have

the exclusive property at a time. i represent the process which will be executed next,

and j represent any other arbitrary process. Thus the term i 6= j distinguish the

executing process from the arbitrary process. Process x represent the process with

the exclusive property, which is represented by the exl(s.pri[x]) term.

Similarly, TRANS (s, t) is expressed as

TRANS (s, t) ≡ ∃i.∀j, x.i 6= j → ∀B. [s.pri[i].pc = B →

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x]

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s, t, i, j, x)

6.3.3 Base Case

The base case is automatic when the first starting transition block have no pre-

conditions. To see this, consider the expression

∀B.[ s.pri[i].pc = B →

] B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x])

which appeared in equation 6.7. s0.pri[i].pc should refer to B0, the starting transition

block, thus the expression reduces to

B0.P re(s.shr, s.pri[i], s.pri[j], s.pri[x])

and since the first transition block have no pre-conditions, this expression reduces to

true.

The user does need to verify that the initial state of the system will only have one

exclusive property. This is usually trivial and can be passed on as the requirement

for the next abstraction level of verification.
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6.3.4 TDV verification equations

TDV constructs the equation representing the verification ideas presented in section

4.3.1. PVS is used to prove the equations expressed below can be used as assumptions

to prove

∀st, st+1.[INV (st) ∧ TRANS (st, st+1) → INV (st+1)]

The first verification idea, ”if the pre-condition is satisfied when a process executes

a block, then after the execution, the post-condition is satisfied.” is represented by

∀s, t.∀i, j, x.∀B.[ i 6= j ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x],

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[x], t.pri[i], t.pri[j], t.pri[x] ∧

B.Post(t.shr, t.pri[pri], t.pri[po], t.pri[pA′])

] (6.8)

pri represents the process under verification and the executing process, po represents

any other process, and pA and pA′ represent the process which have the exclusive

property. To denote that pA′ is the process which have the exclusive property after the

transition, the term Exl(tpA′) is added to the antecedent of the implication equation.

Note that pA and pA′ are not the same process.

The second verification condition, “If the execution of a process passes from block

A to block B (there exists a link between block A and block B), then the pre-condition

of block B can be implied from the post-condition of block A.” is represented by

∀B1, B2.∀s.∀i, j, x Link(B1, B2)
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Exl(s.pri[x]) ∧

B1.P ost(s.shr, s.pri[i], s.pri[j], s.pri[x])

B2.P re(s.shr, s.pri[i], s.pri[j], s.pri[x]) (6.9)

where Link(B1, B2) indicate that block B2 may execute after B1.

And the third verification condition, “For a process a about to execute block A for

which the pre-condition holds, if another process b interrupts and executes another

block B, the pre-condition of block A will still hold even after the execution of process

b.” is represented by

∀s, t.∀i, j, k, x.∀B1, B2. i 6= j ∧ i 6= k ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[k], s.pri[x]

t.pri[i], t.pri[j], t.pri[k], t.pri[x])

B1.P re(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B2.P re(s.shr, s.pri[k], s.pri[i], s.pri[x]) ∧

B2.Guard(s.shr, s.pri[k], s.pri[i], s.pri[x]) ∧

B2.Assign(s.shr, s.pri[k], s.pri[i], s.pri[x],

t.shr, t.pri[k], t.pri[i], t.pri[x]) ∧

B1.P re(t.shr, t.pri[i], t.pri[j], t.pri[x]) (6.10)

Exl(spA) denotes that process pA is the process with the exclusive property before

executing B2 and Exl(tpA′) denotes that process pA′ is the process with the exclusive

property after executing B2.

6.3.5 TDV verification

TDV takes the specification given in the transition blocks and construct the boolean

expression that will be described in this chapter and verifies that it is valid using the
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STP decision procedure. [11] This section will also described the steps used to convert

the boolean expression verified by STP into the assumption equations described in

the previous section.

The block execution correctness verification boolean expression as verified by STP

is

exl(pA) ∧

exl(pA′) ∧

B.Pre(shr, pri, po, pA) ∧

B.Guard(shr, pri, po, pA) ∧

B.Assign(shr, pri, po, pA, shr′, pri′, po′, pA′) ∧

Frame(pri, po, pA, pri′, po′, pA′)

B.Post(shr′, pri′, po′, pA′)

where pri, po, pA, pri′, po′, pA′ are uninterpreted variables for the private states and

shr and shr′ are uninterpreted variables for the public states. Since these variables

are uninterpreted, the above equation can be universally quantified over these state

representations:

∀shr, pri, po, pA, shr′, pri′, po′, pA′ exl(pA) ∧

exl(pA′) ∧

B.Pre(shr, pri, po, pA) ∧

B.Guard(shr, pri, po, pA) ∧

B.Assign(shr, pri, po, pA, shr′, pri′, po′, pA′) ∧

Frame(pri, po, pA, pri′, po′, pA′)

B.Post(shr′, pri′, po′, pA′)

Instantiating shr ≡ s.shr, pri ≡ s.pri[i], po ≡ s.pri[j], pA ≡ s.pri[x], shr′ ≡ t.shr,
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pri′ ≡ t.pri[i], po′ ≡ t.pri[j], pA′ ≡ t.pri[x]:

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x],

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[x], t.pri[i], t.pri[j], t.pri[x] ∧

B.Post(t.shr, t.pri[pri], t.pri[po], t.pri[pA′])

The frame condition is that all variables not in the variable action set will remain

the same. The above equation have the implicit assumption that pri, po, and pA

all refers to different processes. If the refer to the same process, the frame condition

should be different. To cover those cases, TDV calls STP several times, with different

assumptions on if pri, po, and pA refers to the same process or not. However, is

assumed that the process represented my pri is a different process represented my po,

that is, i 6= j, thus

i 6= j ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x],

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[x], t.pri[i], t.pri[j], t.pri[x] ∧

B.Post(t.shr, t.pri[pri], t.pri[po], t.pri[pA′])
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TDV also verify the above equation for all the blocks in the system, thus it is univer-

sally quantified over B

∀B.[ i 6= j ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x],

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[x], t.pri[i], t.pri[j], t.pri[x] ∧

B.Post(t.shr, t.pri[pri], t.pri[po], t.pri[pA′])

]

since s, t, i, j, and x are all uninterpreted, we can universally quantify over those

state representations

∀s, t.∀i, j, x.∀B.[ i 6= j ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

B.Pre(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Guard(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B.Assign(s.shr, s.pri[i], s.pri[j], s.pri[x],

t.shr, t.pri[i], t.pri[j], t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[x], t.pri[i], t.pri[j], t.pri[x] ∧

B.Post(t.shr, t.pri[pri], t.pri[po], t.pri[pA′])

]

which is what we need as equation 6.8.
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The Link property is verified by STP as

exl(pA) ∧

B1.P ost(shr, pri, po, pA)

B2.P re(shr, pri, po, pA)

which after universally quantify over uninterpreted variables, and making the same

instantiations, it becomes

∀s.∀i, j, x Exl(s.pri[x]) ∧

B1.P ost(s.shr, s.pri[i], s.pri[j], s.pri[x])

B2.P re(s.shr, s.pri[i], s.pri[j], s.pri[x])

TDV verifies this equation for every pair of blocks which have a link, thus it verifies

∀B1, B2.∀s.∀i, j, x Link(B1, B2)

Exl(s.pri[x]) ∧

B1.P ost(s.shr, s.pri[i], s.pri[j], s.pri[x])

B2.P re(s.shr, s.pri[i], s.pri[j], s.pri[x])

which is equation 6.9.

The interrupt correctness verification boolean expression as verified by STP is

exl(pA) ∧

exl(pA′) ∧

Frame(pri, po, p2, pA, pri′, po′, p2′, pA′)

B1.P re(shr, pri, po, pA) ∧

B2.P re(shr, p2, pri, pA) ∧

B2.Guard(shr, p2, pri, pA) ∧

B2.Assign(shr, p2, pri, pA,
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shr′, p2′, pri′, pA′) ∧

B1.P re(shr′, pri′, po′, pA′)

after universally quantify over uninterpreted variables, making instantiations, noting

that TDV assumes i 6= j and i 6= k when it is constructing the frame condition, and

having TDV verify the equation for all pairs of blocks, the verified equation is

∀s, t.∀i, j, k, x.∀B1, B2. i 6= j ∧ i 6= k ∧

exl(s.pri[x]) ∧

exl(t.pri[x]) ∧

Frame(s.pri[i], s.pri[j], s.pri[k], s.pri[x]

t.pri[i], t.pri[j], t.pri[k], t.pri[x])

B1.P re(s.shr, s.pri[i], s.pri[j], s.pri[x]) ∧

B2.P re(s.shr, s.pri[k], s.pri[i], s.pri[x]) ∧

B2.Guard(s.shr, s.pri[k], s.pri[i], s.pri[x]) ∧

B2.Assign(s.shr, s.pri[k], s.pri[i], s.pri[x],

t.shr, t.pri[k], t.pri[i], t.pri[x]) ∧

B1.P re(t.shr, t.pri[i], t.pri[j], t.pri[x])

which is equation 6.10



Chapter 7

Abstract Model Simulation

7.1 Introduction

Formal verification has proved to be very useful technique for checking the correctness

of hardware designs. In the recent years, it has been applied to many real-world

projects, from small, isolated blocks to large data path implementations [15]. Yet, due

to the state explosion problem that occurs in checking the detailed implementation

of large designs, simulation is still the main tool for verification in such projects.

However, in such projects, formal techniques are regularly used to verify the high-

level specification in order to expose protocol-level errors [30, 10, 29, 4, 6, 32, 14].

The problem is that, most of the time, the implementation does not adequately

correspond to the high-level specification because such correspondence is ignored, or

the specifications fall obsolete due to other constraints that appear during the design

process. Often times these constraints alter the high-level behavior of the system

and introduce errors which could have been revealed if the consistency between the

implementation and its high-level specification was maintained.

To address this issue, we propose a method to check the consistency between

the implementation and its abstract model by linking and co-simulating the abstract

model with the implementation itself. The correspondence between the concrete

and abstract models is maintained by abstraction functions, which map the states

and transitions in the implementation to the states and transitions in the abstract

93
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model. At every simulation step, the concrete state is translated to the appropriate

abstract state and transition from previous to current abstract state is checked to

be legal according to the abstract model. Since the implementation is constantly

checked against abstract model, the model is forced to be continually updated to

reflect the current version of the hardware. In addition, this methodology constrains

the implementation to follow the high-level guidelines provided by the abstract model

to guarantee correctness.

It also provides better observability of errors during simulation, since an error is

reported as soon as an illegal abstract state transition is made; Errors can be detected

without requiring that they be propagated to the outputs, even if they are masked

by other interactions in the system. This also simplifies the task of debugging the

system by pinpointing the exact state and/or state transition that caused the error.

Section 2 describes the methodology and elaborates about how abstraction func-

tions can be realized. Section 3 discusses about the application of this methodology to

verify the coherence protocol in the Smart Memories multi-processor system and the

problems revealed by applying it. Section 4 explains a second case study, verification

of the Synchronization protocol, and Section 5 concludes this Chapter.

7.2 Methodology

As mentioned, the proposed methodology attempts to close the gap between the

implementation and its high level model, and co-simulates the formally-generated

assertions along with the implementation. The methodology consists of the following

steps:

1. Construct and formally verify the abstract model of the high-level protocol

2. Construct abstraction functions that translate the concrete states in the imple-

mentation into the abstract states

3. Simulate the design with the abstract model linked with it. At each step of

simulation, the concrete states and transitions will be translated into abstract

states and transitions and will be verified against the proved abstract model
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This methodology has a number of advantages: First of all, by using the formally ver-

ified assertions, it extends the capability of simulation in finding corner case problems

in the higher level protocol. Second, the linking of abstract model with simulation

facilitates the use of formal constraints in verification of large designs. Finally, con-

structing the abstract model in parallel with the implementation and linking the two

together can potentially reveal high-level problems early in the design process.

While this approach is similar to correct-by-construction methodology in requiring

an abstract model early in the design and using it to restrict the kinds of errors pos-

sible in the resulting implementation, it is more easily integrated with today’s design

methodology, which is driven by the implementation issues and not the high-level

design properties. By allowing the designers flexibility in constructing the implemen-

tation, even to the point where the abstract model must change, the methodology

acknowledges that, in real designs, implementation issues often constrain the abstract

machines. Yet, it maintains the benefits of improved checking that comes with gen-

erating and formally validating the abstract model.

7.2.1 Formalization

Abstraction functions have been widely used in formal verification since 1980s [12,

35, 16]. The following formalization is a standard application of it; our contribution

is applying this technique in simulation. The proposed methodology expresses the

properties of interest in the abstract domain, which implies that the abstraction

function is part of the specification. The methodology can be formalized as follows:

implementation is represented with the initial state s0, and next state function si+1 =

χ(si, Ii), where Ii is the input at cycle i. The abstract model is represented by the

Kripke structure Ma = (S, R, S0, L), where S is the set of abstract states, R is the set

of valid transition, S0 is the set of initial states. Suppose that φ is a property that

we are interested in verifying, then to say that the abstract model has property φ, we

say that for all paths πa = t0, t1, t2, . . ., where t0 ∈ S0 and ∀i ≥ 0.R(ti, ti+1), that

Ma, πa |= φ (7.1)
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Figure 7.1: Smart Memory Architecture

Let α be the abstraction function such that t = α(s), where t ∈ S, and s is a

concrete state. The verification we are interested on the real design is that for all

paths πα(c) = α(s0), α(s1), α(s2), . . .

Ma, πα(c) |= φ (7.2)

Conceptually in the process of verification, a safeguard placed on the real de-

sign can be broken up into two components: an abstract invariant that needs to be

held, and how the concrete state is related to that invariant. The abstract invariant

corresponds to φ, and the interpretation of the concrete states is α.

Verification of Eq (7.2) can be accomplished by checking that

1. Equation (7.1) holds.

2. α(s0) ∈ S

3. ∀I.∀s reachable in concrete model R(α(s), α(χ(s, I)))

Conditions 2 and 3 state that πα(c) is a valid path of Ma.

We can prove condition 1, which are invariants of the abstract model, through

formal techniques. However, it is difficult to prove 3 formally because it would involve

applying formal methods to a large design (which is not feasible). Instead, we show

that 2 and 3 are correct for all the test vectors used in simulation.
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Figure 7.2: Concrete State Information

7.2.2 Abstraction Function Construction

In order to make the methodology applicable to real design projects, the abstraction

functions should be kept simple enough so that they are not affected by the design

modifications as the design evolves during the process. An important step to facilitate

this purpose is to make the abstract model as close to the implementation as possible

by employing various formal techniques such as refinement, theorem proving, model

checking, etc.

On the other hand, the design team can make the implementation better corre-

spond to its abstract model, given that such abstract model is constructed in the early

stages of the design process. If the information required by the abstraction functions

is exposed to the designers, they can attempt to make this information accessible in

the implementation itself, thus helping the development of abstraction functions. To-

gether these techniques can tremendously simplify the task of developing abstraction

functions, as explained in the case studies.

This methodology was applied to the verification of Smart Memories system, which

is a scalable, modular and reconfigurable shared memory multi-processor [19]. As fig-

ure 7.1 shows, the system consists of Tiles each having two processing cores, a number

of reconfigurable memory blocks and a crossbar. The Tiles are grouped in Quads,

where each Quad consists of four Tiles and a shared protocol controller/interface.

Quads communicate over a mesh-like network and interface to external memories

through a number of memory controllers. Since this is a coherent shared-memory

environment, the methodology is applied first to verify the cache coherence protocol,

and then to the fine-grain synchronization protocol.
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7.3 Cache Coherence Protocol

The coherence protocol implemented in Smart Memories system is MESI, where there

can be multiple readers of a cache line, but there can be only a single writer at a

time. MESI protocol and its variants have been verified several times for bus-based

and directory-based systems [34, 9]. In Smart Memories, the coherence protocol

is implemented in a hierarchical manner: the Protocol Controllers keep the caches

inside the Quad coherent with respect to each other. They lookup the caches upon

each cache miss received from a processor and enforce the coherence invariant. They

also do cache-to-cache transfers between caches inside the Quad if possible. Memory

Controllers on the other hand, enforce coherence among the Quads: they receive

cache miss requests from Quads and send coherence requests to other Quads to have

them change the cache line states according to the protocol, or return the cache line

in case it is modified.

7.3.1 Applying the Methodology

As the first step, an abstract model of the system and the coherence protocol is

created. For this purpose, the memory system is considered as a hierarchy of memory

elements, where a memory element can represent a cache, a protocol controller, a
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Figure 7.4: Abstract Model Checker

memory controller or a memory bank in the real system. In the abstract model, each

memory element can contain a cache line and will associate one of the MESI states

with it, in addition to some information about the state of that cache line in the other

memory elements.

Given this model, rules governing the state transitions in each memory element

preserve the coherence invariants. For example, a protocol controller is allowed to give

a cache line to a cache in Exclusive state only if the protocol controller ensures that all

other memory elements have that cache line in Invalid state. Since the abstract model

consists mainly of states and transition rules, it is essentially a finite state machine.

Verifying the fact that this state machine enforces the coherence between all the caches

in the system was performed using various formal verification tools and techniques.

The state machine was described and formally verified using Cadence SMV model

checker [22]. Higher level properties were proved using PVS theorem prover [26]. A

Perl script was used to translate these abstract state machine descriptions into an

executable code in the Smart Memories functional simulator.

The next step is to extract the abstract states from the concrete states within the

functional simulator, using abstraction functions. For each memory element in the

system, a function is developed which returns the state of a given cache line in that
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memory element. As an example of the abstraction function, we show how such a

function can be developed for the protocol controller. Figure 7.2 shows the (concrete)

state information which the protocol controller keeps for each cache miss. Note that

there is no specific MESI state associated with the missing cache line. Instead, the

protocol controller keeps information concerning the type of cache miss, the lookup

results from Quad caches, and replies from memory controller. This information is

enough for the abstraction function to determine the abstract state of that cache line

within the protocol controller, as described by the following example.

Consider a write miss for cache line X received by the protocol controller from

one of the caches. The protocol controller will send lookup/invalidate requests to the

other caches in the Quad. Each cache will perform a lookup and invalidate its local

copy, and then it will send the previous state of the line (state before invalidation)

back to the protocol controller. Now if a cache sends back an Exclusive state, based

on the replies from all the caches and the type of the cache miss, the abstraction

function can deduce that line X is now transferred from that cache into the protocol

controller and it is in the Exclusive state. Figure 7.3 illustrates the information

decoded by the abstraction function to produce the equivalent abstract state. The

abstraction function also checks to ensure that all other caches return Invalid state,

since otherwise the concrete state is not consistent and therefore cannot be translated

into the abstract state.

To see how this might be useful, suppose that there is an error in the implementa-

tion, where sometimes protocol controller refills a cache in the Exclusive state without

invalidating all other copies of the cache line. This problem is very difficult to catch

in the simulation since revealing it depends on many factors such as the test case

being simulated, contents of cache line, the sequence of accesses to cache line from

different processors, and specific timing of the events. However, such a problem will

be revealed immediately using our methodology, since this cache refill in the Exclusive

state corresponds to an illegal state transition in the high-level abstract model.

Figure 7.4 shows the details of this detection process. In the first cycle, cycle (a),

we see that the protocol controller have not yet invalidated cache 1. The abstraction

function will specify that protocol controller is in the Invalid (I) state for this cache
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line. In the next cycle, cycle (b), the protocol controller erroneously refills the cache

line in cache 2. The abstraction function will say that cache 2 is now in the Exclusive

(E) state. However in the abstract model the transition of cache 2 from I to E is

not allowed if the protocol controller is in the I state, thus the error is detected by

simulating the abstract model.

In order to perform the comprehensive consistency check between concrete and

abstract states, the abstract state is advanced whenever there is a change in the

concrete state of the functional simulator. Note that not all the state changes in the

functional simulator correspond to a state change in the abstract model since they

might be irrelevant to the high-level model, and hence to the property of interest.

7.3.2 Results

Applying the methodology to the implementation of cache coherence protocol in the

Smart Memories functional simulator discovered various design and model errors,

ranging from coding bugs in the simulator itself to incorrect state transitions for the

cache lines in the system.

A very interesting problem was that the system requires distinguishing between

two different types of write back: eviction write backs and coherence write backs.

Write backs might be initiated by either evicting a modified cache line from a cache

(eviction write back), or by degrading a modified cache line to shared state (coherence

write back). Eviction write backs implicitly express the fact that none of the caches

in the system contain the line, but this is not true for the coherence write back, since

copies of the line still exist in some caches in the Shared state. The necessity for

such distinction was realized when the designers and verification experts were trying

to construct the abstract model of the implementation and correspond the cache

line state transitions in the functional simulator to its abstracted model. Since this

correspondence was made at the early design stages, it helped the designers to correct

the problem and implement two different types of write back requests in their system.

Another problem (a potential pitfall) discovered when the system is trying to do

an optimization via bypassing the data carried by a write back request back to a
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Table 7.1: Semantics of the synchronization operations
Instruction F/E==1

W==1 W==0
Sync Load F/E=0,W=0 F/E=0

Read data, Send Wakeup Read data
Sync Store Stall W=1

Send Sync Miss Stall, Send Sync Miss
Future Load Read data Read data

Reset Load F/E=0, W=0 F/E=0
Read data, Send Wake up Read data

Set Store Write data Write data

Instruction F/E==0
W==1 W==0

Sync Load Stall W=1
Send Sync Miss Stall, Send Sync Miss

Sync Store F/E=1, W=0 F/E=1
Write data, Send Wakeup Write data

Future Load Stall W=1
Send Sync Miss Stall, Send Sync Miss

Reset Load Read data Read data

Set Store F/E=1, W=0 F/E=1
Write data, Send Wake up Write data
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cache miss request. As a result, multiple caches could potentially obtain an exclusive

version of the cache line, which obviously is incorrect. Both of these examples are

corner case problems that require a specific sequence of events to occur in order for

traditional simulation to detect them.

Last but not least, the methodology was able to reveal some coding problems

in the functional simulator itself. Examples are incorrect identification of cache line

states, incorrect initializations and incorrect state transitions within controller’s finite

state machine. The abstract model was able to capture such errors by detecting the

violations of invariants when running concurrently with the functional simulator.

7.4 Synchronization Protocol

Memory words in the Smart Memories system are augmented with extra meta-data

bits that can be used for different purposes. An interesting application of these bits

is in implementation of fine-grain locks. For each word, a single meta-data bit is

considered as “Full/Empty” (F/E) indicator: when F/E bit is one, the location is

considered as full and processor is allowed to consume the data contents of the word.

When the bit is zero, the word is considered as empty and processor is stalled until

another value is written into that address. This situation is usually referred to as

a ´Synchronization Miss¡. In such a case, processor sends a synchronization miss

request to a memory controller before stalling, to enlist itself as a waiter on that

specific address. The processor is awakened later on to retry its access, when another

processor writes the data.

In addition to the Full/Empty bit, a second bit is also used to indicate the fact

that a synchronization miss has already occurred for the word and thus there is at

least one waiting processor on this address. This second bit is called the “Waiting”

(W) bit. Upon a successful access to a word, if the W bit is set, a wake up request is

generated and sent to the memory controller. The memory controller then looks up

all the waiting processors stalled on the specified address, and wakes up the first one

in order to retry its access. The entire interaction between the processors, memory

blocks and memory controller which causes stalling and un-stalling the processors



104 CHAPTER 7. ABSTRACT MODEL SIMULATION

upon synchronization operations is referred to as the “Synchronization Protocol.”

The instruction set of the processors is extended by adding special memory access

instructions that can leverage these extra bits and the manipulation mechanism.

Table 7.1 describes the semantics of these instructions and the effect they have on

the F/E and W bits. Columns two to four describe the result of these memory access

operations and read-modify-write action on the bits, based on the initial value of F/E

and W bits.

Obviously, the important property about this protocol is the fact that it is dead-

lock free. The protocol has to guarantee that all the waiting processors will eventually

wake up and successfully retry their accesses so that the application can make forward

progress, given that synchronization accesses are used correctly by the application it-

self.

7.4.1 Results

Once again, applying the proposed methodology discovered some faults, which oth-

erwise would be difficult to catch. An important problem that was revealed was

related to the ordering of communicated messages between processors and memory

controllers. Since two processors within the Tile share memory blocks, there might be

occasions when a synchronization miss and a wake up request for the same memory

address are generated within a few cycles. For instance, the first processor might issue

a Synchronized Load that causes a synchronization miss, and in the next cycle, second

processor might issue a Synchronized Store, which generates a wake up. In such cases,

if the memory controller receives the wake up request before the synchronization miss

request, the wake up might be dropped leading to a dangling synchronization access

which might never un-stalled.

During the process, a potential pitfall was also discovered about the way syn-

chronization accesses are used by the programmer. In the applications and run-time

system, there were places where non-blocking Set Store and Reset Load accesses were

used instead of the blocking Synchronized Store and Synchronized Load. Although

the program could potentially work properly in certain cases, there was no clear way
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to guarantee the proper behavior in all the cases.

7.5 Discussion

The proposed methodology proves to be useful for control-oriented design projects

where the implementation is hard to be formally verified due to state explosion.

Such designs also have the largest number of the corner cases and timing/sequencing

related problems that are difficult to identify using traditional verification efforts.

Simulations detect errors in the implementation by comparing the expected output

with the actual results. In contrast, in the proposed approach, formal model identifies

errors by assuring validity of each state transition independent of factors such as time,

sequence or values involved in each transition. However, this fact does not make this

approach completely independent of the test vectors, since if none of the test vectors

excites a specific abstract state or transition, they will not be verified.

Although this methodology is not entirely formal, it is more successful in detecting

corner case errors because first, the test vector does not need to excite an observable

error in the implementation. Second, the erroneous transition is detected immedi-

ately upon occurrence by pinpointing the exact transition in the implementation that

violated the protocol invariants. This is in contrast to traditional verification method,

where the errors need to be propagated to an observable point in the system in order

to be detected.

The difficulty of applying this methodology lays mainly in the creation of abstrac-

tion functions. If the concrete state encoded in the implementation is not properly

organized, developing and maintaining the abstraction functions as design changes

becomes a demanding task. Note that the errors in the abstraction function itself

can also be detected, since incorrect implementation of an abstraction function will

cause an inconsistency between the concrete and abstract states, hence reporting an

invalid abstract state transition. To keep abstraction functions simple and easy to

develop, it is important to construct the abstract model in the early design stages,

and communicate to designers the information required by each abstraction function.
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Designers can contribute significantly to the realization of these functions, by mak-

ing small changes to the design that simplify access to the information inside the

implementation.

Another major factor which affects the development of the abstraction functions

is the abstract model itself. The abstract model might need to be modified a number

of times in order to not only cover the high-level properties of the protocol, but also

properly represent the implementation of it. Consistency between the abstract model

and implementation needs to be established and maintained as the implementation

undergoes regular design modifications. Although not always trivial, constructing and

maintaining the abstract model in parallel with the design helps in early detection

of the system-level protocol problems, which are usually much more difficult to fix in

the later stages of the design process.



Chapter 8

Conclusion

8.1 Perspectives

Using the concept of perspectives, it is demonstrated that verification early in the

design is possible and useful to catch design problems early in the design process.

The formal verification concepts of abstraction and refinement is well suited to model

designs in the early stage. However, the preciseness and the non-ambigouity of the

formal model descriptions make formal verification difficult in the early design stages

because of the rapid changes that the design goes through during the early design

process.

By developing a lightweight formal verification process, it is now possible to for-

mally verify the design concepts of the abstract design quickly, and thus adaptable to

design changes. However, using the perspective based verification, the model is not

completely verified, and design flaws can be missed for the portions that was not ex-

plicitly modeled. However, there is no getting around this because of the incomplete

nature of the design in the early design stages. In addition, being able to proving a

formal model allow the verification engineer and the designers to pinpoint important

aspects about the design that must be clarified to be able to complete the design

correctly.

Using the concept of perspectives, various design flaws in different parts of the

smart memory memory system was found early in the design process. The types of

107
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design that it was able to handle varies from deadlock issues, cache coherence proto-

col, cache controller architecture design, and the system design for synchronization

operation. In verifying these different aspects of the design, several perspectives are

identified.

One of the perspective identified–The Parallel Transition Perspective–was further

developed and the tool Transaction Diagram Verifier was written for verifying models

written under this perspective. By developing this tool, it was demonstrated that

many of the work involved in proving the correctness of the design for problems in

Parallel Transactions can be encapsulated in the tool, thus the user of the tool is

allowed to maintain small models and able to complete the verification quickly to

allow the verification to keep up with the design process. It is also demonstrated that

identifying problems into the correct perspective is important, as each perspective is

only efficient solving problems in its domain.

8.2 Model Correspondence

One method to overcome the problem of incomplete verification with perspective

based verification is to build the model into the simulator so that the abstract model

can be co-simulated with the detailed design. This ensures that the design is im-

plementing the verified abstract model. Although we have used this method in the

smart memory cache protocol verification, the work required to do this verification

is time consuming. Thus this methodology does not work well early in the design

process. However, it does provide one solution to verify the detailed design against

the perspective based abstract models.

8.3 Future Work

The Transaction Diagram Verifier was developed for the Parallel Transaction Per-

spectives. Although perspective such as the Transaction with error states can be

solved with the widely used Model Checkers, the other perspectives identified in this

Thesis does not have a tool geared toward solving problems in those perspectives.
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Having tools available for the different perspectives is needed for a perspective based

verification methodology.

Although the perspective based verification have been done on the smart memory

project, one open question would be how much of the problem in existence in a typical

designs today can be solved using the few perspectives that have been identified. It

is hoped that a handful of perspectives can be used to uncover most of the design

flaws that are hard for traditional verification to catch. However, whether this is the

case or now remains unknown until the perspective concept can be applied to more

real world designs.
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TDV Correctness Proof in PVS

A.1 PVS File

TDV : THEORY

BEGIN

PID : TYPE;

BID : TYPE;

PRI_STATE_OTHER : TYPE;

PRI_STATE : TYPE = [# pc : BID,

other : PRI_STATE_OTHER #];

SHR_STATE : TYPE;

BLOCK : TYPE = [#

Pre : [SHR_STATE, PRI_STATE, PRI_STATE, PRI_STATE -> bool],

Guard : [SHR_STATE, PRI_STATE, PRI_STATE, PRI_STATE -> bool],

Assign : [SHR_STATE, PRI_STATE, PRI_STATE, PRI_STATE,

SHR_STATE, PRI_STATE, PRI_STATE, PRI_STATE -> bool],

Post : [SHR_STATE, PRI_STATE, PRI_STATE, PRI_STATE -> bool]

#]

110
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STATE : TYPE = [# shr : SHR_STATE,

pri : [PID -> PRI_STATE] #]

EXL : pred[PRI_STATE];

Link : [BID,BID -> bool];

default_block : [BID -> BLOCK];

blocks : [BID -> BLOCK] =

LAMBDA(b:BID) : (#

Pre := LAMBDA(shr:SHR_STATE,pri:PRI_STATE,po:PRI_STATE,pA:PRI_STATE) : (

default_block(b)‘Pre(shr,pri,po,pA) AND

(EXL(pri) IMPLIES NOT EXL(po))

),

Guard := LAMBDA(shr:SHR_STATE,pri:PRI_STATE,po:PRI_STATE,pA:PRI_STATE):(

default_block(b)‘Guard(shr,pri,po,pA)

),

Assign := LAMBDA(shr:SHR_STATE,pri:PRI_STATE,po:PRI_STATE,pA:PRI_STATE,

shrX:SHR_STATE,priX:PRI_STATE,poX:PRI_STATE,

pAX:PRI_STATE) : (

default_block(b)‘Assign(shr,pri,po,pA,shrX,priX,poX,pAX) AND

pri‘pc=b AND (EXISTS(b2:BID): Link(b,b2) AND priX‘pc=b2)

),

Post := LAMBDA(shr:SHR_STATE,pri:PRI_STATE,po:PRI_STATE,pA:PRI_STATE) : (

default_block(b)‘Post(shr,pri,po,pA) AND

(EXL(pri) IMPLIES NOT EXL(po))

)

#)

Frame_Condition : [STATE,STATE,PID->[PID,PID->bool]] =

LAMBDA(s:STATE,t:STATE,pri:PID): LAMBDA(po:PID,pA:PID): (

(pri/=po IMPLIES s‘pri(po)‘pc=t‘pri(po)‘pc) AND
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(pri/=pA IMPLIES s‘pri(pA)‘pc=t‘pri(pA)‘pc)

);

Exclusive_Exist : AXIOM

FORALL(s:STATE): EXISTS(pA:PID): EXL(s‘pri(pA))

INV : [STATE ->bool] = LAMBDA(s:STATE) : (

(FORALL(i:PID, j:PID) : i/=j AND EXL(s‘pri(i)) IMPLIES NOT EXL(s‘pri(j)))

AND

(FORALL(i:PID,j:PID,x:PID) :

i/=j AND EXL(s‘pri(x)) IMPLIES (

FORALL(b:BID):

s‘pri(i)‘pc=b IMPLIES blocks(b)‘Pre(s‘shr,s‘pri(i),s‘pri(j),s‘pri(x))

)

)

);

TRANS : [STATE,STATE -> bool] = LAMBDA(s:STATE,t:STATE) : (

EXISTS(i:PID):

FORALL(j:PID,x:PID):

i/=j IMPLIES FORALL(b:BID): (s‘pri(i)‘pc=b IMPLIES

blocks(b)‘Guard(s‘shr,s‘pri(i),s‘pri(j),s‘pri(x))

AND blocks(b)‘Assign(s‘shr,s‘pri(i),s‘pri(j),s‘pri(x),

t‘shr,t‘pri(i),t‘pri(j),t‘pri(x))

AND Frame_Condition(s,t,i)(j,x)

)

);

verif1 : AXIOM

FORALL(s:STATE,t:STATE) :

FORALL(pri:PID, po:PID, p2:PID,pA:PID,pAX:PID):
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(

pri/=po AND pri/=p2

)

IMPLIES

FORALL(b1:BID, b2:BID) : (

(

EXL(s‘pri(pA)) AND

EXL(t‘pri(pAX)) AND

blocks(b1)‘Pre(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA)) AND

blocks(b2)‘Pre(s‘shr,s‘pri(p2),s‘pri(pri),s‘pri(pA)) AND

blocks(b2)‘Guard(s‘shr,s‘pri(p2),s‘pri(pri),s‘pri(pA)) AND

blocks(b2)‘Assign(s‘shr,s‘pri(p2),s‘pri(pri),s‘pri(pA),

t‘shr,t‘pri(p2),t‘pri(pri),t‘pri(pA))

AND Frame_Condition(s,t,p2)(pri,pA)

) IMPLIES (

blocks(b1)‘Pre(t‘shr,t‘pri(pri),t‘pri(po),t‘pri(pAX))

)

)

block_prop : AXIOM

FORALL(s:STATE,t:STATE) :

FORALL(pri:PID, po:PID,pA:PID,pAX:PID):

FORALL(b1:BID) : (

(

pri/=po AND

EXL(s‘pri(pA)) AND

EXL(t‘pri(pAX)) AND

blocks(b1)‘Pre(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA)) AND

blocks(b1)‘Guard(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA)) AND

blocks(b1)‘Assign(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA),

t‘shr,t‘pri(pri),t‘pri(po),t‘pri(pA))
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) IMPLIES (

blocks(b1)‘Post(t‘shr,t‘pri(pri),t‘pri(po),t‘pri(pAX))

)

)

link_prop : AXIOM

FORALL(s:STATE) :

FORALL(pri:PID, po:PID,pA:PID):

FORALL(b1:BID, b2:BID) : (

% don’t need EXL(pA) line, (not actually used) but it’s a safe

% expansion for future if needed

EXL(s‘pri(pA)) AND

Link(b1,b2) AND

blocks(b1)‘Post(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA))

IMPLIES

blocks(b2)‘Pre(s‘shr,s‘pri(pri),s‘pri(po),s‘pri(pA))

);

trans : THEOREM

FORALL(s:STATE, t:STATE) :

(INV(s) AND TRANS(s,t)) IMPLIES INV(t)

END TDV

A.2 PVS Proof file

(TDV

(trans 0

(trans-1 nil 3416231532 3416232345

("" (expand* "INV" "TRANS")

(("" (skosimp*)



A.2. PVS PROOF FILE 115

(("" (split)

(("1" (use "Exclusive_Exist" ("s" "s!1"))

(("1" (use "Exclusive_Exist" ("s" "t!1"))

(("1" (skosimp*)

(("1" (case "i!1=j!1")

(("1" (inst -8 "i!2" "pA!2")

(("1" (assert)

(("1" (inst - "s!1‘pri(i!1)‘pc")

(("1" (lemma "block_prop")

(("1"

(inst - "s!1" "t!1" "j!1" "i!2" "pA!2" "pA!1"

"s!1‘pri(j!1)‘pc")

(("1" (split)

(("1" (grind) nil nil)

("2" (grind) nil nil)

("3" (propax) nil nil)

("4" (propax) nil nil)

("5" (inst - "j!1" "i!2" "pA!2")

(("5" (grind) nil nil)) nil)

("6" (grind) nil nil)

("7" (grind) nil nil))

nil))

nil))

nil))

nil))

nil))

nil)

("2" (inst -7 "j!1" "pA!2")

(("2" (assert)

(("2" (inst - "s!1‘pri(i!1)‘pc")

(("2" (lemma "verif1")



116 APPENDIX A. TDV CORRECTNESS PROOF IN PVS

(("2"

(inst - "s!1" "t!1" "j!1" "i!2" "i!1" "pA!2"

"pA!1")

(("2" (split)

(("1"

(inst - "s!1‘pri(j!1)‘pc"

"s!1‘pri(i!1)‘pc")

(("1"

(split)

(("1" (grind) nil nil)

("2" (propax) nil nil)

("3" (propax) nil nil)

("4"

(inst - "j!1" "i!2" "pA!2")

(("4"

(split)

(("1" (inst?) nil nil)

("2" (grind) nil nil)

("3" (propax) nil nil))

nil))

nil)

("5"

(inst - "i!1" "j!1" "pA!2")

(("5"

(split)

(("1" (inst?) nil nil)

("2" (grind) nil nil)

("3" (propax) nil nil))

nil))

nil)

("6" (grind) nil nil)
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("7" (grind) nil nil)

("8" (grind) nil nil))

nil))

nil)

("2" (grind) nil nil)

("3" (grind) nil nil))

nil))

nil))

nil))

nil))

nil))

nil))

nil))

nil))

nil))

nil)

("2" (use "Exclusive_Exist" ("s" "s!1"))

(("2" (skosimp*)

(("2" (case "i!1=i!2")

(("1" (inst -7 "j!1" "pA!1")

(("1" (assert)

(("1" (inst - "s!1‘pri(i!1)‘pc")

(("1" (lemma "block_prop")

(("1"

(inst - "s!1" "t!1" "i!2" "j!1" "pA!1" "x!1"

"s!1‘pri(i!1)‘pc")

(("1" (split)

(("1" (lemma "link_prop")

(("1"

(inst - "t!1" "i!2" "j!1" "x!1"

"s!1‘pri(i!2)‘pc" "t!1‘pri(i!2)‘pc")
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(("1" (grind) nil nil)) nil))

nil)

("2" (grind) nil nil) ("3" (propax) nil nil)

("4" (propax) nil nil)

("5" (inst - "i!2" "j!1" "pA!1")

(("5" (split)

(("1"

(inst?)

(("1" (grind) nil nil))

nil)

("2" (grind) nil nil)

("3" (propax) nil nil))

nil))

nil)

("6" (grind) nil nil) ("7" (grind) nil nil))

nil))

nil))

nil))

nil))

nil))

nil)

("2" (inst -6 "i!2" "pA!1")

(("2" (assert)

(("2" (inst - "s!1‘pri(i!1)‘pc")

(("2" (lemma "verif1")

(("2"

(inst - "s!1" "t!1" "i!2" "j!1" "i!1" "pA!1"

"x!1")

(("2" (split)

(("1"

(inst - "s!1‘pri(i!2)‘pc"
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"s!1‘pri(i!1)‘pc")

(("1" (split)

(("1" (grind) nil nil)

("2" (propax) nil nil)

("3" (propax) nil nil)

("4"

(inst - "i!2" "j!1" "pA!1")

(("4" (grind) nil nil))

nil)

("5"

(inst - "i!1" "i!2" "pA!1")

(("5"

(split)

(("1" (inst?) nil nil)

("2" (grind) nil nil)

("3" (propax) nil nil))

nil))

nil)

("6" (grind) nil nil)

("7" (grind) nil nil)

("8" (grind) nil nil))

nil))

nil)

("2" (grind) nil nil) ("3" (grind) nil nil))

nil))

nil))

nil))

nil))

nil))

nil))

nil))
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nil))

nil))

nil))

nil))

nil)

proved

((TRANS const-decl "[STATE, STATE -> bool]" TDV nil)

(INV const-decl "[STATE -> bool]" TDV nil)

(boolean nonempty-type-decl nil booleans nil)

(= const-decl "[T, T -> boolean]" equalities nil)

(block_prop formula-decl nil TDV nil)

(blocks const-decl "[BID -> BLOCK]" TDV nil)

(/= const-decl "boolean" notequal nil)

(Frame_Condition const-decl

"[STATE, STATE, PID -> [PID, PID -> bool]]" TDV nil)

(BID type-decl nil TDV nil) (verif1 formula-decl nil TDV nil)

(STATE type-eq-decl nil TDV nil) (SHR_STATE type-decl nil TDV nil)

(PRI_STATE type-eq-decl nil TDV nil) (PID type-decl nil TDV nil)

(Exclusive_Exist formula-decl nil TDV nil)

(link_prop formula-decl nil TDV nil))

134769 1960 t nil)))
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