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Abstract

Recent changes in technology scaling have made power dissipation today’s major perfor-

mance limiter. As a result, designers struggle to meet performance requirements under

stringent power budgets. At the same time, the traditional solution to power efficiency,

application specific designs, has become prohibitively expensive due to increasing non-

recurring engineering (NRE) costs. Most concerning are the development costs for design,

validation, and software for new systems.

One direction that industry has attempted, with the goal of mitigating the rising costs of

per-application designs, is to add a layer of programmability that specifies how the hardware

operates. Example of this approach include baseband processors for software-defined-radio

(SDR) wireless devices [28, 100, 51]. Similarly, our previous study, Stanford Smart Memo-

ries (SSM), showed that it is possible to build a reconfigurable chip multiprocessor memory

system that can be customized for specific application needs [71, 41, 92, 89]. These pro-

grammable, or reconfigurable, hardware solutions enable per-application customization and

amortization of NRE costs—to a limited extent. However, reconfigurability introduces over-

heads at the circuit level, and customization is limited to those resources that were decided

upon, and verified, upfront.

In this thesis, we argue that one can harness the ideas of reconfigurable designs to build

a design framework that can generate semi-custom chips—a Chip Generator. A domain-

specific chip generator codifies the designer knowledge and design trade-offs into a template

that can be used to create many different chips. Like reconfigurable designs, these systems

fix the top level system architecture, amortizing software and validation and design costs,

and enabling a rich system simulation environment for application developers. Meanwhile,

below the top level, the developer can “program” the individual inner components of the

architecture. Unlike reconfigurable chips, a generator “compiles” the program to create a

customized chip. This compilation process occurs at elaboration time—long before silicon
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is fabricated. The result is a framework that enables more customization of the generated

chip at the architectural level, because additional components and logic can be added if

the customization process requires it. At the same time this framework does not introduce

inefficiency at the circuit level because unneeded circuit overheads are not taped out.

The design of a chip generator is significantly different than the design of a single chip

instance since one must account for a much larger design and verification space. Thus

we propose a new tool, Genesis2, that can serve as a design framework for generators.

Using Genesis2, designers write elaboration programs, or “recipes,” for how the hardware

blocks need to be constructed given a set of constraints, rather than hard code a particular

solution. Genesis2 enables a standardized method for creation of module generators and for

aggregating unit level generators together into a full chip generator. Ultimately, Genesis2

enables users to design an entire family of chips at once, so that producing custom chips

becomes a simple matter of adjusting a system configuration file.

While logic validation of a generator may at first seem like an infeasible or very expen-

sive task, we show that this is in fact not the case. The first key insight that enables efficient

validation is that one only needs to validate generated instances—not the generator. This

means that we can even leverage the generator to generate many of the validation com-

ponents such as drivers, monitors and assertions, alongside the design itself. The second

insight is that the validation approach can be oblivious to low level customizations details,

and instead thoroughly check correctness at the higher, system level. The result, as we

show, is that testing multiple hardware configurations does not become harder than testing

only one. Moreover, we show that a chip generator may even improve validation quality

and reduce validation time, because by testing multiple closely related configurations one

increases the probability of exposing corner case bugs.

Using Chip Generators, we argue, will enable design houses to design a wide family of

chips using a cost structure similar to that of designing a single chip—potentially saving

tens of millions of dollars—while enabling per-application customization and optimization.
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Chapter 1

Introduction

Power constraints are changing how chips are being designed today. Changes to technology

scaling, post-90nm, have severely compromised our ability to keep power in check, which

means almost all systems designed today, from high performance servers to wireless sensors,

are becoming energy constrained. Years of research has taught us that the best—and

perhaps only—way to save energy is to cut waste. Clock and power gating, now common

techniques, reduce direct energy waste in unused circuits. Power is also wasted indirectly

when we waste performance. As is well known, and recently quantified for processors by

Azizi [23], higher performance requirements lead to higher energy operations, so removing

performance waste also reduces energy per operation. Using multiple simpler units rather

than a single aggressive one, therefore, saves energy when processing parallel tasks. At the

system level, this observation is driving the recent push for parallel computing.

Ultimately, the best tool in our power-saving arsenal is customization, because the most

effective way to improve energy efficiency is to find a solution that accomplishes the same

task with less work. Doing less work directly saves energy. Better still, since less work is

needed, performance improves, allowing even greater reduction of the required energy. For

many applications, adding a few specialized hardware units greatly reduces the required

work, making application specific integrated circuits (ASICs) orders of magnitude more

energy efficient than a CPU for that application.

Yet, despite the clear energy efficiency advantage of ASICs, the number of new ASICs

built today is not skyrocketing, but actually decreasing. The reason is simple: non-recurring

engineering (NRE) costs for ASIC design have become extremely expensive, and very few

applications have markets big enough to justify these costs. This uneasy status quo is
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2 CHAPTER 1. INTRODUCTION

reminiscent of chip design problems in the early 1980s, when all chips were designed by

full custom techniques. At that time, few companies had the skills or the dollars to create

chips. The invention of synthesis and place-and-route tools dramatically reduced design

costs and enabled cost effective ASICs. Over the past 25 years, however, complexity has

grown, creating the need for another design innovation.

To enable this innovation, we first need to face the main issue: building a completely

new complex system is expensive. The cost of design and verification has long exceeded

tens of millions of dollars. Moreover, hardware is only half the story. New architectures

require expensive new software ecosystems to be useful. Developing these tools and code is

also expensive. Providing a designer with complex IP blocks does not solve this problem:

the assembled system is still complex and still requires custom verification and software.

Furthermore, verification costs still trend with system complexity and not with the number

of individual blocks used. To address some of these design costs, the industry has been

moving toward platform-based designs [99], where the system architecture has been fixed,

to provide an interface, an abstraction layer, for the design space exploration, validation and

software efforts. A platform in this ([99]) sense is an architecture that, rather than being

assembled from a collection of independently developed blocks of silicon, is derived from

a specific “family” of micro-architectures, oriented toward a particular class of problems.

Most often, to make these platforms serve a wide class of problems, design houses rely on

hardware programmability and/or reconfigurability [71, 64, 51, 61].

While such strategies address some of the design costs, these general, programmable

platforms still do not provide the desired ASIC-like performance and power efficiency. The

amount of resources in a programmable platform (e.g., compute engines, instruction and

data caches, processor width, memory bandwidth, etc.) is never optimal for any particular

application. Since the power and area of the chip are limited, a compromise among the

expected use-cases is typically implemented. Similarly, adding configuration registers to a

design also implies adding circuit inefficiencies, such as muxes in data paths or table look-ups

for control, impeding both performance and energy. Furthermore, while a reconfigurable

chip is likely to work in the modes for which it was designed and tested, and perhaps for

some closely related configurations, it is doubtful if a completely new use-case would work

efficiently the first time.

It therefore seems that on one hand, a reconfigurable platform based approach does

not provide the required performance and power efficiency, and on the other, ASIC based
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solutions are too expensive for most applications. The key to solving this impasse is to

understand that while we cannot afford to build a customized chip for every application,

we can reuse one application’s design process to generate multiple new chips. For example,

many applications within a domain may require similar systems with small variations in

hardware units, or the same application may be used in multiple target devices with different

power and performance constraints.

While a configurable chip cannot be as efficient as its set of application specific counter-

parts, suppose we could introduce the one piece of “secret sauce” that makes that application

work, and then generate (rather than program) a system configuration that meets the power

and performance constraints, and only then fabricate the chip; we would certainly end up

with a much more efficient chip.

Furthermore, every time a chip is built, we inherently evaluate different design decisions,

either implicitly using micro-architectural and domain knowledge, or explicitly through cus-

tom evaluation tools. While this process could help create other, similar chips, today these

trade-offs are often not recorded—we either settle on a particular target implementation

and record our solution, or we create a chip that is a super-set or a compromise among

design choices (and is thus less than optimal).

We argue that this implicit and explicit knowledge should be embedded in the modules

we construct, allowing others, with different goals or constraints, to create different chip

instances. Rather than building a custom chip, designers should create a module that

can generate the specialized chip—a chip generator. As presented in Chapter 2 of this

thesis, the chip generator approach uses a fixed system architecture, or “template,” to

simplify both software development and hardware verification. This template is composed

of highly parametrized modules, to enable pervasive customization of the hardware. The

user, an application developer, tunes the parameters to meet a desired specification. The

chip generator compiles this information and deploys optimization procedures to produce

the final chip. This process results in customized function units and memories that increase

compute efficiency.

Since this approach is different than traditional ASIC, SoC or other current chip design

strategies, the first steps in realizing it are to create a design tool chain that can easily

embed designers knowledge into the modules they create, and allow hierarchical assembly

of these modules into a generator. To better understand the requirements for this tool, we

begin Chapter 3 by discussing a few design examples. However, rather than describing the



4 CHAPTER 1. INTRODUCTION

hardware architecture, we emphasize the designer thought process: where design choices

come from, which design choice should be set by the generator user (i.e., the application

engineer), and which should be inferred from a previously made choice or calculated by

optimization scripts. From this analysis, we learn that the problem in embedding designer

knowledge and design process into the generator is that it requires more designer control over

the elaboration process, than is currently available in standard hardware descriptive lan-

guages. Therefore the first step in realizing a chip generator must be to create a framework

for making generators. Chapter 3 goes on to describes one such tool–Genesis2. Genesis2

embeds designer knowledge into modules by enabling the interleaving of a software scripting

language (Perl) and a hardware descriptive language (Verilog). While the idea of interleav-

ing a pre-processing language with an HDL is not new [95, 18, 94, 10, 40, 43], Genesis2 has

a collection of features that make it powerful for creating generators: (a) Genesis2 pulls all

the parametrization from the hardware language scope to the hardware generator scope. (b)

Genesis2 has hierarchical scope (rather than the file based scope of all other pre-processors).

This also enables generation of heterogeneous systems by doing automatic uniquification of

generated modules and instances. (c) Genesis2 constructs/uses a hierarchical XML repre-

sentation of the entire design data base, which lays down the API for application engineers

to program the generator, or for optimization tools to search the design space. (d) Finally,

Genesis2’s foundation in a complete and known software language (Perl) enables the de-

signer to embed his thoughts by explicitly controlling the hardware elaboration. Moreover,

it enables the design modules to generate some of the collateral files needed for validation,

physical implementation and/or software development.

Genesis2 makes it easy for a designer to create an elaboration program that can generate

custom, heterogeneous hardware based on a user’s input. However, design is just part of the

problem. As important is the verification problem, accounting for 30%-70% of today’s chip

design NRE costs. Chapter 4 delves into the difficulties that a chip generator may inflict

on RTL verification. Since one design is hard to verify, one might expect the verification

problem to only get (exponentially) worse with a chip generator approach, because flexible

designs increase the validation space. However, our validation goal is not to validate the

generator, but the particular design that it generates. This means that the validation space

for each instance is in fact constrained, and is no worse than an equivalent instance that was

not auto-generated. The key challenge is to ensure that the generator validation collateral

can be reused to generate the test environment needed for each instance.



5

The chapter uses a case study of a very flexible chip multiprocessor, Stanford Smart

Memories, that was actually implemented, verified, taped out and proved to be working

in the lab, to better exemplify the impact of flexibility in a design on its validation. We

demonstrate how a configuration-agnostic validation environment was created for SSM, and

in particular we focus on how the environment was connected to the design to enable efficient

abstraction of low level details. Abstracting low level details also yielded the creation of

a Relaxed Scoreboard [90]—a configuration-agnostic reference model. Traditional reference

models (known as gold models or scoreboards), predict a single “correct” answer for every

output, which requires that the model and design implement the same timing, arbitrations,

and priorities on a cycle accurate basis. In contrast, a relaxed scoreboard keeps a set of

possibly correct outputs, and update this set as more of the actual outputs are seen.

In perhaps the most interesting aspect of validation with respect to chip generators,

we further show in Chapter 4 that our ability to quickly and effortlessly generate multiple

different versions from one template architecture can even be beneficial for verification. In-

tuitively, a small change in the generated machine would cause its cycle-by-cycle behavior

to change, thus adding another random factor into the existing simulation infrastructure,

potentially making a rare corner case scenario in one generated configuration become a

frequent event in another. Empirically we show that randomly generating machine config-

urations can significantly improve our chances of exposing a given bug, thus we are making

the verification effort both better and more efficient.
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Chapter 2

Why And What Is A Chip

Multiprocessor Generator

The integrated circuit (IC) industry has been designing and manufacturing chips for five

decades. During this time, chips got better at an exponential rate, with each generation

providing increased compute performance for a decreasing dollar cost. The enabler for this

incredible improvement in the industry was our ability to shrink the most basic components

of the circuits—the transistor and wires. As transistors dimensions scaled down, architects

placed more of them on each chip, thus providing more compute power. Moreover, with each

shrink of the technology feature size, these smaller transistors also got faster and required

less energy to switch.

In the early years of the millennium however, this paradigm started to break and power

became a key limiting factor. Currently, it is not yet clear if a return to that exponential

trend will ever be possible again. First and foremost, the MOS technology scaling rules

that have set the pace since 1974 are now changing. No longer can we “simply” scale

down the technology feature sizes to gain an improvement in speed, area and energy. A

second destructive force to join the technology scaling difficulties is the incredible increase

in non-recurring engineering (NRE) costs due to an increase in our chips’ logic complexity.

While this complexity is attributed to an industry achievement—the integration of more

transistors on a die of silicon—design and verification costs rose so high over the decades,

that today only a few application markets can justify a designated chip to be built for them.

In this chapter, we suggest a new approach to digital chip design and describe the concept

of a chip generator. In essence, a generator is a framework that is capable of embedding

7
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the design team’s knowledge such that it can then be easily re-configured to produce many

different chips.

The chapter starts by stating the background facts of technology scaling and the rea-

sons for the current power crisis (Section 2.1). It then moves on to describe the obvious

solutions—customization and optimization—and how increasing NRE costs prevent the in-

dustry from implementing those solutions in most cases (Section 2.2). Section 2.3 describes

in detail our proposed chip generator solution to this impasse, and Section 2.4 then describes

some of the challenges one must face when constructing such a framework. As the focus of

this thesis is on the design and verification aspects of the chip generator, Chapters 3 and 4

discuss these challenges in detail.

2.1 Technology Scaling and the Cause of the Power Crisis

When considering technology scaling and the growth of the semiconductor industry over

the past few decades, it is almost impossible not to begin with Moore’s Law. Introduced

by Gordon Moore in 1965, Moore’s Law stated that the number of transistors which could

economically be placed on an integrated circuit would increase exponentially with time [78].

While this “law” was an empirical observation, history has shown Moore’s prediction to have

been very accurate, to the point that, today, Moore’s Law has become synonymous with

technology scaling.

Moore successfully predicted the exponential growth of the number of transistors on a

chip, but explaining how device characteristics would be affected by scaling took another

decade, and was described by Robert Dennard in his seminal paper on MOS device scaling

published in 1974 [37]. In the paper, Dennard showed that by scaling voltages along with all

dimensions, the electric fields in a device remained constant, and most device characteristics

were preserved.

Following Dennard scaling, chip makers achieved a triple benefit: First, devices became

smaller in both x and y dimensions (scaled by α < 1), allowing for 1
α2 more transistors in

the same area. Second, capacitance scaled down by α (since C = εLW
t ), so the charge that

needed to be removed to change a node’s state scaled by α2 (since Q = CV ); as current also

scaled by α, this meant gate delays decreased by α (because D = Q/I). Finally, because

energy is equal to CV 2, energy decreased by α3.

Thus, following constant field scaling, each generation supplied more gates per mm2,
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Figure 2.1: Historic microprocessor power consumption statistics.

gate delay decreased, and the energy per gate switch decreased. Most importantly, Dennard

scaling maintained constant power density: logic area scaled down by α2, but so did power

(energy per transition scaled by α3, but frequency scaled by 1
α , resulting in an α2 decrease

in power per gate). Said differently, with the same power and area budget, we could get
1

α3 more gate switches per second. Thus, through scaling alone, we could expect significant

growth in computing performance at constant power profiles.

Despite this, we have seen power and power density continually rise. Figure 2.1 shows a

dramatic increase in processor power over the last 20 years. The reason for this is twofold:

First, as feature size decreased, voltages scaled slower than the base technology to preserve

operating margins [34]. In addition, instead of relying on scaling alone to produce faster

chips, designers made more aggressive designs, increasing performance faster than Dennard

predicted. Figure 2.2 shows clock frequency growth: by the early 2000s clocks were running

10 times faster than expected by Dennard’s rules. Some of this performance increase came

from technology tuning (below 0.25µm, channel lengths became shorter than feature sizes).

Designers also optimized circuits to make faster memories, adders, and latches, as well as

created deeper pipelines that increased clock frequency beyond what was prescribed by

Dennard. As Figure 2.3 shows, these strategies increased power density, but since designs

were not power constrained at the time, this increase was not a problem. During this

period, computer designers were smart and converted a “free” resource (i.e., extra power)
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533MHz at 45nm technology. The industry overachieved by an order of magnitude.

into increased performance, which everyone wanted.

In the early 2000s, however, high performance designs reached a point where they were

hard to air cool within cost and acoustic limits. Moreover, the laptop and mobile device

markets—which are battery constrained and have even lower cooling limits—were growing

rapidly1. Thus, most designs had become power constrained. While this was a concern,

the situation would have been manageable: scaling under constant power densities could

have still continued as long as designers would agree to stop creating ever more aggressive

designs (e.g. by maintaining pipeline depths, etc.).

Unfortunately, at around the same time, technology scaling started to change too. Up

until the 130nm node, supply voltage (Vdd) had scaled with channel lengths. At the 90nm

node, however, Vdd scaling slowed dramatically. Transistor thresholds (Vth) had become

so small that a new problem arose: leakage currents. Faced with exponentially increasing

leakage power costs, Vth virtually stopped scaling. Since scaling Vdd without scaling Vth

would have a large negative effect on gate performance, Vdd scaling nearly stopped as well,

and is still around 1V for the 45nm node.

1According to Standard and Poor’s research report from November 2010, mobile PCs, tablets and smart
phones are expected to continue being the main growth engine of the semiconductor industry in 2010-2014 [77]
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This break from Dennard’s scaling rules has not come without its consequences: With

constant voltages, energy now scales with α instead of α3, and as we continue to put 1
α2 more

transistors on die, we are facing potentially dramatic increases in power densities unless we

decrease the average number of gate switches per second. While decreasing frequencies

would accomplish this goal, this is not a good solution since it sacrifices performance. In

the next section, we examine how we need to approach design for optimized performance

in a power constrained world.

2.2 Design in a Power Constrained World

In the power-constrained post-Dennard era, creating energy-efficient designs is critical. To

continue to increase performance in this new era requires lower energy per operation, be-

cause the product of ops/sec (performance) and energy/op is power, a constrained resource.

Figure 2.4 illustrates the new design optimization problem. Each point in this figure repre-

sents a particular design. Some design points are inefficient, because the same performance

can be achieved by a lower energy design, while other designs lie directly on the energy-

efficient frontier. Each of these latter designs is optimal because there are no lower energy

points for that performance level. To find these points, we must rigorously optimize our de-

signs, evaluating marginal costs—in terms of energy used per unit performance offered—of
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Figure 2.4: The energy-performance space. The Pareto-optimal frontier line represents
efficient designs—no higher performance design exists for the given energy budget. The
recent push for parallelism advocates more, but simpler, cores. This backs off the high-
performance high-power points and uses parallelism to keep/increase performance.

different design choices, and then picking those design features that have the lowest cost. In

this process, one trades expensive design features for options that offer similar performance

gains at lower energy costs.

Clearly, the first step is to reduce waste in the design. Clock gating prevents gates in a

logic block from switching during cycles when their output is not used, reducing dynamic

energy with virtually no performance loss. Power gating goes further by shutting off an

entire block when it is unused for longer periods of time, reducing idle leakage power [62].

Of course, both power and clock gating have costs. In order to gate the power of an entire

block, relatively big transistors are required, so as to prevent an increase in the equivalent

Rdrive of pull-up networks connected to the block. Furthermore, both clock and power

gating introduce logic design challenges, and even more so, logic verification challenges,

since one must make sure that the system would always be able to un-gate, and then

resume operation as if gating never happened. To this extent, turning on and off such

massive networks must also be considered in terms of signal integrity and noise coupling.

Yet, in trading off the increased NRE cost and the reduced power, often times power waste

turns out to be the more important factor.

After energy waste is removed, reducing energy further generally has performance costs,

and these costs increase as one exhausts the cheaper methods. When an application requires

more performance, a more aggressive—and more energy intensive—design is required. This

results in the relationship between performance and the required energy per operation shown
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in Figure 2.4 and the same trade-off is shown with historical processor data in Figure 2.5.
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is only an estimate. Often times, inactive cores are clock- or power-gated, and the excess

power is used to hyper-clock the active cores (e.g., Intel Turbo Boost Technology 2.0). In addition, compilers take

advantage of the inherent parallelism of some applications in the SPEC benchmark suite (e.g., libquantum in SPEC

Int 2006) to parallelize work across cores. Both optimizations, when applied, would make that particular chip appear

on this graph more power efficient than it really is.

In the past, the push for ever more performance has seen designs creep up to the steep

part of this energy-performance trade-off curve (e.g. Pentium IV and Itanium in Figure 2.5).

But power considerations are now forcing us to re-evaluate the situation, and this is precisely

what initiates the move to multi-core systems. By backing off from the steep part of the

curve, we can get large reductions in energy per operation. While this also harms the

performance, we can reclaim the lost performance through additional cores at a much lower

cost, as shown in Figure 2.4. Of course, this approach sacrifices single-threaded performance,

and it also assumes that the application is parallel, which is not always true. Nevertheless,

given the power constraints, this move to parallelization is a trade-off the industry has had
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to make [83].

Unfortunately, there are two reasons why we cannot rely on parallelism to save us in

the long term. First, as Amdahl noted in 1965, with extensive parallelization, serial code

and communication bottlenecks rapidly begin to dominate execution time [21, 39]. Thus,

the marginal energy cost of increasing performance through parallelism increases with the

number of processors, and will start increasing the overall energy per operation. The second

issue is that parallelism itself does not intrinsically lower the energy per operation; lower

energy is achieved only if backing off the performance yields a lower energy point in the

energy-performance space of Figure 2.4. Unfortunately, this follows the law of diminishing

returns. After initially backing away from high power designs, the remaining savings are

modest.

To improve energy efficiency further, we must consider another class of techniques:

hardware customization. By specializing compute platforms for the specific tasks they

perform, customization can result not only in significant energy savings, but can also reduce

the time to perform the task. The idea of specialization is well known, and is already applied

in varying degrees today. The use of SIMD units (e.g. SSE), vector machines and GPUs as

accelerators are all examples in which higher performance and lower energy can be achieved

through special-purpose units [53]. To get an idea of how much potential gain we can

achieve through customization, we only need to look at ASIC solutions, which often use

orders of magnitude less power than general purpose CPU-based solutions while achieving

the same or even greater levels of performance.

One way to achieve customization is through programmable chips. Examples include

polymorphic chip multiprocessor memory systems [71, 88], polymorphic on-chip networks [64],

configurable data paths [61] and baseband processors for software-defined-radio (SDR) wire-

less devices [28, 100, 51]. The premise of programmable chips is that the software layer can

configure the hardware for its needs. Doing that achieves multiple goals: first, it can deliver

a cost effective and flexible solution since multiple protocols can be supported on the same

hardware. Second, the hardware becomes a better fit for the application running on it.

For example, Intel’s reconfigurable SIMD engine ([61]) can be used as either 4-way 16bit

multiply, single 32 bit multiply, 4-way 16bit addition, 2-way 32bit addition or 72bit addition

to achieve maximum utilization. The third benefit of reconfigurability is that a significant

portion of the design cost is amortized. That means that building one machine with two

functional modes is not twice as difficult as building a machine with only one functional
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mode.

Unfortunately, reconfigurability also carries a price. Devices with coarse-grain pro-

grammability, such as SDR baseband processors, must find compromises in the mix of

hardware resources that are put on the die. As a result, some applications may be less effi-

cient or lower in performance because they lack some resource they need. At the same time,

other resources on the die may be under utilized. Similarly, fine grain configurability, such

as configurable data paths or protocols, introduce circuit level overheads: first, every bit of

configuration has to be registered in hardware. In addition, each such bit implies some inef-

ficiency in the circuit’s logic, because it adds logic to the function being implemented (e.g.,

an extra mux in a data path, or an extra CAM look-up in a configurable state machine).

Therefore had we built separate ASIC chips, one for each use case, or “configuration,” of

the programmable chip, the resulting product would have been a much better match for

the application and much more power-efficient.

ASICs are more efficient because they eliminate the overheads that come with general

purpose computing and/or configurability. Many computing tasks, for example, need only

simple 8 or 16-bit operations, which typically take on the order of a picojoule or less at

90nm technology. This is in contrast to the energy consumed in the rest of a general

purpose processor pipeline which is on the order of hundreds of picojoules [26]. To efficiently

execute these simple operations in a processor, we need to perform hundreds of operations

per processor instruction, so the functional unit energy becomes a significant fraction of the

total energy.

While we would prefer to build customized chips for their efficiency, they are expensive to

design. The design and verification cost for a state-of-the-art ASIC today is well over $20M,

and the total non-recurring engineering (NRE) costs are more than twice that, due to the

custom software required for these custom chips [44, 16, 36, 48, 63]. Interestingly, fabrication

costs, while very high, only account for roughly 10% of the total cost today [36, 63]. This

means high design, verification and software costs are the primary reason the number of

ASICs being produced is actually decreasing [85, 48], despite the fact that they are the

most energy-efficient solution.

To summarize this impasse, in order to provide better, higher performance, chips, one

must create more power efficient chips. In order to create chips that are more power efficient,

one must find a way to make custom chip design cheaper. The next section proposes an

approach to energy efficiency by making customized solutions much less expensive. In our
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Chip Generator approach, a chip template replaces the chip instance, and customization be-

comes a matter of setting parameter knobs in that template, thus moving the customization

process to a higher level of abstraction.

2.3 Build Chip-Generators, Not Chips

Chip design today is not an isolated task but a process. Creating new hardware involves the

creation of a new set of simulation and software tools, including a system level architecture

simulator and, often times, additional design-space exploration tools for internal blocks.

Only after the architectural and micro-architectural design trade-offs are well understood,

do designers create optimized instances and ultimately the final chip. In addition, new

hardware typically requires new software support such as drivers, or if it is programmable,

compilers, linkers and runtime environments. An optimized software stack is as important

as optimized hardware since one can easily lose an order of magnitude in performance from

a bad software tool chain, as Figure 2.6 illustrates. The importance of mature software also

explains the need for software compatibility and why a few architectures dominate.

Figure 2.6: Speedups for the SPLASH2 Barnes application [101] on the Stanford Smart
Memories chip multiprocessor for different levels of compiler optimization [92]. The highest
level of optimization achieved four times the performance of the lowest level.

The importance and complexity of the process of chip design, and the importance of the

software stack on the performance and power efficiency of the final chip raise a key question:
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If creating the infrastructure to support a new architecture has very large NRE costs, why

do we treat it as disposable? If we spend so much time and effort on infrastructure for

optimizing components, why do we freeze the design to produce only one instance? Instead,

we should be creating a system that embeds that knowledge—these optimization tools—

inside the design. Rather than record one output of the design and optimization process,

the process should be codified such that future “designers” can leverage it for other designs

with different system constraints. The artifact produced becomes the process of creating a

chip instance, not the instance itself. The design becomes a chip generator system that can

generate many different chips, where each is a different instance of the system architecture,

customized for a different application or a different design constraint.

A chip generator provides application designers with a new interface: a system level

simulator whose components can be configured and calibrated. In addition, it provides a

mature software tool chain that already contains compilation tools and runtime libraries,

since even though the internal components are configurable, the system architecture is fixed

and some basic set of features always exists. Consequently, application designers can now

concentrate on the core problem—porting their application code. Furthermore, they can

tune both the hardware and software simultaneously to reach their goals.

Per-application customization becomes a two phase process, as seen in Figure 2.7. In the

first phase, the designer tunes both the application code and the hardware configuration.

The chip generator’s system simulator provides crucial feedback regarding performance,

as well as physical properties such as power and area. The designer can therefore iterate

and quickly explore different architectures until the desired performance and power or area

envelope is achieved. Once the designer is satisfied with the performance and power, the

second phase further optimizes the design at the logic and/or circuit levels and generates

hardware based on the chosen configuration. Furthermore, since all tools can have bugs, it

also generates verification collateral needed to help test the chip functionality.

To some extent, the first phase, in which the application designer tunes the knobs of the

hardware as well as the application code itself, is similar to runtime-reconfigurable designs

because both enable the application designer to control some aspects of the functionality

of internal components. The difference is that while a reconfigurable chip is actual silicon

programmed at runtime, a chip generator is a virtual superset chip that is programmed

long before tape out. Therefore, in a chip generator real hardware resources can either

be added or removed, making the application porting process easier and the resulting chip
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(a) Phase 1: Design exploration and tuning (b) Phase 2: Automatic generation of RTL and
verification collateral

Figure 2.7: Two-phase hardware design and customization using a chip generator. (a)
Tight feedback loop of both application performance and power consumption enables fast
and accurate tuning of design knobs and algorithm. (b) Automatic generation of hardware
to match the desired configuration.

more efficient.

A chip generator is therefore a way to take expert knowledge, and more importantly,

trade-offs, specific to a certain domain2, and codify this in a hardware template while expos-

ing many customization knobs to the application designer. The template architecture is a

way to describe a family of chips that target different applications in that domain3, and/or

have different performance and power constraints. It is a way to provide the application

designer with the ability to control the hardware and software of their system with low NRE

costs by reusing the entire system framework rather than individual components only.

In some sense, a chip generator turns the design process inside out from the System-

on-Chip (SoC) methodology. In SoC, the designer uses complex IP blocks to assemble an

even more complex chip. SoC design efficiency comes from using pre-verified IP blocks,

and then reusing them for different final chips. However, the system architecture and the

software tool chain may be very different from one SoC to the other. The architectural

variance afforded by SoC exacerbates the verification challenge because the complexity of

verification relates to the system-level complexity.

In contrast, a chip generator methodology suggests that rather than having the com-

ponents be fixed and the system architecture “open,” the components should be highly

2Examples of application domains include multimedia or network packet processing.
3Continuing the example, H.264 and voice-recognition are applications in the multimedia domain. regular

expressions and compression are applications in the network packet processing domain.
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parametrized and the system architecture “fixed.” Moreover, the flexible components should

(as explained above) codify the trade-offs, such that the actual value for each knob can be

set at a later time and the rest of the design would adjust. The result is that the architec-

tural variance is constrained at the system level, so that the difficult verification problem

can be amortized over many designs. Acknowledging that all tools can be faulty and thus

one cannot guarantee bug-free hardware, we argue that a fixed system architecture allows

a generator to find bugs efficiently by either reusing or generating system level verification

collateral (more on validation issues in Chapter 4).

At the same time, the additional flexibility adds two more benefits: Adding flexibility at

lower levels (i.e., inside the IP blocks) enables us to do fine grain optimizations. For example,

if the processor in the generator has much flexibility in it (i.e., number and type of functional

units, pipe depth, number of ways etc) than one can use that processor for many different

instances of generated systems, and always push the processor power/performance tradeoff

to the right area of the Pareto optimal curve. Adding flexibility at the higher level (i.e.,

for the “plumbing” between the IP blocks) helps with system reuse for more applications,

since these knobs are likely to be set by architects to create different systems in that domain

(e.g., in an SoC generator, these knobs may include number of USB ports, number/type of

processors, number Ethernet ports etc.).

In general, one can think about chip generators as improving (or even fixing) the method-

ology move from RTL to IP blocks as the next design abstraction layer: When the IC indus-

try moved from transistors to gates, the new abstraction left the transistor sizing “free” for

optimization at place-and-route (PNR) stage, and the tool vendors “taught” PNR tools how

to run the logical effort calculations to create an efficient implementation of the required

gate (either by choosing from a predefined set of gates of discrete sizes, or by creating trees of

gates and buffers). Similarly, when the industry moved from gates (structural) to RTL (be-

havioral), in the improved hardware descriptive languages (HDLs) the actual combinational

implementation of the combinational logic was left as a free knob, and design automation

engineers “taught” the synthesis tool to do Boolean conversions and optimizations. They

also built knowledge into the synthesis tool, such that it “knows” how to implement an

adder or a multiplier or even a reduction tree. However, in the move from RTL to IP blocks

something went “wrong,” some of the engineers’ knowledge was not recorded: First, IP

blocks are generally fixed, with almost no free knobs. Second, we did not create a tool

that contains knowledge on how to translate a complete system from the abstraction to a
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functional and correct implementation. This is where a chip generator comes to play — A

chip generator in this sense is a high level, domain specific, synthesis and optimization tool.

The next section sheds some light on the challenges that one will need to face in order to

realize a chip generator. These challenges range from layout and physical design automation,

through better design tools for embedding designers knowledge, better and more automated

exploration of design space, and challenges in the already notorious RTL verification process,

and up to software and application tuning and customization.

2.4 Challenges

Unlike designing a single chip instance or family, even a reconfigurable one, the making of

a generator is significantly different. Most critical in this differentiation is the fact that the

generator designer, writing the hardware, does not know exactly what hardware is going to

actually be generated at the end of the process. In the generator concept, it is up to the

application designer to make that final configuration decision based on the application she

is implementing. For example, some parts may not be required by the application and thus

not taped out to silicon.

In order to create customized, heterogeneous designs, we believe it is better to start

with a flexible, yet well defined, architecture, to make verification and software easier.

This means that when we come to think about an architecture, we don’t immediately

dive into the resolution of how each individual instance of a component is configured, but

instead we generalize it as best we can, abstract it to its key architectural traits. This

would be the template of this architecture. For example, the design may have one or

more processing cores, but we leave it to a later phase to determine exactly how many

cores, and for each core its particular internal micro-architectural decisions such as out-

of-order vs. in-order, VLIW and/or SIMD and so on. What we need to code is where

(logically and physically) these processing elements will reside once the decision is made,

and what other implication on the system they might have (e.g., a SIMD processor requires

wider bandwidth for its data port). Similarly, we need to mark where storage components

logically are, but we can leave their exact semantics (FIFO vs. scratch-pads vs. caches)

to the system configuration phase. Of course, once template parameters are bound at the

top level, for example deciding that storage element A is a FIFO and B is a cache, at the

next level there are more decisions to be made, such as that FIFO’s size or that cache’s
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associativity (in a processor these internal decision might include the size of the reorder

buffer or whether the floating point unit implements multiply-accumulate). This means

that “templating” of the components should be done hierarchically, so that each level of the

hierarchy provides a few local design decisions—knobs for customization by an application

designer or architect—while not breaking from the general formation so the change to the

verification and software layers is minimal.

Enabling these pervasive customizations, however, would mean that the internals of the

architecture need to be built from highly parametrized and extensible modules, so one can

then easily shape the components, creating heterogeneous modules tailored to specific ap-

plication needs. In this process, the application designer, architect, optimization framework

or perhaps even a high-level compiler, hierarchically cast values into the architectural tem-

plates. The challenge is both in creating these flexible modules and then in enabling late

binding of the parameters.These issues are discussed in more detail in Chapter 3.

The idea of creating flexible modules is, of course, not new. Both VHDL and Verilog

(post 2001) use elaboration time parameters and generate blocks to enable more code reuse.

Generate blocks enable the designer to write (simple) elaboration programs, for which

parameters are the input and hardware components are the output. Bluespec [1] extended

this concept, enhancing and merging the programmability into the main code (rather than

limiting it to generate blocks). At the block level, commercially available products such as

Tensilica’s processors [9, 47], Sonics’s on-chip interconnects [6], or Synfora’s PICO system [8]

generate complete IP blocks for SoCs. However, while good for creating individual blocks,

these methods are not designed to produce full systems. There are many inter-dependencies

between modules, and one still needs a program to configure the parameters such that the

entire system is consistent (for example, the cache matches the processor’s word size).

Moreover, even when using these high level blocks, what about the generation of the rest

of the system? The missing piece is how to compose these building blocks in larger and

larger blocks until you reach the system level. In the next chapter, we discuss how Genesis2

solves this problem.

In creating a hierarchical generator, there are various types of design parameters that

need to be determined. At the top level, the application designer specifies the high-level

design architecture. Beyond these directly controlled parameters, however, many other

parameters still need to be determined. First, design parameters in different blocks are

often linked. Thus, each flexible module needs to incorporate an “elaboration program”
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to specify how parameters in one block are computed from the parameters of another,

be it higher or lower in the design hierarchy. This requires that the elaboration engine

have significant software capabilities. Furthermore, many lower-level design parameters

exist whose impact on the system is not functional, but a matter of performance and cost

(sizing of caches, queues, etc.). These should automatically be determined by optimization

procedures. To this end, after the designer provides the chip program and the design

objective and constraints (e.g. maximize performance under some power and area budget),

an optimization framework should evaluate the different potential design configurations, to

select the best one.

One challenge in creating the optimization framework lies in the huge space that needs

to be explored. With even as few as twenty parameters, the design space can easily exceed

billions of distinct design configurations. This is a problem since architects traditionally rely

on long-running simulations for performance evaluation; searching the entire space would

take far too long. To make this problem more tractable, one powerful technique is to gener-

ate predictive models from samples of the design space [67, 59, 38]. With only a relatively

small number of design simulations, one can analyze the performance numbers and use data

fitting to produce an analytical model. Using these techniques, Azizi et. al. have created

a hierarchical system trade-off optimization framework [25, 24]. Leveraging sample-and-fit

methods, they have shown that one can dramatically reduce the number of simulations re-

quired; with only 500 simulation runs, they were able to accurately characterize large design

spaces for processor systems that had billions of possible design configurations. Moreover,

by encapsulating energy-performance trade-off information into libraries, they created a hi-

erarchical framework that could evaluate both higher level micro-architectural design knobs

and lower level circuit trade-offs.

Figure 2.8 shows the results of using this framework to optimize a processor architecture.

Each curve represents a particular high-level architecture with various underlying design

knobs. As the performance requirement increases, more resources are introduced into each

design, resulting in higher performance, but also higher cost. Figure 2.8(a) shows some of

the lower level design parameters throughout the design space for one high-level architecture,

while Figure 2.8(b) compares various higher level architectures.

This optimization method is a great tool for handling the tuning of many low-level

parameters, but it further emphasizes the need to leave “free parameters” in the design,

whose values will be determined in a late binding stage—something that the existing tools
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today don’t do very well. Our tool, Genesis2, solves this problem by providing a standard

XML based interface for optimization tools.

Even if we can successfully generate an optimized design, we still need to address the

validation problem, since no design and no tool is bug free. This is a significant issue because

design verification is one of the largest hurdles in ASIC design, estimated to account for

35%-70% of the total design cost [44]. Therefore for a chip generator to be a valid solution

to today’s chip design hurdles, it must reduce, or at least amortize across multiple chips the

high verification costs.

It is essential to understand that in a chip generator scheme, the validation efforts

are directed at verifying the resulting instance of the generator—not the generator itself.

Moreover, it is common practice for verification engineers to “tweak” components of a design

to induce “interesting” corner cases (e.g., reducing the size of a producer-consumer FIFO

to introduce more back-pressure scenarios). A generator can be applied to quickly produce

even more variations, introduce more randomness, and expose more corner cases. When

verifying instances produced by our SSM prototype generator, we found that this technique

resulted in design instances that were verified better and faster, because one generated

instance would often expose a given bug faster than other instances. This work is discussed

in Chapter 4.

While the ability to “shake” the architecture (i.e., test various configurations of the

design) does seem to be helpful for verification, there is a real challenge in creating a ver-

ification environment flexible enough to account for all the different design instances that

the generator can produce. Our solution is for the chip generator to automatically produce

significant portions of the verification collateral. The main components of verification col-

lateral include a test bench, design assertions, test vectors and a reference model. The use

of a fixed system architecture with flexible components is advantageous here: because the

system architecture is fixed, and the interfaces are known, the same test bench and scripts

can be used for multiple different generated instances. This is similar to the verification

of runtime-reconfigurable designs. In addition, we show in Section 3.3.5 how the same pa-

rameters that are used for the generator’s inner components can be applied to create the

verification monitors, drivers and the local assertions.

Once a test bench is in place, a generated design would require a set of directed and

constrained-random vectors. Generating directed test vectors is conceptually more diffi-

cult, since they depend on the target application, although automatic directed test vector



24 CHAPTER 2. WHAT IS A CHIP GENERATOR?

generation has been shown to be very effective [79, 84]. The majority of test vectors, how-

ever, are the more easily generated constrained-random vectors. Unfortunately, random

vectors require a model for comparison, and accurate reference models of complex systems

are difficult to create.

A traditional reference model, or scoreboard, accurately predicts a single “correct” an-

swer for every output. This requires, however, that both the model and the design im-

plement the same timing, arbitrations, and priorities on a cycle accurate basis—a difficult

requirement for any complex design, and an infeasible requirement for a generated one. The

key to solving this problem is to abstract the implementation details from the correctness

criteria. One good example for this approach, TSOtool, verifies the CMP memory system

correctness by algorithmically proving that a sequence of observed outputs complies with

Total Store Ordering axioms [52]. In this thesis, in Section 4.3, we refer to another method,

the Relaxed Scoreboard [90], to move verification to a higher level of abstraction by keeping

a set of possibly correct outputs, and updating this set as more of the actual outputs are

seen. This means that any observed outputs that obey the high level protocol are allowed.

By not relying on implementation details, TSOtool and the Relaxed Scoreboard are

suitable as chip generator reference models, since they can be reused for all generated

instances. Decoupling the implementation from the reference model also has a secondary

advantage: it prevents the same implementation errors from being automatically duplicated

in the reference model.



2.4. CHALLENGES 25

400 600 800 1000
80

90

100

110

120

130

140

150

Performance (MIPS)

En
er

gy
 (p

J 
pe

r i
ns

tru
ct

io
n)

 

 

Clock Freq: 426 MHz
I−cache: 19KB @ 1.52ns
D−cache: 12KB @ 1.21ns

IW: 7 entries
BTB: 67 entries

Adder delay: 1.93 ns
Register File: 0.60 ns

...

Clock Freq: 768 MHz
I−cache: 32KB @ 1.08ns
D−cache: 16KB @ 0.92ns

IW: 11 entries
BTB: 900 entries

Adder delay: 0.92 ns
Register File: 0.50 ns

...

Clock Freq: 630 MHz
I−cache: 26KB @ 1.21ns
D−cache: 12KB @ 1.20ns

IW: 9 entries
BTB: 400 entries

Adder delay: 1.20 ns
Register File: 0.52 ns

...

(a)

0 500 1000 1500 2000

50

100

150

200

250

300

350

Performance (MIPS)

En
er

gy
 (p

J 
pe

r i
ns

tru
ct

io
n)

 

 

in−order, 1−issue
in−order, 2−issue
in−order, 4−issue
out−of−order, 1−issue
out−of−order, 2−issue
out−of−order, 4−issue  

in−order
4−issue

ooo
4−issue

ooo
2−issue

in−order
2−issue

in−order
1−issue

(b)

Figure 2.8: Exploration of energy-performance trade-offs. (a) Energy-performance trade-
off curve for a dual-issue out-of-order processor design [24]. The optimization framework of
Azizi et al. identifies the most energy-efficient set of design parameters to meet a given per-
formance target, simultaneously exploring micro-architectural design parameters (i.e. cache
sizes, buffer/queue sizes, pipeline depth, etc.) and trade-offs in the circuit implementation
space. As the performance target increases, more aggressive—but higher energy—solutions
are required. (b) Pareto-optimal trade-off curves for six different high-level processor archi-
tectures [24] (each optimized for micro-architectural parameters and underlying circuits).
By overlaying these trade-off curves, designers can determine the most efficient architecture
for their needs.
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Chapter 3

Creating A Generator:

Embedding The Hardware

Designer’s Knowledge

In Chapter 2 we introduced the concept of a chip generator hardware design framework.

In its essence, the chip generator provides an application designer the ability to control

the hardware substrate on which his/her application is going to be computed. As a simple

example, an application designer may decide that one storage element in the architecture

template is to be used as a private cache, another as a shared cache and a third as local

scratch pad. Similarly, the application designer may decide to add some custom functional

unit to a processing element to improve the efficiency of a calculation. In addition, after

higher level architectural knobs have been set, an optimization script may be used to au-

tomatically make some of the lower level design decisions. For example, these lower level

decisions might include size and associativity of the aforementioned caches or the width of

that functional unit. Notably, an implicit assumption here is that the system can accept

such late, high level changes, and generate the appropriate hardware with minimal or no

manual intervention.

This chapter talks about how one should approach the hardware generation phase. We

start by discussing the previously mentioned “architectural template” approach, in which

the skeleton is set but the components are flexible—subject to the application designer and

optimization tools creativity (Section 3.1).

27
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It is important to note that in this approach many of the design decisions must be left

unassigned or parametrized until a later stage in the process where the application engineers

set them. This process, which we call “late binding” of design decisions and parameters,

comes in contrast to current approaches where the design exploration and optimization has

been fixed and hard-coded up front by the hardware architects and hardware designers.

Late binding of design parameters implies that at design time the hardware designer

does not know the exact value of parameters, and therefore must embed instructions—an

“elaboration program”—that encode the impact of each parameter on the construction of

the system. To give a concrete example of the level of parametrization required, Section 3.1

examines the architecture of a couple of typical structures in a chip multiprocessor. We

show how parameters can be classified into three main groups: architectural parameters,

free/optimization parameters, and constrained/inherited parameters. We then examine the

implication of these parameter classes on making a late-bindable, optimizable generator,

that can take a homogeneous flexible component and create a heterogeneous result.

Unfortunately however, our attempt to build a chip generator using existing Hardware

Descriptive Languages (HDLs) either resulted in cumbersome code, or else these HDLs (or

the tools parsing them) could not handle the extreme parametrization and the embedding

of complicated elaboration programs (Section 3.2). Therefore, in Section 3.3 we introduce

Genesis2—a tool that facilitates the construction of generators by enabling hardware de-

signers to encode elaboration instructions with complete software-like capabilities. Genesis2

enables designers to code in two languages simultaneously and interleaved. One language

describes the hardware proper (Verilog; synthesizable), and the other one decides what

hardware to generate (Perl; evaluated at elaboration). C++ programmers might recognize

this as being similar to the use of the main C language to describe an algorithm, interleaved

with C++ constructors and templates meta-programming to describe the structure of the

system and to do late binding of types, constants or functions to specific parameters within

the algorithm.

The premise of Genesis2 is that during elaboration time everything is allowed and every-

thing is possible. Genesis2 pulls out all parametrization functionality from the underlying

language (typically Verilog). It then takes charge of the construction of the entire hierarchy

and of module uniquification, which will be discussed later. Thus by using Genesis2, instead

of coding specific modules, hardware designers are coding instructions for how these mod-

ules need to be generated given a set of (external) application specific input parameters. At
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elaboration time, whenever a module is instantiated, the interleaved elaboration program

constructs the required hardware module.

Section 3.4 provides the lower level technical details of how Genesis2 was implemented,

and Section 3.5 discusses improvements one may consider if one wants to make Genesis2

into a commercial tool (instead of a research one).

3.1 Architectural Templates and Design Parameters

Section 2.3 introduced the term architectural template as a venue for the codification of

expert knowledge and trade-offs in a certain domain. Therefore, a templated architecture

describes a family of chips that target different applications and/or have different perfor-

mance and power constraints. In many ways, for the user of the generator—that is, the

application designer—programming this template is similar to configuring an architectural

simulator such as M5 [27] or SimpleScalar [22], because in both cases, the underlying frame-

work defines a set of knobs for the user to configure. Figure 3.1 shows an example template

for what could be a tile in a chip multiprocessor generator. The left side of the diagram

illustrates that components are placed and interconnected to form a rigid structure for that

architecture. Yet, it also shows how at each level of the template hierarchy, certain knobs

or parameters have been left for the application designer to determine. In the diagram

shown here, the tile level parameters include, for example, the number of processors to be

included in the tile. It also shows that once that number is set, each processor can be con-

figured at the next lower level of the hierarchy, according to predefined knobs that impact

the architecture of that processor. Furthermore each processor configuration may result in

completely different processor hardware.

The right side of Figure 3.1 shows how configuring the generator is to be done. In its

essence, the configuration is done by the user hierarchically specifying the value for the

architectural knobs1. In some cases, the application designer may not desire to specify the

exact value of a knob but may instead leave it to an optimization procedure to determine

(e.g., an application designer may desire a cache, but may want to leave the cache size for

the optimizer to determine). In these cases O. Azizi et. al. has shown how optimization

1While there are many ways for a user to specify hierarchical input, we chose to use an XML [29]
configuration file as the delivery media, for its simplicity on one hand, along with the rich library support
for creating, manipulating and parsing XML documents in all software languages. This guarantees easy and
standardized interfacing with other tools as we show later.
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Figure 3.1: Left: An example of an architectural template for a tile generator. The template
serves as a fixed architecture and interconnect, but one that provides configuration knobs
for the user—an application designer. A generator is built by hierarchically assembling
templates for the different architectural units in the design. Right: The application designer
provides an “architectural program” that attaches values to the template knobs.

The use of a flexible, yet constrained template for an architecture, one that at every

level of the hierarchy fixes the connectivity and type of blocks allowed, comes in con-

trast to existing methodologies of piecing together any set of IP blocks in (almost) any

configuration—a methodology that is often referred to as system-on-chip (SoC), or Core-

Connect [56]. The template approach is closer in concept to the platform-based-design

approach [99]. Platform-based-designs typically come in two flavors: either in the form of a

small closely related “family” of implementations (e.g., Texas Instruments micro-controllers

series [11]), or in the form of fine- or coarse-grain programmable/reconfigurable implemen-

tations (e.g., [71, 64, 51, 61]). These advocate a single, yet flexible, design to make both

verification and software simpler. The reason that logic verification and software becomes

easier for the platform based approaches is that the key interfaces and properties of the

architecture are the same for all configurations and therefore enable amortization of the

software and verification development effort.

Since the design space is typically large, a “family” of designs approach mostly fits

applications that do not require detailed mapping onto the hardware, when power and/or

performance is much less critical than cost. Programmable/reconfigurable platforms provide

the next level of mapping, adjusting both the application to the hardware resources and

vice versa. The difference between a template design and a programmable/reconfigurable



3.1. TEMPLATES AND PARAMETERS 31

design is merely the amount of resources, plus the time and method by which the design

parameters are bound. Platform based programmable/reconfigurable designs have a fixed

amount of fixed-function, processing and storage resources. One can map an application to

the platform, but one cannot add or remove resources (e.g., add a processor, remove unused

memories, increase bandwidth on a bus, etc.).

Therefore, better mapping could be achieved if the mapping process is done at a virtual

layer, before silicon is fabricated. If we move the application mapping to a pre-silicon stage,

then all these customization (and more) become possible. In much the same way, while

reconfigurable designs enable post-silicon runtime software configuration, templates enable

pre-silicon configuration so that the final silicon could potentially be further customized,

and thus be much more energy and area efficient (since the configuration overhead is not

taped out).

The problem however, as illustrated in Figure 3.2, then comes in creating a representa-

tion, or an encoding, of a template such that it can later on be compiled into final RTL. In

particular, two issues must be addressed. First, since the user who “programs” the template

is an application designer and not a hardware designer, the mechanism that transforms a

template to a design must provide some means for that application designer to pervasively

control the internal “knobs.” It is important to note that the hardware designer is no longer

a part of the process at this point, so any implication of a knob-change on the system must

be taken care of automatically. Secondly, since in addition to architectural knobs, often

times there are many low level design decisions to make, and since the goal of a generator

is to produce efficient hardware, that mechanism must also provide a (standardized) way

for optimization tools to set these lower level design decisions.

To better understand the different mechanisms needed to resolve design parameters,

let us look at a more concrete architectural template in Figure 3.3. Figure 3.3(a) shows a

schematic view of a cache, and enumerates some of the design decisions one would have to

make in order to implement the module. Figure 3.3(b) takes a step back, and looks at that

same cache, but this time inside a system, to better understand where the design decisions

come from. By examining the list of parameters, we find that we can classify them into

three groups: inherited/constrained parameters are design parameters that even though

they have significant impact on the design (which may take the form of logic, area, power,

performance, interface signals etc.) are not really inherent parameters of that module—

their value is constrained by, or inherited from, decisions that were made elsewhere in the
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Figure 3.2: Illustration of the process of converting an architectural template to a fully
elaborated, functional and synthesizable design. While at the block level the elaborated
design is an instance of a template, the actual internal characteristics of these blocks is set
by the architectural program and by optimization procedures.

system. Examples of inherited parameters include the word width and the line size of the

cache. This means that had the application designer decided to use a single-instruction-

multiple-data (SIMD) processor instead of a single word processor the generator system

would have to adjust not only the processor, but also the cache that connects to that

processor. Setting the cache-controller bandwidth also would have a similar effect, where

not only the cache controller changes but also the inherited parameters of the associated

cache. Note again that this does not mean that all caches in the system change, just the

cache instance connected to that processor or cache controller instance.

The second type of parameter we see is the free parameter. These are parameters

that (at a given level of the hierarchy) can be freely assigned—they would not change the

functionality of the system, only the area, power, and performance. Of course, once we set

the free parameters, their value may propagate to other modules in the design as constraints

(e.g. setting the free parameter ’way-size’ at the cache level is likely to propagate to each

of the way instances as an inherited parameter). Nevertheless, because the system is “free”

to assign any value to the free parameters, the best option is probably to simply let the

optimization tool pick the right value that would maximize performance under a given

power or area constraint.
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The third type of parameter is the architectural parameter. These are decisions that

once made, are going to impact the functionality of the module. As an example, in Fig-

ure 3.3 we consider the meta-data bits that are often associated with cache structures, to

keep the state of the line (e.g., Valid and Dirty bits in a simple single processor system,

Modified/Exclusive/Shared/Invalid in a chip-multiprocessor that implements a MESI pro-

tocol for coherence, Speculatively Read/Speculatively Written in a chip-multiprocessor that

implements transactional memory model, etc.) By setting the number and functionality of

these meta-data bits, one changes the architecture of the system. Table 3.1 summarize the

type of parameters, their impact and the source of their assigned value.

Table 3.1: Sources and impact of parameters on a cache microarchitecture design
Parameter Name Impacts Parameter Source
Word-size Memory block width, decoding

of address vector, processor side
interface width

Constrained / inherited (re-
quires information from the rel-
evant CPU instance)

Line-size Number of memory blocks, de-
coding of address vector, cache
controller interface width

Constrained / inherited (re-
quires information from the rel-
evant cache controller instance)

Way-size Size of memory blocks Free (optimization → requires
late binding)

Associativity Number of memory blocks Free (optimization → requires
late binding)

Meta-data bits Line state, cache protocol (e.g.,
coherence)

Architectural (set-by-user → re-
quires late binding)

In examining the cache design example presented in Figure 3.3, we first notice that

often times, design parameters of various blocks are closely related and thus constrained

or inherited. Naturally, any single module (like in the example above) may need to inherit

parameters from multiple various modules. The constraining parameters may come from

modules which are at the same branch and level of the design hierarchy, like the module

holding the constrained parameters in the cache example. However, the constraining pa-

rameters may also be in a module higher in the hierarchy (e.g., way-size at the cache level

would constrain parameters inside each cache-way instance). Similarly, the constraining

parameters may come from a module lower in the hierarchy (e.g., a processor may or may

not need to implement a configuration bus interface, depending on whether a register file

module inside it requires such an interface). Finally, there may even be cases for which the
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constraining parameters’ module is in a completely different branch of the hierarchy. One

example would be in the design of TX and RX communication between different sections

of a chip.

The fact that parameters in various modules may have dependencies brings up an in-

teresting issue—it means that both instance and system scoping are critical: unless the

execution of the elaboration code captured in the template is associated with a particular

instance (not just a particular generated module), and unless it has access to the complete
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system scope (i.e., can reference to other instances), it will not be able to “query” values of

parameters in other instances in system. If the elaboration program of one instance cannot

“peek” into parameters of other instances in the system, it may not be able to resolve many

constraints on its parameters.

A second issue that must be addressed arises from the fact that the elaborated module

type heavily depends on external input, whether it comes from optimization tools or human

users. Borrowing a term from object oriented programming, this is the problem referred to

as late-binding, dynamic-binding or name-binding of an object type to an identifier in the

program code [33]. Quoting [33] page 36:

“...there exists a wide class of programming languages in which types evolve

during the execution of the program. These are the languages that, like object

oriented languages, use a subtyping relation...”

“Thus, in languages that include subtyping relation, it is meaningful to differ-

entiate at least two distinct disciplines of selection [of the code]:

1. The selection is based on minimal information: The types of the arguments

at compile time are used. We call this discipline early binding.

2. The selection is based on maximal information: The types of the results of

the arguments are used. We call this discipline late binding.”

Traditional RTL coding is much like early or static binding in software—you make all

the decisions up front and spend lots of effort coding it, only then to reveal it to the world.

Late-binding in an RTL context, would therefore indicate a process that comes along at

elaboration time, and makes important changes specific to a particular instance, based on

external input. To get a better feel of how late-binding impacts design elaboration, one

need only to look at a simple example as illustrated in Figure 3.4. In this example, we

examine how a simple change, driven by an application designer, in a late binding process,

would effect the elaboration result. The “late” decision here is to change the default value

of one of the registers in one of eight processors in a chip multiprocessor system. In fact,

this is a common dilemma in CMP design, since many times at power-up, designers want

one processor to “wake up” and configure the rest of the system. However, as we see in

Figure 3.4(b), that small change would require that at elaboration, that register becomes

unique (uniquified), and so does the entire hierarchy on top of it.
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Figure 3.4: Late binding and its impact on module uniquification. Figure (a) is a ho-
mogeneous template view of a chip multiprocessor system that has four tiles, each with
two processors, and each processor has a register file. A small arrow is pointing at the
first register in the register file that resides inside the right-side processor in the lower-left
tile. If the application designer’s input program requires a change in the default value of
that instance of register, Figure (b) shows how this register has to be uniquified. This, of
course, causes a chain reaction that uniquifies not only that register, but also its register
file (which has to be “different” in order to instantiate a different register than those in the
other register files), the processor that instantiates the “different” register file, and the tile
that instantiates the “different” processor (uniquified modules are marked as RF*, CPU*
and Tile*).

In conclusion, we need a design framework that enables designers to embed their knowl-

edge of the system in a system template. Then, the framework needs to be able to accept

external users’ and tools’ input, and use that template to generate heterogeneous design

instances. However, from the analysis above, we see that creating the tool (the design

framework) actually requires very little:

1. Rich(er) programming environment for the elaboration phase – This requirement is

simple since elaboration is the equivalent of an object oriented language’s constructor

mechanism, essentially telling which modules need to be instantiated and how they

need to be interconnected. This comes in contrast to the functionality description,

that is the part of the hardware descriptive language that must be synthesizable.
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2. Instance and system based scopes – In its essence this requirement is the same as

the default scoping used in object oriented languages. It means that the run of the

elaboration program generates an instance of a module, not a module. Moreover,

that instance, during its construction, is “aware” of its position in the system, and

can obtain pointers or references to other instances (in order to satisfy parameters’

constraints for example).

3. Elaboration with I/O – This requires some standardized way of external input/output

interaction with the embedded elaboration program, while any aspect of late binding

and uniquification need to be handled automatically. Without compliance to this

requirement, the separation of hardware designer (embedding design instructions for

the system) vs. application designer / tools (providing application specific input),

cannot be achieved.

3.2 Common Approaches To Hardware Descriptive Languages

In our search for an existing language or tool that would enable coding of a generator, we

found no single tool that met our requirements as laid out at the end of the previous section.

For example, VHDL [15] and Verilog [13] are great languages for describing hardware—once

a designer knows exactly how the module they create needs to perform, it is easily described.

However, this process does not adequately embed the designer knowledge into the design,

and any slight deviation requires significant recoding. To ease this problem, both VHDL,

Verilog (post 2001) and SystemVerilog [14] use elaboration time parameters and generate

blocks to enable more code reuse. Generate blocks enable the designer to write (extremely)

simple elaboration programs for which parameters are the input and hardware components

are the output. These programs however, are limited to if, case and for -loop statements.

No variables are allowed except for the very restricted genvar2, and needless to say that

no advanced programming techniques such as classes or even IO reads/writes are possible

during elaboration3.

To enrich a hardware descriptive language’s programming capabilities for elaboration,

many companies use pre-processors to generate RTL code. Naming just a few examples,

2genvar declares a variable that can only be used as the iterator of a for-loop in a generate block. It can
not be assigned to a value by user code or in any other way but the for-loop declaration.

3IO reads and writes are allowed in RTL simulation, but not at the time of elaboration.
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these include the native Verilog pre-processor, C/C++ pre-processor, EP3 [94], deper-

lify [40], EmPy [43], Tensilica TIE pre-processor [10], etc., as well as in-house scripts de-

veloped by individuals in many industrial design teams. While the programming language

and the mechanism of implementation vary from one tool to the other, the concept is the

same: Regular Verilog or VHDL are coded, but are also instrumented with pre-processor

directives, marked with special escape characters. Upon compile time of the code, each file

is first pre-processed and all the embedded pre-processor directives are evaluated to create

a new text file. The new text file is the input to the HDL compiler. Pre-processing is a

simple solution to a very big problem since it artificially adds an explicit elaboration phase,

and then significantly enriches the elaboration language. In the requirement list at the end

of the previous section, it solves req#1 and could potentially be used to solve req#3. How-

ever, pre-processors have a file-based in-compilation-order scope. Moreover, the elaboration

program does not generate instances but modules, because it is text-based and unaware of

the hierarchical, object-oriented structure of the hardware that it is being used to describe.

Bluespec [80, 1], which is a recent HDL, takes a completely different approach. For

once, it changes the HDL software paradigm to a functional one—initial releases of the

Bluespec compiler essentially provided a front end for a Haskell back end [80, 57]. However,

the aspect of Bluespec that provides an advantage over languages like SystemVerilog or

VHDL, is in the higher level description of the hardware, which is then translated via Term

Rewriting System (TRS) to either Verilog for synthesis or C++ for simulation [65]. While

one may or may not like the different approach of Bluespec to describing hardware and

the resulting quality of hardware (in terms of power, area or performance), Bluespec does

provides many benefits in the ability of designers to describe the hardware. Notably its

ability to parametrize modules by value or type, or even by function or module (meaning

that if module X internally uses function F or instantiates module Y, then module X can

be parametrized such that F and/or Y are its parameters) constitutes a great advance

in comparison to VHDL and SystemVerilog parametrization. The use of variables during

elaboration (while trivial) is another advantage over the aforementioned restricted genvars.

Unfortunately, there are still barriers that currently keep Bluespec from becoming the

best method for making a generator. One subtle but important such barrier is that numer-

ical values can only flow from the type domain to the value domain, but not vice versa. For

example, the number 5 can be declared as a size type using typedef 5 my five t; and if

one wants to get a value that corresponds to that size type, there is a special pseudo-function,
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valueof, that takes a size type and gives the corresponding Integer value. The other way

around is not possible however, meaning that if we defined an integer Integer width = 5;

width cannot be used for making new types (e.g. creating a register of Bit#(width) would

produce an error). This limitation, though seemingly subtle, is important to our goal of

embedding hardware designers’ knowledge of how an instance of a module needs to be

constructed—knowledge that often includes how internal types need to be defined. Our

goal in the generator is for the application designer to assign values to high level architec-

tural knobs, and have the system underneath compile that into both types and values as

needed. For example, if a user (or optimization tool) specifies that a cache must have four

ways, it would change not only the number of ways (i.e. using the value of 4) but also

the controlling signal widths (i.e. using the type 4). Similarly, it turns out that describing

even a flip-flop based register file template, with N (N is a parameter) registers of widths

{W1,W2, ...,WN} is not as trivial as one may initially think. Note that, by contrast, writing

a short Perl script to generate such a module actually is simple4.

A key issue that Bluespec does not yet solve over the older and more prevalent HDL’s

is that the elaboration code is still restricted by synthesizability rules. However, in reality,

there is no actual reason why during elaboration one would not be able to unleash full

software capabilities (e.g. dynamically allocating a structure, or spanning a process to

determine the optimal architecture for a particular multiplier, or dynamic/late construction

of types). As we show in the next sections, decoupling the elaboration part of the HDL

from the functional part actually provides many benefits.

Finally, there have also been a number of tools that take the opposite approach. In

these cases, native software languages such as Java [35, 58], Python [3], C++ [69, 4] or

Ruby [5], are used to describe the structure of hardware. Unfortunately, while these tools

provide good means for structural description, the behavioral part is often lacking5. This

is of course the exact opposite problem of the one just described for classic HDLs such as

Verilog and VHDL. Once again the problem is that the same semantics are used for both

4Bluespec users often work around type vs. value issues by adding dummy type variables to interface
arguments. One way to code the register file mentioned above is to add dummy type variables for each of
the register widths. Unfortunately since these types are completely unrestricted the compiler needs provisos
to impose meaning onto them. This, in turn, often leads to complex proviso statements, as the Bluespec
compiler cannot prove complex arithmetic (for example that K ∗3 = K +K +K). Another way to overcome
type vs. value limitations is to use pre-processor directives, since these textual-based replacements can serve
as both type and value. Unfortunately, this puts us back to the compilation unit and scope issues described
for other pre-processors above.

5Attributed, in part, to the lack of time as an integral part of the language
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the elaboration (i.e., resolving the hardware structure), and the functional (i.e., resolving

the hardware behavior). In addition, there is a huge code base which is already in Verilog

or VHDL that would have to be re-written.

Since SystemVerilog is a commonly used and a widely supported HDL, with well defined

methodologies for verification and synthesis, in the work presented here, we chose the path

of modestly enriching the “elaboration” portion of SystemVerilog, replacing the severely

limited “generate” block concept, with a strong software meta-language, as described next.

3.3 Genesis2—Embedding Designers Knowledge

In Section 3.1, we saw what a tool for encoding a chip-generator—one that encapsulates the

hardware designer’s knowledge—would have to support. Figure 3.5 illustrates a conceptual

view of a tool that meets these requirements. Rather than coding a specific module, hard-

ware designers would use a rich, software-like language to write instructions for how modules

are to be generated, given a set of input parameters that come from multiple sources. This

code constitutes a template for creating the module. When the elaboration code evaluates,

some of the parameter values are extracted from the hierarchical architectural description,

while others are forced by the instantiating parent template (like in SystemVerilog) or read

from any of the other objects (i.e., instances of templates) in the system, and a third group

is simply calculated (i.e., locally optimized). The elaboration program may also hierarchi-

cally instantiate other templates, or recursively instantiate a different instance of the same

template. When sub-instances are created, the elaboration program can force parameter

values into those instances (like in SystemVerilog) and/or read out any of these instances’

parameters after they were generated. In other words, designers write how each particular

block in the system is to be constructed, with respect to all the other blocks in the system.

Aggregated together, these elaboration programs describe how the system is constructed

based on application designers’ input.

After templates are hierarchically put together, the top of this system becomes the

system generator. Its input is the architectural configuration description that sets values

for the architectural knobs throughout the system. The output is an elaborated system (not

module), as well as architectural feedback to the application designer and design exploration

tools.

Unfortunately, as previously mentioned in Section 3.2, at this time no tool is capable of
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Figure 3.5: Illustration of a conceptual hardware generator. It depicts a central elaboration
program that can use software constructs in addition to synthesizable code. The inputs to
the elaboration program are various types of parameters (see Section 3.1): parameters that
are “free” for optimization, parameters that are “inherited” or “constrained” by other parts
of the system, and most importantly, architectural parameters that an external user—
an application designer—sets to get a customized system for his/her application. The
hardware generator output is the elaborated system, as well as architectural feedback for
the application designer regarding elaboration “decisions” that the elaboration program
made.

supporting these requirements for creating generators:

1. Rich(er) programming environment for the elaboration phase

2. Instance and system based scopes

3. Elaboration with architectural I/O from users and tools

However, currently available tools and languages are not very far from meeting these re-

quirements. Therefore, leveraging the synthesizability of Verilog and the programmabil-

ity of Perl, and adding an object oriented scope and hierarchical elaboration, we created

Genesis2—a tool for creating generators.

In terms of programming paradigm, the goal of Genesis2 is to create an object oriented

constructor-like mechanism, that will be used to generate elaborated instances of templates.
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One difficulty is that in software coding, there is no difference between the coding of con-

structors and instantiators of classes, and the coding of the class functionality. In hardware

on the other hand, the description of the functionality of a module must obey strict rules of

synthesizability. As a result, design languages also enforce strict rules on the construction

and instantiation program—the elaboration step. Genesis2 aims to break this artificial lim-

itation. It does that by enabling a designer to code in two languages simultaneously and

interleaved: One that describes the hardware proper, and one that decides what hardware to

use for a given instance. The premise of Genesis2 is that during elaboration time everything

is allowed and everything is possible. As an extreme example, given that the parameters

for an instruction cache specify a 16KB capacity, say, one can even embed a small program

to figure out what is the optimal associativity for a particular target application.

Unfortunately, a solution that simply uses software constructors for hardware modules

is also problematic because once created, a hardware module is a static entity, whereas a

software class is dynamic—it can have members and pointers, and those could be assigned

with different values and objects for every instance of that class. Therefore to enable

this constructor-like mechanism in hardware, we leverage another known concept from the

software world—meta-programming using templates [17]. In C++, instead of coding classes,

programmers can code templates for those classes, leaving the binding of types to a later,

compilation time, stage. Quoting Abrahams [17]:

A meta-program is a program that generates or manipulates program code. Ever

since generic programming was introduced to C++, programmers have discov-

ered myriad “template tricks” for manipulating programs as they are compiled,

effectively eliminating the barrier between program and meta-program.

Genesis2 takes a similar approach by enabling designers to create module templates rather

than modules6. Conceptually, by coding templates (whether in C++ or Genesis2) a meta-

language is used to generate an elaborated instance of a target-language. Put differently,

the output of a program-run of the meta-language is valid code for the target-language.

To make the following discussions clearer, Table 3.2 defines the jargon that will be used to

describe the operation of Genesis2.

Next we discuss the high level programming concepts of Genesis2. A full user guide for

Genesis2 is also appended to this thesis as Appendix A.
6I suspect that behind the scenes, commercial tools handle parameters using templates as well, but to a

limited extent as described in Section 3.2
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Table 3.2: The Jargon Used to Describe Genesis2’s Operation
Word Used Meaning
Target-Language A synthesizable hardware descriptive language. In particular,

we use SystemVerilog.
Module Static, non-parametrized hardware unit, coded strictly using the

target-language.
Meta-Language A language that enables designers to embed instructions for the

creation of hardware modules. In particular, we use Perl.
Template Parametrized component that includes instructions (meta-

programs), in a meta-language for creating a module.
Elaboration The general step of converting raw code to a fully elaborated

design.
Generation The process of evaluating the meta-language in a template in or-

der to produce a specific module in the target-language. There-
fore generation is the first part of elaboration (where the second
part is done during the compilation of the target-language by
simulation or synthesis tools).

3.3.1 Genesis2 Elaboration Order And Scope

As mentioned before, Genesis2 needs to generate a system rather than a module. Therefore,

much like other HDL’s such as Verilog/VHDL (and unlike pre-processors), there is great

importance to the hierarchical structure of the design, and the generation order.

Our philosophy is similar to that of object oriented software in that we replace hard

coded modules (analogous to software structures in C) with templates that each contain an

elaboration program (analogous to templated classes with constructors in C++). However,

we have to remember that software can keep adding/changing/removing new instances

of classes at run time, while in hardware, once we create something it can never change.

Therefore we need to be a little extra cautious in the programming paradigm: After the run

of the “constructor,” the created entity must remain static. To stretch the C++ analogy,

this would be as if all members of the class were assigned by a constructor, but can never

change again, somewhat similar to the type binding of C++ templates.

Therefore to make sure that instance B never changes a previously created instance A, all

the parametrization information of each template is read-only for the rest of the system. We

will see later how these template parameters can be assigned with values before the instance

is generated. As mentioned above, during generation, the elaboration program can “read”

parameters from other modules that were already generated. However, after generation,
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that instance cannot be modified again. This paradigm gives all the decision-making power

for how a particular instance needs to be generated, given the external input and given

the surrounding system, to the designer of a template. However, it gives absolutely no

power to any other template’s meta-program to tweak that instance. This hard separation

of one template’s elaboration program from all others is crucial for enabling designers and

elaboration tools to reason about what hardware needs to be generated. For example, we’ll

see in Section 3.3.2 that because this separation does not exist in the SystemVerilog IEEE

Standard [14], it has been suggested that the elaboration feature defparam be deprecated.

This approach therefore requires that there should be a deterministic order for gen-

eration, so that designers can reason about the flow of design decisions (i.e., if module

A’s parameters are constrained by module B’s parameters, then B must be generated

first, and the designer must have the ability to specify that). Therefore, Genesis2 always

starts generation from the top module’s template, and then generates the entire design be-

low it. Generation is done as a depth-first search of the hierarchy, which means that the

meta-program in the top module’s template would be first to be processed, until the first

unique inst instantiation function call is encountered7. Then Genesis2 recursively turns to

processing the template of the sub-instance which is being instantiated, before continuing

the generation of the current template. This process repeats recursively, until the complete

hierarchy is generated.

Behind the scenes, this depth-first-search (DFS) strategy also makes it easy to handle

uniquification and therefore late binding. Let us assume that we are now processing the

template T1 NAME because of an instance at level N of the hierarchy.

1. If during this generation we encounter no sub-instances (i.e., this is a leaf in the

hierarchy graph), then uniquification is simple because all one needs to do is compare

the module which was just now generated to all the other k − 1 modules that were

previously generated from this template.

(a) If it is different from all of them, then we name the new module T1 NAME k.

(b) Otherwise, if it is identical to the ith (previously generated) module, then we

discard the newly generated module and inform the system that the generated

module is T1 NAME i.

7See Appendix A for more details about the built-in method call unique inst
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2. If during this generation we encounter sub-instances (i.e., instances of level N + 1),

then going depth-first means that we first generate and uniquify these sub instances,

before making uniquification decisions about the generated module for this instance.

Therefore, by the time we are done processing T1 NAME, we already resolved all

the sub-instances’ types, so uniquifying the newly generated module only requires a

shallow comparison to all the other k−1 modules that were previously generated from

this template.

(a) If it is different from all of them, then we name the new module T1 NAME k.

(b) Otherwise, if it is identical to the ith (previously generated) module, then we

discard the newly generated module and inform the system that the generated

module is T1 NAME i.

During the depth-first-scan of the code, scoping rules are very similar to other ob-

ject oriented languages. A new scope is opened every time a new instance of a tem-

plate is being instantiated. This is done using the $NewObject = $self->unique inst(-

SomeTemplateName, prmName=>prmValue); method call. Note that this is essentially the

equivalent of the NewObject = new SomeClassName<SomeType>; template+constructor call

in C++ template meta-programming. This means that in addition to having class members,

a Genesis2 template uses parameters, which serve as input to the meta-program (construc-

tor) run. Just like C++ templates, where this call would create a new class based on the

SomeType argument, Genesis2 would create a new module based on that meta-program run

on the parameters input.

On the other hand, when module types are dynamically generated, a hardware designer

who simply wants to instantiate an identical module/interface to one that already exists

elsewhere in the design, might find him/herself going through the trouble of trying to

generate an exact clone. Experience in SystemVerilog parameters shows that this can

become quite a cumbersome task. It is especially difficult for code maintenance, since

often more parameters are added to a template as the design matures, which may then

require manual updating of some instantiations. For example, consider a parametrized

configuration bus interface that repeats in multiple places in the design (“daisy chain”),

and say initially this interface is parametrized by data width only. Then, if one wants

to also parametrize it by addr width, all instantiations of that interface would have to

be manually modified (or all occurrences of that interface in the XML configuration file
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would have to be modified). Therefore a better solution would be to declare that interface

once, with all its relevant parameters, and then declare all other instantiations as “clones”

of the original. In this case, when the original changes, all other instances change as

well. To handle such situations, in addition to unique inst, we provide the $NewObject =

$self->clone inst(OtherObject); mechanism for Genesis2, which is somewhat similar

to typeof(OtherObject) NewObject = OtherObject->deepCopy(); in some versions of

C++8. NewObject is going to be an object of the exact same module type as OtherObject.

Regardless of how an object was generated, a handle to any previously generated (in DFS

order) instance can always be obtained by using the built-in methods get parent, get subinst,

get instance path and get instance obj. In addition, because generated module types are

late-bound, template designers may occasionally need to query the resulting type of their

meta-program run. Therefore Genesis2 provides for every object the built-in methods

$module name = $self->get module name(); and $inst name = $self->get instance name();

(get module name is a somewhat similar mechanism to the C++ typeid).

Finally, in terms of the template coding style, unlike object oriented programs, the entire

meta-program is considered as part of the new module’s “constructor” unless explicitly spec-

ified otherwise (for example using the Perl sub keyword one can declare subroutines/methods

for that template). This deviation from the classic class, constructor and methods decla-

rations style, is important for giving hardware designers the feeling (or illusion) that they

are still coding Verilog, and simply enhancing it with some meta-language constructs. In

addition, for simplicity of implementation Genesis2 always assumes that the template for

TemplateName will always reside in the file TemplateName.vp. Furthermore, we assume

that all statements in that file belong to that template scope. These simplifications and

assumptions are closer in nature to object oriented Perl than to Verilog. Yet, since it is

common practice in Verilog coding to put one module per file and to give the file the exact

same name as the module, this simplification seems reasonable.

3.3.2 Genesis2 Parametrization Levels

In Section 3.1, we greatly emphasized that one major benefit of a chip generator is that

the template for the architecture is coded first, only to receive final binding of architectural

8Note however, that typeof is a function call, while clone inst is a method call. The reason for this
difference is that Genesis2 is not just compiling a program—behind the scenes it also keeps information
about the hardware structure, source and generated files, and design hierarchy.
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and optimization parameters later. We have also seen in Section 3.3.1 that parameters are

the key input to the generation meta-language program. However, current HDL languages

generally don’t accept external input during the elaboration phase9. Moreover, there is no

standardized way of interfacing design parameters with other tools such as design explo-

ration/optimization or GUI’s.

First, let us look at the levels and mechanisms of parametrization in SystemVerilog, to

understand the current state of the art. As we see later, Genesis2 builds on these concepts

and attempts to improve them. A quick analysis of parametrization in SystemVerilog reveals

that it has three levels of priorities or strengths for elaboration parameters’ assignments [14]:

1. A localparam or parameter must be declared and initialized with a default value inside

the module to which it belongs. The initial value can be assigned directly, or it can

be derived from other parameter/localparams, or it can be assigned using a constant

function.

2. The value of parameters (but not the value of localparams) can then be overruled

during the instantiation of the module.

3. The value of parameters (but not the value of localparams) may also be altered by a

defparam statement, from anywhere in the code. Note however, that the IEEE Std

1800–2009 definition of the defparam is considered as a cause for both design and tool

errors, and is therefore put on the deprecation list by the standard itself (see section

C.4.1 of the IEEE Std 1800–2009 [14]).

Obviously, this list is missing a way to control internal parameters (free and architectural

parameters) from external input (e.g. to change a particular cache’s associativity). One

solution—propagating all low level parameters to the top module—is bad and cumbersome:

First, in a chip generator there are going to be MANY knobs. Second, it is not even possible

to explicitly propagate the knobs since the existence of some of them depend on the value

of others (for example, the existence of the parameter for the number of ALUs in processor

#3 depends on the value of the parameter for number-of-processors).

Another direction that we initially considered was to use defparams: In this scheme,

external tools would create a list of defparams to “configure” the system10. Unfortunately,
9Some tools, like Synopsis’s VCS, do accept some changes to some parameter types as a command line

switch. However, these cases are limited to simple, integer value changes.
10This direction was considered before we realized that SystemVerilog does not have a rich enough elabo-

ration language anyhow
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defparams are in fact the Achilles heel of SystemVerilog’s parametrization. As explained in

Section C.4.1 of the standard [14]:

“The defparam method of specifying the value of a parameter can be a source of

design errors and can be an impediment to tool implementation due to its usage

of hierarchical paths. The defparam statement does not provide a capability

that cannot be done by another method that avoids these problems. Therefore,

the defparam statement is on a deprecation list. In other words, a future revision

of IEEE Std 1800 might not require support for this feature.

A defparam statement can precede the instance to be modified, can follow the

instance to be modified, can be at the end of the file that contains the instance

to be modified, can be in a separate file from the instance to be modified, can

modify parameters hierarchically that are in turn passed to other defparam

statements to modify, and can modify the same parameter from two different

defparam statements (with undefined results). Due to the many ways that

a defparam can modify parameters, a SystemVerilog compiler cannot resolve

the final parameter values for an instance until after all of the design files are

compiled.

Prior to IEEE Std 1364-2001, the only other method available to change the

values of parameters on instantiated modules was to use implicit in-line param-

eter redefinition. This method uses #(parameter value) as part of the module

instantiation. Implicit in-line parameter redefinition syntax requires that all pa-

rameters up to and including the parameter to be changed shall be placed in

the correct order and shall be assigned values.

IEEE Std 1364-2001 introduced explicit in-line parameter redefinition, in the

form #(.parameter name(value)), as part of the module instantiation. This

method gives the capability to pass parameters by name in the instantiation,

which supplies all of the necessary parameter information to the model in the

instantiation itself.

The practice of using defparam statements is highly discouraged. Engineers

are encouraged to take advantage of the explicit in-line parameter redefinition

capability.”

The problem as stated by the IEEE Standard, can be summarized as lack of definite and
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deterministic way to perform elaboration, a shortcoming that hurts both the the hardware

designers and the tool implementation. Genesis2 solves this issue by defining a clear and

definite order of generation, as explained in Section 3.3.1. The DFS scan is also intuitive

because it is in serial program order, much like software objects construction.

However, there is also a second issue, that the IEEE Standard had not identified, but

we consider as error-prone. Because the defparam statement is “stronger” than the instan-

tiation assignment of parameters, an overriding of a parameter value inside a module can

cause conflicts with its parent (the module that instantiated it) or with modules that inter-

face with it. For example, consider a simple module that implements a hardware register

and uses width=8 as a parameter. Let us also assume that this module is instantiated and

width=8 is overridden with some new width=16 (i.e., the signal to be registered is of width

16). If an external definition, using the defparam construct, overrides width=16 with a

width=12, then suddenly a lint error is created. While this is a trivial example, it illus-

trates a significant problem: Inherited or constrained parameters (as defined in Section 3.1)

must not be overridden by external statements. Put differently, assignments of parame-

ters at instantiation should be at a higher priority than external assignment, because the

template designer consciously chose to bind these parameters to a specific value.

Therefore to enable better parametrization, Genesis2 pulls all parameters to the meta-

language level and redefines the assignment priorities. First, and much like SystemVerilog,

Genesis2 enables designers to define and give default values to parameters. Then, it pro-

vides a simple mechanism for overwriting these values from external configuration files (for

example, this enables finding the best parameter values using an optimizer). Note that since

generation is on an instance-by-instance basis, the configuration file specifies the overridden

parameter and its value on an instance-by-instance basis, as shown next in Section 3.3.3.

However, changing values from a configuration file is only possible if that parameter’s

value is not already tied inside the system, for example, when compatibility is required for

interface bit-widths. In this case we should not use external input for these parameters.

Instead we expect that the instantiating template’s elaboration program would calculate

these values, and force them as input of the instantiated template’s elaboration program.

Therefore we allow parameters to be assigned during instantiation (again, much like de-

scribed above for SystemVerilog), and put this assignment at a higher priority than both

the local definition and the external input.

As mentioned in Section 3.3.1, except for during instantiation, and unlike the defparam
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statements in SystemVerilog, one template instance cannot change the parameters of an-

other. However we provide extra means for passive communication between template in-

stances. We add a highest priority parameter assignment, force param, as a way for a

module to declare and export a value/message to the world. The other side of that coin,

$someVar = $anyObj->get param(prm name) enables any instance’s meta-program to read

parameters from any other instance that was previously generated anywhere in the system.

Put together, we redefined the priorities of parameter assignments as follows:

1. Parameters can be declared and defined in the template to which they belong using

the notation: $someVar = $self->define param(prm name=>prm val)

where someVar is initially set to the value that was hashed by the name prm name.

This value, by default, is prm val, or if prm val was a pointer, then someVar is a deep

copy of the structure pointed by prm val.

2. Parameter values which where defined using method 1, can be overruled by external

input (provided in XML format as explained in Section 3.3.3).

3. Parameter values which were defined using methods 1 or 2 can be overruled by the

instantiation call to the unique inst method.

4. Parameters can alternatively be declared and defined in the template for which they

belong using the notation: $someVar = $self->force param(prm name=>prm val).

In these cases, the parameter is non-mutable by any other technique. In fact, an

attempt to override its value will result in an error.

More than anything else, force param is used for instances to inform the system about

some property they possess. For example, a memory block instance may declare its

required address-bus width based on its size, which may have been set for a particular

application by an optimization tool.

Complete syntax and code examples for all parametrization methods is described in Ap-

pendix A.

The introduction of design parameters into a module’s template essentially defines an

API for that module. In SystemVerilog for example, this API can be used by the instan-

tiator of that module. In a chip generator framework, we want parts of this API to be

driven externally—free parameters by an optimization tool, architectural parameters by an
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architect or application designer. For the API to be better defined, it is better if it also con-

tains type information, that is, if each parameter has a clearly defined type. For example,

in SystemVerilog the default type for parameters is integer, but one can explicitly declare

parameters with other types. Type information can also assist other automatic tools that

connect through the configuration file. For example, a design space exploration tool would

certainly need to “understand” what is the legal range of values for each parameter it can

change.

Unfortunately, Genesis2’s parametrization is typeless, at least for now. Having no types

for parameters is an implementation by-product of using Perl as the meta-language, and

is certainly a shortcoming, since type checking is now delayed until generation is done

and the resultant modules are compiled for simulation or synthesis. In practice, since

parameters serve as the input to the system and to the templates’ meta-programs, it is

highly recommended that each parameter value is tested in the template’s meta-code, and

that a $self->error("error message") is thrown if the value is found to be illegal, much

like in good software programming practice. Yet, Perl as a dynamic language, also offer

some benefits because on top of supporting typical structures such as scalars, strings, arrays,

hashes, instance references, etc., it also allows for types of parameters that are traditionally

difficult in strict typed languages, such as subroutine names, template names, and module

names.

Finally, Genesis2 treats parameters as constants; if a re-definition of a parameter is

attempted, the Genesis2 compiler signals it as an error. Combined with the DFS order of

generation and the methods and priorities of declaring and assigning values to parameters,

this makes parameter value assignment a fully deterministic process (lesson learned from

the Verilog defparam statement). However, because Genesis2 enables the use of compound

structures as parameters (e.g., a hash), there could still be a flaw if the internal values of

these compound parameters could be modified by user code—it would break the read-only

paradigm. Genesis2 solves this issue by making any of the methods that return a parameter

value or pointer, actually return a deep-copy of that parameter.

3.3.3 Interfacing With Genesis2

A key requirement for a generator is that hardware should be generated based on external

input from an application designer, without the intervention of the hardware designer.

While there can be many ways (e.g., comma-separated-values, binary files, etc.) and many
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formats for a configuration file containing the external input, we chose to standardize the

configuration of the entire system to one data structure using XML format and a pre-defined

schema.

The benefit of a standardized interface is obvious—it removes the burden of parsing the

input files from the template designer. Instead, parsing is done by Genesis2 so that the

configuration file is read, parsed and its information binned to the appropriate instances’

parameters, before the first line of the designer code is processed. However, rather than just

reading the input configuration file, Genesis2 goes one more step and generates a complete

description of the generated design, in much the same format as the input configuration

file. In this feedback-XML description, parameters which are bound at instantiation or

forced by the elaboration program (see Section 3.3.2) are put on a separate category of

ImmutableParameters11. On input-XML files on the other hand, the entire ImmutablePa-

rameters element is not required and is in fact ignored. If a user wrongfully attempts

to modify a bound or forced parameter by specifying it as a regular parameter, it is also

ignored since external input has a lower priority than bound or forced priority.

Figure 3.6 illustrates the process of iteratively customizing a system: The user/external

tools assign values to internal “knobs” via XML→ Genesis2 generates hardware accordingly

→ Genesis2 generates an XML description of the hardware → User/tools refine the values

of the internal knobs to meet the specification. Therefore a second, but as important,

advantage is that because the interface is well defined, Genesis2 can work with other tools

such as GUIs or optimization frameworks.

For example, to implement a graphical user interface (GUI) for a generator, we start

with all parameters in their default state. Genesis2 generates the design database but

also a configuration file that represents that state. Once the user changes some parameter

of some instance in the configuration file—for example change number of processors in a

chip multiprocessor (CMP) from 2 to 3—Genesis2 re-generates the new design and the

configuration file. Since we added a new processor, our new configuration file now contains

the entire parametrization of that instance and its sub-hierarchy. Our user can now modify

that processor (e.g. change it to a VLIW processor), and once again, Genesis2 will generate

this, now heterogeneous, CMP. Manual customization by way of GUI can continue in this

manner until the user is happy with the resultant CMP.

This example also illustrates the benefits of using XML for the representation of the

11See Appendix A for the complete XML schema
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Figure 3.6: Illustration of an iterative process to customize a design by refining the XML
description of the parameters’ space. Every time Genesis2 generates hardware it also gen-
erates a hierarchical description of the system. For each instance, this description includes
the instance name, the uniquified module name, the name of the template from which this
module was generated, and the entire parameter space for this instance. Changing a pa-
rameter’s value in the XML description and re-generating yields a new design, based on the
modified value(s).

architectural choices that were made: XML is a hierarchical and extensible representation by

definition. The detailed schema for the Genesis2 output XML, which is a super-set schema

of the input files, is explained in detail in the Genesis2 user guide found in Appendix A at

Sections A.2.1 and A.2.2.

3.3.4 Small Design Example

To illustrate some of the advantages of using Genesis2, let us consider a generator for a

simple hardware structure — a Wallace tree generator. Wallace trees are typically used

to efficiently sum-up many arguments, such as in the case of partial products in a multi-

plier. Wallace trees implement reduction by half- and full-adders. At each level, groups

of two/three bits (of the same weight) form the input to these adders, while the Sum and

Carry outputs of these adders form the next level of the tree. The reduction algorithm is

simple:

While there are three or more wires with the same weight add a following layer:

• Take any three wires of same weight: Input them into a full adder to
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produce sum and carry.

• If there are two wires of the same weight left: Input them into a half adder

to produce sum and carry. (Alternatively, as shown below, one can pad

with a constant zero and use a full-adder. The synthesis tool propagates

these constants and reduces these full-adders into half-adders.)

• If there is just one wire left: No logic needed. Connect it to the next layer.

In this example, we show a Wallace tree generator for N partial products in a multi-

plier, each of N bits. Because this hardware is generated for a multiplier, we also add an

initialization step of logically shifting the weight of each partial product, by padding with

zeros according to its index. The synthesis tool will get rid of these zero-padding. Despite

the algorithm simplicity, it is an irregular structure, and therefore encoding a parametrized

Wallace tree in SystemVerilog or VHDL is difficult. Of course, in software, this would have

been a simple task. Therefore, because Genesis2 “married” the Perl software language to

SystemVerilog, Wallace trees are easy to encode using Genesis2. Note that as expected, it

is just a simple ’while’ loop that at each level of the tree instantiate the required wires and

full-adders, until the tree height is two.

At first sight, it may not be clear why this cannot be done using just a text pre-processor.

The problem, as noted before, is that a text pre-processor only creates module types, unlike

constructor and template mechanisms in an object oriented language, that bind a handle

to a particular class and/or template instance. To illustrate how this is done in Genesis2,

below is a second code snippet of a testbench that instantiate multiple Wallace trees of

various bit widths. More code examples can be found in Appendix A.



3.3. GENESIS2 55

Wallace Tree Code (wallace.vp)

//;# Import Libs

//; use POSIX ();

//;

// PARAMETERS:

//; my $N = $self->define_param(N=>4);

// Wallace tree for N=‘$N‘ partial products of width N=‘$N‘ //

module ‘mname()‘

( input logic [‘$N-1‘:0] pp[‘$N-1‘:0],

output logic [‘2*$N-1‘:0] sum,

output logic [‘2*$N-1‘:0] carry

);

//; my $hight = $N;

//; my $width = 2*$N;

//; my $step = 0;

// Shift weights and make make pps rectangular (insert 0s!)

logic [‘2*$N-1‘:0] pp0_step‘$step‘;

assign pp0_step‘$step‘ = {{(‘$N‘){1’b0}}, pp[0]};

//; for (my $i=1; $i<$N; $i++) {

logic [‘2*$N-1‘:0] pp‘$i‘_step‘$step‘;

assign pp‘$i‘_step‘$step‘ = {{(‘$N-$i‘){1’b0}}, pp[‘$i‘], {‘$i‘{1’b0}}};

//; }

//; while($hight > 2){

//; $step++; $width++;

// STARTING TREE REDUCTION STEP ‘$step‘

// Sum:

//; for (my $i=0; $i < POSIX::floor($hight/3); $i++){

logic [‘$width-1‘:0] pp‘$i‘_step‘$step‘;

assign pp‘$i‘_step‘$step‘ = {1’b0, // pad with a zero

pp‘3*$i‘_step‘$step-1‘ ^

pp‘3*$i+1‘_step‘$step-1‘ ^

pp‘3*$i+2‘_step‘$step-1‘

};

//; } # end of ‘‘for (my $i...’’

// Carry:

//; for (my $i=0; $i < POSIX::floor($hight/3); $i++){

//; my $idx = $i + POSIX::floor($hight/3);

logic [‘$width-1‘:0] pp‘$idx‘_step‘$step‘;

assign pp‘$idx‘_step‘$step‘ = {(pp‘3*$i‘_step‘$step-1‘ & pp‘3*$i+1‘_step‘$step-1‘) |

(pp‘3*$i+1‘_step‘$step-1‘ & pp‘3*$i+2‘_step‘$step-1‘) |

(pp‘3*$i‘_step‘$step-1‘ & pp‘3*$i+2‘_step‘$step-1‘),

1’b0 // pad with a zero
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};

//; } # end of ‘‘for (my $i...’’

// Left overs:

//; for (my $i=0; $i < $hight%3; $i++){

//; my $old_idx = $i + 3*POSIX::floor($hight/3);

//; my $new_idx = $i + 2 * POSIX::floor($hight/3);

logic [‘$width-1‘:0] pp‘$new_idx‘_step‘$step‘;

assign pp‘$new_idx‘_step‘$step‘ = {1’b0, pp‘$old_idx‘_step‘$step-1‘};

//; } # end of ‘‘for (my $i...’’

//; $hight = 2 * POSIX::floor($hight/3) + $hight%3;

// END TREE REDUCTION STEP ‘$step‘

//; } # end of ‘‘while($hight > 2)...’’

// Ignore all the top bits and assign final PPs to output

assign sum = pp0_step‘$step‘[‘2*$N-1‘:0];

assign carry = pp1_step‘$step‘[‘2*$N-1‘:0];

endmodule : ‘mname‘

Testbench Code For Wallace (testbench.vp)

// Top module for simulation //

// Parameters:

//; my $widths = $self->define_param(WALLACES_WIDTHS=>[16, 32, 64]);

module ‘mname‘ ();

//; foreach my $N (@{$widths}) {

logic [‘$N-1‘:0] multiplier_‘$N‘;

logic [‘$N-1‘:0] multiplicand_‘$N‘;

logic [‘$N-1‘:0] pp_‘$N‘[‘$N-1‘:0];

logic [‘2*$N-1‘:0] sum_‘$N‘;

logic [‘2*$N-1‘:0] carry_‘$N‘;

logic [‘2*$N-1‘:0] total_‘$N‘;

logic [‘2*$N-1‘:0] expected_‘$N‘;

assign total_‘$N‘ = sum_‘$N‘ + carry_‘$N‘;

assign expected_‘$N‘ = multiplier_‘$N‘ * multiplicand_‘$N‘;

// Generate partial products
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//; foreach my $i (0..$N-1){

assign pp_‘$N‘[‘$i‘] = (multiplicand_‘$N‘[‘$i‘] == 1’b1) ? multiplier_‘$N‘ : ‘$N‘’b0;

//; } # end of ‘‘foreach my $i...’’

// Instantiate the wallace tree here

//; my $wallace = generate(’wallace’, ‘‘wallace_$N’’, N=>$N);

‘$wallace->instantiate()‘

(.pp(pp_‘$N‘),

.sum(sum_‘$N‘),

.carry(carry_‘$N‘));

... Rest Of Testbench ...

//; } # end of multi wallace loop

endmodule : ‘mname‘

3.3.5 Using Genesis2 to Capture More of The Designers’ Knowledge

Remember that the high level goal of Genesis2, and of a chip generator in general, it is

to capture the designer knowledge so that the process of making follow-on chip(s) is much

easier and automated. We saw that Genesis2 can be used to capture the hardware designer’s

knowledge with respect to the hardware that they intend to create. However, when we

consider the hardware designer knowledge in the whole process of making a chip, it goes

further than just the hardware RTL. For example, when a hardware designer designs a block,

he/she may also have information, or clues, that can help the validation infrastructure.

In all honesty, Genesis2 was not developed with that goal in mind. It was only later

that we “discovered” that Genesis2 can also assist in capturing this additional designer

knowledge as part of the template. Nevertheless, it turned out to be one of the most

important advantages of using a full software language for the description of the template.

The mechanism is simple and straightforward: when designers embed instructions that

convert parameter input to Verilog HDL, they can use that same knowledge and these same

parameters to create other files that can be used by the software stack, the verification

test bench and/or the physical implementation. The following are three simple examples to

illustrate cases at which the designer knowledge can be used beyond the hardware proper:

• Software: Consider a template for a register file, parametrized by the number of

registers and their sizes, as well as by the address space of these registers. An example
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is shown in Appendix A.6. To easily propagate the information to the software drivers,

as the template’s code generates the registers, it can also open and generate a C++

header file that would contain relevant information (e.g., addresses and default values

for each register). Then, when an application developer decides to tweak values in this

register file, perhaps even change its address mapping or some of the default values,

the software development is not disturbed since a new header is generated with the

new hardware.

• Verification: Consider a template for a network switch, parametrized by the number

of channels, virtual channels, message types etc. Similarly to the register file above,

we can generate header files for verification modules to include. An even better

way is by leveraging the unified design-verification environment that SystemVerilog

offers: Unlike an OpenVera [97] or Specman [31] environment that must be compiled

separately from the hardware HDL, the verification components of SystemVerilog are

an integral part of the hierarchy [93]. As such, these verification components should be

built as templates, and share the same scoping rules of the design. This means that,

for example, a monitor template for the generated network switch can be instantiated

with some of the parameters of the interface it observes (as part of the hierarchy,

it is instantiated using the Genesis2 unique inst method). Alternatively, it can also

“peek” at these parameters using the the built-in method get param.

• Physical Implementation: Consider a template that is in charge of generating the

top level of some design, parametrized by the input and output names and widths.

In terms of hardware, this template is likely to instantiate IO pad cells and boundary

scan registers (BSR). Since all the knowledge of the IO components is already captured

in the template, there is a strong motivation for this template to create a secondary

file, a TCL script [81], that describes the IO pad placement order for the downstream

place-and-route tool. (Note that this template can also generate critical information

about the boundary scan order for JTAG testing tools.)

3.4 The Implementation of Genesis2

Implementing Genesis2 was (embarrassingly) simple. Essentially Genesis2 added a software

language to the construction phase of a hardware language. One way to implement Genesis2
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could have been to pick a known HDL such as Verilog or VHDL and extend it. However, this

would have required re-implementing a full software compiler in addition to the hardware

compiler. We noticed however, that a simpler way would be to use an already existing

software tool and have it handle the software extensions of the HDL code. In the case of

Genesis2, this would be the Perl interpreter.

Enabling users to code in a target language annotated with a second, full fledged software

capable meta-language, is of course not a new idea. It is done by numerous pre-processors,

including EP3 [94] and deperlify [40] which enable stubs of Perl code and EmPy [43],

which enables stubs of Python code. However, as mentioned before, these tools lack the

per-instance and hierarchical system scopes required for a generator.

Nevertheless, the starting point for making the first version of the Genesis2 tool (Gen-

esis1) was based on modifying EP3. In a nutshell, EP3 provides three main mechanisms

for programmability: pre-defined directives such as @define or @macro; toggling between

meta- (Perl) and target- (Verilog) language using the @perl begin/end directives; and ex-

tending/defining new directives. In this first version, we added a new directive @unique inst

to the existing list of EP3 directives. The purpose of the unique inst directive was to make

a recursive call to the EP3 pre-processing engine for an instantiated object. This recursive

mechanism was enough for creating a per-instance scope since each new instance of the pre-

processor could have its own parameter definition data structure. This therefore enabled the

generation of modules from templates on the fly, plus uniquification where needed. We also

kept a globals list—a list of global scope parameter definitions—for inter-instance message

passing. To provide an XML based intermediate form, we augmented the EP3 data struc-

ture with pointers to parent and child instances, and had the unique inst function extract

information from an XML file if one was provided. The only piece that was completely

missing was the ability of user code in an instance A to get a handle to a second instance

B or to instance B’s parameters.

While Genesis1 did work and was useful for first attempts in creating a generator,

we quickly learned that it also had significant limitations. The first was in the limited

amount of directives that were implemented and in the complexity of adding more. In

EP3, directives such as @define are not native Perl calls but actually calls to Perl functions

that must implement that functionality (for example, the @define directive is a call to a

function that puts a definition of name and value in the EP3 data structure). In order

to support even the most common software construct, we had to implement directives for
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@for/@foreach/@endfor, @while/@endwhile, @next, @break, and more. In addition, we had

to create a “math” library of directives such as @add, @sub, @mul, @div, @log2 etc. Adding

more and more software mechanisms as directives proved to be a tedious and endless task.

A second problem was that the EP3 engine is based on text replacements and not

on terms evaluation like actual software languages, which made it close to impossible to

compound function calls. E.g., assume we set “@define A 1”, “@define B 2” and “@define

C 3”. To implement D=A+B*C we first need to calculate “@mul B B C” and only then

“@add D A B”. An attempt to call “@define D A+B*C” instead, would have resulted in

the definition of D as the string “1+2*3”. Similarly an attempt to call “@add D A (@mul

B C)” would have resulted in an error.

Finally, we concluded that Genesis1, which was based on the parsing engine of EP3,

could be used to make chip generators—but it was a very cumbersome solution.

A better solution is therefore to use the Perl interpreter directly on the meta-language.

One other tool that does that is the Tensilica TIE pre-processor (TPP) [10]. Like EP3,

TPP enables the user to easily and quickly toggle between target-language mode and meta-

language mode. In TPP, this is done either on a line basis (using an escape character) or

on an expression basis (using two escape characters as delimiters)However, TPP is different

from EP3 in the sense that rather then generating the target-language directly as the meta-

language is processed, TPP creates an intermediate form. TPP first parses the target and

meta-language into an intermediate file as a Perl script. Then, this generated Perl script is

executed to generate the final text. This approach eliminates the need for directives, except

those that toggle between meta and target language—any statement or expression that is

in the “Perl mode” area will be interpreted by the Perl interpreter.

Therefore, to create Genesis2, we used a mechanism much like that of TPP: a “ //; ”

(two forward-slashes followed by a semi-colon) indicates the start of a full meta-language

(Perl) line, and “ ‘expression‘ ” (an expression placed between two grave accent signs)

indicates an in-line toggling between meta- and target-language. The key however is in the

intermediate form that was generated. Had we generated an executable script like TPP

does, then each template would have been processed on its own—no instance or system

scope. Instead, we take a page from the C compiler, which first creates object files and

only then links them together. Our parsing engine first creates Perl classes, or packages,

and the generation of target-language code is done only after all said packages have been

made. This means that Genesis2 first parses all templates to create Perl packages. This



3.4. GENESIS2 BACKEND 61

parsing phase essentially creates the complete code for a fully object oriented program that

generates hardware. To make this program “link” together, all generated classes/packages

inherit from one base class/package called UniqueModule.pm.

Figure 3.7 shows how a template, which contains both Verilog and Perl code interleaved,

is parsed and transformed into a Perl package. The Perl package is attached with a header to

import relevant libraries, and most importantly, to inherit the UniqueModule.pm package.

UniqueModule.pm holds critical code that constructs the system: a data-structure to hold

parent and child instances, a data-structure to hold parameters’ names, values and priorities,

and API methods to handle and manipulate these data structures (see API methods in

Appendix A).

The most important API call that all templates inherit from the base template (i.e.,

inherit from the base package UniqueModule.pm), is the method unique inst. A call to

$self->unique inst(SomeTemplateName, NewInstName, PrmName=>PrmVal), returns a han-

dle to a new object instance. This method call is in fact a call to template SomeTemplateName’s

constructor, since after parsing, it is translated into a call to the generated Perl package

SomeTemplateName.pm’s constructor.

Interestingly enough, the result is that each Perl object (returned by the unique inst

method) is uniquely tied to a Verilog object. Therefore, even though Perl and Verilog are

on two different layers, the hardware designer has the illusion that they (the Verilog and

the Perl layers) are one and the same.

A key to achieving system and instance scopes, rather than just pre-processing files, is

that we first create the intermediate representation for all templates, and then assemble

them into a full object oriented program with a centralized database of instances and types.

This facilitates our ability to acquire handles from one instance to the other, for example,

for querying of parameters. Each such package also has a to verilog method, and it is the

activation of these methods throughout the hierarchy that generates the final Verilog code.

Note that unlike typical pre-processors, since to verilog is a method (not a function), it is

called on an instance basis, generating a unique module when needed. This means that a

single template that is instantiated in multiple places and whose parameters get different

values for each of these instances, would in fact have its to verilog method called multiple

times, once per instance, potentially generating multiple unique modules in multiple output

files.

To better understand how the method call to unique inst orchestrates the different



62 CHAPTER 3. CREATING A GENERATOR

BitReverse.vp
module `$self‐>get_module_name()` (
\\; my $width=$self‐>get param(WIDTH=>4);\\; y $ $ g _p ( );
input [`$width‐1`:0] data_in,
input [`$width‐1`:0] data_out

);
//; foreach my $idx (0 .. $width‐1){
assign data out[`$idx`] =assign data_out[ $idx ] = 

data_in[`$width‐$idx‐1`];
//; }

endmodule

Perl CodeVerilog Code

(a) Template Source Code

BitReverse.pm
package BitReverse;
(more Perl declarations )… (more Perl declarations )

use Genesis2::Manager 1.00;
use Genesis2::UniqueModule 1.00;
@ISA = qw(Genesis2::UniqueModule);
Sub to verilog {Sub to_verilog {
print ‘module’; print $self‐>get_module_name(); print ’(‘; print “\n”;
my $width=$self‐>define_param(WIDTH=>4);

print ‘ input [‘; print $width‐1; print ‘:0] data_in,’ print “\n”;
print ‘ input [‘; print $width‐1; print ‘:0] data_out’ print “\n”;
print ‘); ’ print “\n”;
foreach my $idx (0 .. $width‐1){

print ‘ assign data_out[‘; print $idx; print ‘] = ,’ print “\n”;
print ‘ data_in[‘; print $width‐$idx‐1; print ‘]; ,’ print “\n”;
}}

endmodule ,’ print “\n”;
}

Perl CodeVerilog Code Header/Footer Code

(b) Generated Perl Package

Figure 3.7: Genesis2 parsing and transforming a simple template into a Perl package. In
this figure, a simple bit-reversing template is coded. The input parameter for this template,
WIDTH, receives a default value of 4. A simple for-loop is used to assign the output port to the
input data in reverse order. Figure (a) shows the code as written by the hardware designer.
Blue and red fonts indicate native Verilog vs. meta-language (Perl) extensions respectively.
Figure (b) shows the transformation of the user code into a Perl class/package. A set of
Genesis2 templates therefore becomes a set of Perl packages. All Perl packages inherit from
one base class, UniqueModule.pm, which defines hierarchy and parameter databases, along
with methods for accessing them. Each such package can then be instantiated using the
unique inst method (also inherited from the UniqueModule.pm class), and each instance
is then capable of generating the relevant module based on its particular parameter value
assignments.

parameter value assignments, the generation of code and the uniquification, Figure 3.8

provides the method’s pseudo-code. Note that any call to unique inst to create a sub-

instance, would be part of the parent instance generation process as coded in its own

to verilog method, with the single exception of the top template which is instantiated by

Genesis2’s Manager.pm package.

Figure 3.9 shows how a complete design hierarchy is generated. First, all templates are

parsed into Perl packages. Together, these packages represent an exact dual of the hardware

design hierarchy. Then, a run of this program traverses the entire hierarchy to produce the
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Verilog modules.

3.5 Future Improvements To Genesis2

Genesis2 was built as part of an exploration process, trying to figure out “what would it

take to build a chip generator?” At the time these pages are written, Genesis2 is fully

functional, and is being used for the design of a number of digital and mixed signal chips

by the Stanford VLSI group, as well as being integrated into the design flow of Stanford’s

EE272—Design Projects in VLSI Systems digital and mixed signal design class. Looking

forward, there are a number of possible implementation changes that should be considered

so that a mature version of Genesis2 can be deployed for industrial use (as a commercial

tool).

The most basic foundation of Genesis2 was the premise that there should be a clear

distinction between the functional description of the hardware and the decision what hard-

ware to place. While the former had to be synthesizable, for the latter we argued that

there should be a rich software-like environment. To achieve this separation, we added a

layer of meta-language to a commonly used hardware descriptive language: Genesis2 uses

Perl as the meta-language and Verilog or SystemVerilog as the target-language. While this

choice made complete sense from a research perspective, allowing the Genesis2 developers

to easily figure out what features the tool needed to support and to quickly iterate through

versions, this decision has a lot of impact on the use model for the hardware designer.

First, we can see that many meta-languages are actually tied to their target-language, and

share some (though typically not all) syntactic rules. Examples include C++ templates

and even SystemVerilog’s generate blocks. the downside of our approach, is that since the

meta- and target-languages are completely separated, the evaluation of the meta-language

program can produce syntax errors in the generated code of the target-language. However,

the benefit of our approach is that it provides much more coding flexibility to the hardware

designer—flexibility that C++ templates traditionally achieve through an additional layer

of C or M4 pre-processors, for example.

In addition, layered meta- and target-languages can become a source of frustration for

programmers (in our case hardware designers). Whether a functional bug or even a Verilog

compilation error, the errors that the programmer sees during the debugging process do

not point back all the way to the source code. Instead they point back to the intermediate
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form. For example, the design compiler may report a Verilog syntax error in the generated

Verilog (.v) file, but to fix the error the designer would have to trace it back to the Genesis2

code (.vp file) that generated that Verilog, and fix it there. We try to provide the user with

tools to do the mapping between the Verilog and the Genesis2 files more easily: First, all

files—Genesis2 (.vp) files, intermediate Perl (.pm) files and generated Verilog (.v) files—

are available to the user for debugging. We argue subjectively that this is already a huge

improvement over C++ templates or SystemVerilog generate blocks that result in code that

is hidden from the user. We also provide a sync statements annotation mechanism, using

the debug switch, that creates comments on the generated files, specifying the respective

location (name of .vp file and line number) that created the relevant Verilog. Having said

that, this is far from being enough. The right way to solve this problem is to make the

synthesizer/simulator/debugger point directly to the source, much like GDB does not point

to the assembly but to the C/C++ code.

A second and less crucial consideration is that of which meta-language to use. Genesis2

uses Perl, a decision that works well due to the fact that the author knew it well and

that it is a very flexible and adaptable language. Another advantage of Perl is that it is

one of the most commonly used scripting languages in hardware design houses. However,

assuming that the meta-language is kept separated from the target-language, a variety of

new languages, in particular Python [68], have emerged as potentially more concise and

more easily maintained languages. As we expect the use of chip generators to grow, and the

relative portion of the “generating” code to rise while the relative portion of static target-

language code goes down, maintainability and ease of use are likely to gradually become

significant issues for generators.

A key motivation for Genesis2 was to enable users and tools a standardized way of pro-

viding high level input to customize the generated design without actually writing Verilog.

This input comes as a hierarchical set of parameter assignments to the design knobs de-

fined by the designer, so it can pervasively impact the various elaboration programs. It is

therefore important that this interface is clear and formal. Even though our current imple-

mentation using Perl is typeless, we have forced a simple mechanism to at least convey the

structure of each parameter to the external world: Genesis2’s XML schema unambiguously

annotates whether a parameter is a scalar/string, hash, array or instance-path12. We are

12Scalar/string, hash and array are the native Perl data-types; Instance path represents a pointer to
another instance in the system.
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also working on a “range” mechanism, such that in addition to simply defining a knob, de-

signers could also determine, and more importantly, convey to other tools and users, what

are valid values for those knobs.

As work that uses Genesis2 continues, we see that another improvement on the way

parameters are handled in Genesis2 may be to add yet another priority level. As described

in Section 3.3.2, there are four ways to assign a value to a parameter in Genesis2, associated

with four priority levels:

1. In the template body using define param (weakest assignment type)

2. Via the XML configuration file

3. During the instantiation of one template in another template

4. In the template body using force param (immutable assignment type)

Yet, it may be the case that for additional convenience, it may be useful to add another

priority—a “weak-instantiation” priority. This priority would be even weaker than assign-

ments via XML, even though it is to be used at instantiation. The use case for this priority

is for when a designer wishes to instantiate a template (e.g., a FIFO) and give some pa-

rameter (e.g., DEPTH) a new default value instead of this parameter’s original value (e.g., if

DEPTH was coded to have a default of 4 but for this design reasonable values are around 64).

Since this parameter belongs to the free or to the architectural parameter categories, the

designer may still wish to allow an application designer or even tools to tweak this value

again through the XML interface (e.g., refine DEPTH to be 72 entries to avoid a performance

bottleneck). In this case, even though the designer wants a different default, he/she does

not want this default to be strongly bound just yet.

Finally, parameters are also used to communicate between meta-programs of templates.

For example, a cache may want to “check” the word width of the processor it is to be

connected to. This implementation did not concentrate on strong encapsulation or object

privacy issues. Therefore templates in Genesis2 do not have any restrictions on information

sharing. Any template is allowed to “peek” into the parameters and sub-hierarchy of any

other template. The only restriction is that all parameters are immutable once assigned,

and that all objects are immutable once created. Essentially each elaboration program has

its own scope and the rest of the system is read-only for it. The problem is that this scheme

relies on “good coding practices”—a “bad” designer might write code for template A that
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accesses the internal data of template B. This action breaks the module abstraction and

encapsulation, and results in brittle code. In analogy, most object oriented languages put

different/more restrictions on information sharing (e.g. using the public, protected and

private constructs in C++) for the purpose of providing better encapsulation of a class’s

functionality. In future work, it may be worthwhile to consider adding some restrictions,

potentially in the form of private by default with an export construct—a template’s internal

information would be private unless explicitly exported.

Whether implemented as a meta-language or inherent to the target-language, the key to

enabling the creation of a generator is the ability to embed the designer’s knowledge of how

the entire system needs to be constructed under different conditions, rather than just the

functional behavior of each hardware component. In our experience, this (unfortunately)

cannot be done with existing HDLs. The missing piece is the rich expressibility that exists

in software languages. Therefore to create Genesis2 we took an approach of merging the

good of both worlds: use software language to describe the system and each component’s

elaboration; use SystemVerilog to describe the functionality/behavior of the hardware. Our

experience had shown that Genesis2 can adequately describe generators, and is useful for

embedding the designer’s knowledge into the design. The second, and not less important

requirement, is to enable external users’ and tools’ input to control those elaboration pro-

grams. Genesis2’s inherent ability to automatically extract the parametrization space in a

standardized and formal media, and to later accept that same format as pervasive input to

all elaboration programs, enables quick and automatic integration with GUI’s and optimiz-

ers. While improvements such as the ones described in this section will definitely enhance

the user’s experience and potentially even productivity, as these lines are written, Genesis2

is already in use by Stanford students implementing a chip-multiprocessor generator, Stan-

ford students implementing a number of mixed signal chips, and Carnegie Mellon students

implementing digital signal processing components.
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Usage:
$NewSubInst = $self->unique inst(SomeTemplateName, NewInstName, PrmName=>PrmVal)

Actions:

1. Remember the current $self parameter’s priority, and assign $self parameter’s priority
to ZERO PRIORITY (to stop any attempts by the sub-instance to change/add parameters
of $self)

2. Verify the existence of the template SomeTemplateName

3. Create a new sub-instance object of SomeTemplateName.pm (referred hereinafter as
$NewSubInst)

(a) Update global modules database on the creation of a new module based on tem-
plate SomeTemplateName. Tentatively name it SomeTemplateName unqN where N-
1 is the number of already existing unique modules generated from template
SomeTemplateName (assume it will be uniquified; roll back later if needed)

(b) Update $NewSubInst about its template source and its newly created module type

(c) Update $NewSubInst about its relevant XML entry location in the input configuration
file (if it exists)

(d) Set $NewSubInst parameter’s priority to INHERITANCE PRIORITY. Assign pa-
rameters based on the unique inst invocation command (i.e., create a parameter
named PrmName at priority INHERITANCE PRIORITY and assign it with the value
PrmVal)

4. Recursively execute on $NewSubInst:

(a) Set $NewSubInst parameter’s priority to EXTERNAL CONFIG PRIORITY. Assign
$NewSubInst parameters based on the input configuration file (if it exists)

(b) Set $NewSubInst parameter’s priority to DECLARATION PRIORITY (to enable
new parameter definitions by user code in the template itself)

(c) Invoke $NewSubInst’s to verilog method to generate the new module, based on the
applied parameters and the template (i.e., the SomeTemplateName.pm package)

5. Set $NewSubInst parameter’s priority to ZERO PRIORITY—no more changes allowed in
$NewSubInst after its module has been generated!

6. Handle uniquification:

(a) Compare newly generated module SomeTemplateName unqN to all N-1 previously gen-
erated modules for template SomeTemplateName

(b) If a match was found, discard the new module by both updating the $NewSubInst
object and rolling back the global modules database

(c) Else do nothing

7. Reapply $self parameter’s priority as stored in item 1 (to re-enable additions to $self
parameters)

Figure 3.8: Pseudo-Code For The unique inst Method
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top.vp tile.vp p_risc.vp p_cisc.vpTemplates:

Genesis2 per file

top.pm
•Inherits

tile.pm
•InheritsPerl Classes

p_risc.pm
•Inherits

p_cisc.pm
•Inherits

Genesis2 per‐file 
parsing

Inherits 
UniqueModule.pm
•Implements 
“to_verilog” method

Inherits 
UniqueModule.pm
•Implements 
“to_verilog” method

Perl Classes 
(Packages):

Inherits 
UniqueModule.pm
•Implements 
“to_verilog” method

Inherits 
UniqueModule.pm
•Implements 
“to_verilog” method

Object Oriented 
(Perl) System:

Genesis2 system 
generation

top.v
tile nq2

tile_Generated 
(U i ifi d)

p_risc_unq1.v p_cisc_unq1.v

generation

tile_unq2.v

_unq3.v

(Uniquified) 
Verilog Modules:

p_risc_unq2.v
p_cisc_unq2.v

Figure 3.9: Generation of the target language. After all templates have been parsed into
Perl packages as shown at the top part (and in more detail in Figure 3.7), these packages
together form an object oriented program. A run of this program produces the Verilog
modules whose hierarchy was represented by the packages.



Chapter 4

Verification of A Flexible

Architecture

In Chapters 2 and 3, we discussed the concepts surrounding chip generators and suggested

a framework for creating them. Unfortunately, as Chapter 2 already suggests, designing

new chips is only half the problem. In this chapter we start the discussion of the other half:

design validation.

In particular, in the context of chip generators, because many chips need to be pro-

duced, validation may get very difficult if not handled carefully. Furthermore, we don’t

consider “correct by construction” as a valid assertion, even though a generator generates

the hardware automatically, because every tool can have errors. On the other hand, we

do pose (and answer) the question, “What is it that we are verifying?” Is it the generator

itself or is it the generated instance? Obviously, a bullet-proof generator is best, but since

we don’t know how to produce such an artifact, we argue that we really should be verifying

the instances that the generator produces. Unfortunately, this validation task could render

the whole chip generator concept useless unless we automate much of the process, thus

amortizing verification costs over the many chip instances that the generator produces.

To this extent, runtime-configurable architectures resemble chip generators: both have

embedded flexibility in their architecture and micro-architecture, both can be programmed,

and for both, the program fixes the flexible architecture to a particular mode of operation.

The difference, of course, is the time at which this binding process happens—runtime or

pre-silicon. Therefore, from a validation perspective, one can serve as proxy for the other.

For example, the previously posed question, if formulated for a runtime configurable design

69
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would become: are we verifying the chip (under any and all random configurations) or are

we verifying a set of particular configurations?

Therefore this chapter uses the case study of a very flexible chip multiprocessor, Stan-

ford Smart Memories, that was actually implemented, verified, taped out and proved to be

working in the lab, to better understand the impact of flexibility in the design on validation.

As Section 4.1 describes in detail, Stanford’s Smart Memories (SSM) is a scalable 8-core

chip multiprocessor with a completely configurable memory system that can support cache

coherent, stream or transactional memory models. Today, the completed chip(s) run appli-

cations in the lab, in all modes and with up to 32 active processors (the largest configuration

our test platform supports). While there is no guarantee that our silicon is completely bug

free, so far no functional bug has yet been found. We were pleasantly surprised by this

result, given the complexity and flexibility of the design.

Sections 4.2 and 4.3 describe how we approached the validation of our configurable

CMP system, especially focusing on how we approached testing our highly configurable

components. When SSM’s validation work started we thought that, at best, these configu-

rations would be orthogonal to each other, with a linear increase in required validation. Of

course, we feared the worst: that the verification work would be proportional to verifying

a cross-product of all possible modes of operation, or an n-factorial explosion in potential

verification effort. Careful planning was therefore critical, as we could not afford to have

each system configuration require a separate testing environment. In the end, we created

a validation flow that required some up-front work, but greatly reduced the complexity

caused by added flexibility. This was the first signal that validating a generator would also

be feasible—a modest amount of additional up-front work that can be amortized across

multiple chip instances would be a good trade-off.

In Section 4.4 we explore how SSM’s flexibility impacted the validation results, as cap-

tured in our bug database. We analyze some of the most difficult bugs we dealt with in

each mode and explain what architectural decisions caused each one or what architectural

assumptions had to be altered to fix them. Of particular interest is the analysis regarding

which configuration found which bug. For example, is there a particular configuration that

would find all bugs? (no); if we need the generator to produce only a single particular config-

uration, would it be useful to test a few more closely related ones? (yes). Section 4.5 reports

our hindsight investigation results. We find that by randomly changing the configuration

of particular modules (e.g. making an I-cache bigger or smaller), we not only tested that
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module under yet another configuration, but we also randomly changed the ordering and

timing of events throughout the rest of the system (e.g. in the protocol controller). Thus

each test was able to induce many more corner cases throughout the system.

SSM’s case study demonstrates that a complex flexible architecture can be handled

efficiently by validating only a specific subset of the possible configurations and carefully

planning a verification environment that is configuration agnostic. For chip generators, this

translates to verifying the chip instances produced and not the generator itself. Moreover,

once flexibility is handled efficiently, the generator’s flexibility can even help the validation

process since we can easily produce closely related variants of the chip—each would have a

different cycle by cycle behavior, even under the same stimulus, thus potentially exposing

more corner cases, faster.

4.1 Stanford Smart Memories Background

As a case study for understanding the impact of configurability of a design on the validation

effort, we use the Stanford Smart Memories (SSM) chip multiprocessor [71, 42, 91]. We

can use SSM as a proxy for a chip generator because the first phase of the generator, in

which the application designer tunes the knobs of the hardware as well as the application

code itself (as described in Section 2.3), is similar to runtime-reconfigurable designs. Both

approaches enable an application designer to control various aspects of the functionality of

internal components. Of course, while a reconfigurable chip is actual silicon programmed at

runtime, a chip generator is a virtual superset chip that is programmed long before tape out.

This also means that our proxy is not perfect—for example, in a chip generator, hardware

can either be added, extended or removed; in a runtime-configurable chip, hardware cannot

be added or extended but it can be “removed” (i.e., not used). Still, we believe that SSM

is a subspace with a large enough configuration space to model the impact of flexibility on

verification.

The Stanford Smart Memories (SSM) research project aimed to build a single hard-

ware platform that could support multiple programming models by relying on a flexible

execution and memory system architecture and to show that, from a hardware perspective,

the similarities between streams [82, 60, 98, 49], transactional memory [54, 66, 50] and

cache coherent [20, 75, 55] shared memory models are greater than the differences. The

design leveraged the idea that all memory models rely on similar on-chip physical memories
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Figure 4.1: Stanford Smart Memories’ Architecture

near the processing units, and on controllers that orchestrate data movements among these

memories and the main memory. In addition, memory systems require that some “state”

be associated with the data (such as a valid bit in caches or speculatively read/write bits

in transactional memory), and therefore our memory system included meta-data bits in the

local storage arrays. Different memory models were created by changing the meaning of the

meta-data bits, along with the protocols for actions taken when specific conditions occur.

SSM successfully reached fruition as a working eight-core CMP [89], fully functional at

first tape-out. STMicroelectronics [7] fabricated the 61mm2 silicon chip in 90nm technol-

ogy. After fabrication and packaging, SSM was activated in the lab and its functionality

was tested by running scaled-up applications in various configurations of each of the three

memory models; so far, no bugs have been found. Because this is a scalable architecture,

four SSM chips can be integrated together in a system instrumented with board-level glue

logic to provide 32-core functionality. This system was also tested and found to be fully

functional.

Figure 4.1 shows a block diagram of the SSM architecture, which is hierarchically com-

posed of processors, tiles and quads. In each tile, two Tensilica processors [47] are connected

to several modular reconfigurable memory blocks called mats [70] by a crossbar. Four tiles

join via a shared local programmable protocol controller (PPC) to form a quad, which was

the fabricated chip. The quads are connected to each other and to main-memory con-

trollers (MC) using an interconnection network. In the lab, the interconnection network

and memory controllers were implemented as separate board-level glue logic on FPGA.

SSM’s flexibility can be attributed, for the most part, to three main blocks shown in

Figure 4.1: the processors’ memory interface or load store unit (LSU), the memory mats,

and the protocol controller. Minimal flexibility also exists in the memory controllers.
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Figure 4.2: Configurable local memory. (a) Block diagram of the memory mat. (b) Ex-
ample mat organization for a 2-way cache.

The first reconfigurable block, the LSU, adapts the Tensilica cores to our memory sys-

tem. It performs virtual to physical address mapping, and translates the Tensilica op-codes

into accesses to the appropriate memory mats. The LSU can be configured to generate

multicast requests for set associative cache configurations, and can generate parallel unique

accesses to different mats.

The memory mats constitute the second reconfigurable block; Figure 4.2(a) shows a

block diagram of a single mat. Each mat is an array of data words and associated meta-

data bits. The meta-data bits store the status of each data word and their state is considered

(and updated) with every memory access—each access to the word can be either completed

or discarded based on the status of these bits. The meta-data’s update function is set by

each mat’s internal programmable-logic-array (PLA) configuration. In addition, a built-in

comparator and a set of pointers allow the mat to be used as tag storage (for cache) or even

as a FIFO. Mats connect to each other through a reconfigurable inter-mat communication

network (IMCN) that communicates control information when the mats are accessed as a

group.

The final part of our reconfigurable memory system is the programmable protocol con-

troller (PPC). This reconfigurable engine executes sequences of basic micro-coded opera-

tions, composed according to the memory model, to service protocol requests [41]. These

requests include moving data and updating memory state. Each PPC is connected to a

network interface port, and can send and receive (programmable) requests to/from other

quads or memory controllers.

Mapping a programming model to the SSM architecture involves configuring the LSU,

mats, tile interconnect and PPC. For example, when implementing a shared-memory model,
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multiple memory mats can be joined to form the caches (Figure 4.2(b)), and the tile crossbar

is configured to route the processors’ access information appropriately. Meta-data bits in

tag mats are configured to serve as line state bits (e.g. Modified, Shared and Exclusive),

while the PPC acts as a cache coherence engine to refill the caches and enforce coherence.

To enable operation in stream, cache coherence or transaction modes, SSM’s software

layer includes a C/C++ Tensilica compiler instrumented with special SSM TIE instruc-

tions [47], and dedicated runtime environments for each programming model. The number

of possible SSM configurations is quite large, and so a simple configuration coding scheme

was developed, from which configuration scripts are automatically generated.

As the key concept of the SSM chip was reconfigurability (which is also what makes it a

good proxy for a generator), a main concern when making it was whether quality functional

validation would even be possible. Validation in conventional non-configurable architectures

accounts for over 50% of the cost of digital design [44, 86]. Therefore, next we describe how

SSM’s validation was approached to minimize the additional validation overhead. These

same techniques, we argue, also apply to chip generators.

4.2 Verification Challenges and Approach

A chip generator is a template of an architecture, a vessel into which the application de-

signer and the architect pour configuration content. The first verification question to ask is

therefore, “What is it that we must verify?” Are we verifying the generator for any and all

configurations, or should verification concentrate on particular generated instances? In an

ideal world, of course the former is better since this would mean that any derived chip would

then be correct (by construction). This is hardly ever feasible however, except for (maybe)

very small blocks. In bigger systems, not every system configuration has an architectural

meaning. Furthermore, it would be inconceivable that we could prepare for all various con-

figurations since no one can predict the future. Finally, even if we could foresee all possible

meaningful configurations, every tool has bugs, so validating generated chip instances would

still be required, just like equivalence checking is required in today’s RTL-to-gate synthesis

flow. Therefore, a more pragmatic approach is to validate each generated chip instance.

Of course, this requires careful planning so that we don’t need to do much more work (in

comparison to making just one non-generated chip).

We need to consider the two parts of an RTL validation framework. The first is the
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testbench—the framework that connects to key interfaces, to monitor or drive their signals.

The second is the checker—the component that collects data from those interfaces and

passes judgment about the validity and correctness of the values observed. To make the

discussion more concrete, we also report here on practical considerations we had in verifying

our chip generator proxy, the Stanford Smart Memories chip (SSM).

As was mentioned, the question arose of whether we were verifying SSM to work under

any configuration, or whether we should put constraints on those configurations. Since

verifying a design under any random setting makes sense only for small blocks, such as PLAs,

we did use this strategy to test the memory mats. At the system level, random assignments

of configuration bits often had no architectural meaning, and in these cases there would have

been no clear definition of correct or incorrect behavior. For our “generated instances” we

therefore concentrated on three target programming models: cache coherence, streams and

transactions. This is not to say that there were only three configurations, but it helped

focus our efforts, as well as this discussion.

For system validation, figuring out and setting the programming model—the hardware-

software interface—has a tremendous impact since it enables the validation team to define

correct vs. incorrect behavior and create test cases and reference models. It does not

completely solve the problem, of course, since there can still be many implementation

variants. For example in SSM, although we now had “only” three memory models, each had

many different implementations: the two processors in a tile could have separate or shared

caches, and that decision could be different for the instruction and data cache. Additionally,

the cache size and associativity of each resource could be configured. To further complicate

the problem, since our caches, scratch-pads and FIFOs were implemented by configuring

an array of 16 separate memories, each particular architectural configuration had multiple

mappings to actual hardware (e.g. two-way cache option 1: place tags on mats 0 and 1 and

data on mats 2-3 and 4-5; option 2: place tags on mats 1 and 2 and data on mats 3-4 and

5-6. These options were the same from an architectural point of view but not from an RTL

and verification point of view).

One way to handle this vast verification space is to explicitly enumerate many architec-

tural configurations of interest, even though those might not be exactly the final generated

configuration. This serves two purposes—it constrains the configuration space to only those

that make architectural sense, and it enables greater testbench automation. For example in

SSM, configuration 200 was a cached configuration with 16KB D-cache and 16KB shared
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T S I D #
I-Cache

_: no I-Cache
2: 16noKB, 2-way
3: 16KB, 1-way
4: 32KB, 2-way
5: 8KB, 1-way

D-Cache

_: no D-Cache
0: 16 KB, 2-way
1: 32 KB, 2-way
2: 16KB, 4-way
3: 32KB, 1-way
4: 24KB, 3-way
5: 8KB, 1-way
6: 4KB, 1-way

I/D-Cache

0: shared I-Cache
1: same as 0, uses different mats
5: seperate I-Caches

Streams

_: non-streaming
0: non-streaming
1: streaming

TCC

_: non-TCC
0: non-TCC
1: TCC

Figure 4.3: Decoding of SSM configuration numbers. For example, configuration 10250
indicates a transactional (TCC) configuration with shared 16-KB 2-way set associative I-
Cache and shared 8KB direct mapped D-Cache. The cache sizes and sharing occur on a
per-tile basis.

I-cache on each tile. Figure 4.3 describes our enumeration mechanism for the various con-

figurations. Our team spent a good deal of effort in converting these numbers to Vera/C

code to configure the chip, and a good portion of the testbench code was dedicated to

handling these configuration functions. In the end, the suite could use the single number to

automatically generate a complete configuration in one of two flavors—either Vera code for

quick, simulated configuration of the chip, or compiled C code for accurate self-configuration

of the chip. As we see a little later, new configurations were always developed based on

modifications to existing configurations which made the incremental validation effort small.

The effort required to reason about, and to create, these system wide configurations

in SSM, was one of the key motivators for two important aspects of Genesis2 (described

in Chapter 3). The first was about handling dependencies: In SSM, setting the system

in, for example, cache coherence mode, required correct settings of hundreds of registers

throughout the system. Obviously one had to configure all data mats, all tag mats, the

cross-bar, etc. However, using Genesis2, much of those laborious tasks can be bundled

into the template, so programming the system is done at a much higher level. When all

dependencies such as meta data bits allocation and functionality, wiring and muxing of ways,

memory blocks allocation etc., are coded in the generator, then, generating a system that

works in a cache coherence mode is done by simply declaring a memory block to be of type

cache with num ways ways of size way size. The generator encapsulates that knowledge,

for which SSM required an extra set of scripts. The second lesson that was translated into
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the functionality of Genesis2, is the need to have a formal way of communicating the user’s

input into the system. As previously described, Genesis2 accepts a well defined XML data

structure that instructs it how to create the entire system. In short, a generator makes

configuration easier by encapsulating dependencies, therefore practically bundling many

configuration instructions into one, and by providing a convenient standardized media for

the architect to easily pass that configuration into the system.

Back to SSM, even after enumerating only the “interesting” configurations, and au-

tomatically generating the scripts to set them, we still end up with dozens of potential

configurations. This means that for validating generators, we must construct a verification

environment that is oblivious to the internal configuration. As RTL verification is typically

done hierarchically, the hierarchical levels and boundaries must be chosen to maximize

reuse by picking configuration-agnostic interfaces. In SSM, at the lowest level, two RTL

cores—memory mats and Tensilica processors—were initially tested as standalone modules.

In both cases, the amount of configuration was very restricted. The memory mat was

strenuously tested using both random and directed vectors against a functionally accurate

C reference model. Tensilica provided a complete testbench for the processor, which was

a huge advantage for us. We continued using the Tensilica verification scripts, as well as

their core/trace monitors, in each follow-up level of the hierarchical environments (adding

as many monitors as we had processors in that level of the hierarchy).

In processor based systems, one can use applications running on the processor as a test to

drive the rest of the system. Unfortunately, with compiled applications, and even compiled

assembly code, it is difficult for the test to have full control. For example, it is impossible to

create test code that issues a long series of back-to-back instruction fetches from randomly

selected addresses. However, when validating RTL, it is essential to compose directed tests

that can stress the memory system on corner cases. We therefore created a processor shim,

in which the processor RTL was replaced with behavioral drivers controlled by explicit

Verilog tasks, instead of depending on the compiler and the real processor pipeline.

With both Tensilica and shim testing environments in hand (referred to as XT and Shim

respectively) our next level of testing was the tile unit. At this level, most configurations

required some support from a system level protocol to handle coherence. Since we had a fully

functional C++ simulator of the architecture, we thought we would be able to connect our

TileXT and TileShim environments directly to the C++ protocol controller. We learned

the hard way that this was a bad assumption: In practice, the caches (which are on the tiles)
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and the protocol controller implementations were tightly coupled. As a result, a collection

of small discrepancies between the architectural model and the RTL implementation made

these hybrid environments very cumbersome. For example, in the architectural model,

the cache (located on the tile) calculated and kept the eviction candidate. In RTL, we

decided that the protocol controller had the right logic circuits and state to make that

decision. When an RTL tile and an architectural model of the protocol controller were

connected, the entire eviction candidate functionality was missing. In addition, the tile-to-

protocol-controller interface was very latency sensitive. A timing requirement that crosses

architectural boundaries was not only a difficult issue for physical design, but also bad

for RTL verification. Small changes in implementation details of the RTL vs. the C++

model prevented us from really stressing our design due to false negatives, and the tile

environments were mostly used to test basic operations.

Having learned this lesson, the next verification environment was prepared at the quad

level (i.e., QuadXT and QuadShim). Unlike the tile interface, the quad used a network

interface with packet-based messages, and the quad was completely decoupled from the rest

of the system in terms of state or latency dependencies. A similar design approach was used

at the system level where four quads communicated via the same network protocol, which

enabled the FourQuadXT and FourQuadShim testing environments.

Of course, every chip generator would have its own hierarchy, but the lessons for con-

necting validation infrastructure to flexible designs are the same: clean interfaces. Clean

interfaces mean that the inter-module communication protocol over that interface does

not rely on the internal implementation decision of either module. Those details must be

abstracted. For example, a processor can be replaced with a verification driver or an out-

of-order processor can be replaced with an in-order processor, if they all share the same

interface. In particular, the interface protocol timing must not have dependencies on the

implementation decisions of the modules it connects (in the example above, all processor

implementations had a two cycle expected latency for the memory system to provide data

for instruction fetches/data loads; in a somewhat different approach, at the quad interface

level, the interface protocol used a credit based handshake so the modules’ latency was

entirely abstracted).

Once the interfaces that the verification environment observe are abstracted from the

configuration, there are two more factors to consider: the first is how to make tests that

can stress all configurations, and the second is how to make sure that the result is correct,
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since making a reference model for each separate configuration is out of the question. To

make configuration-agnostic tests it is best if the tests’ details are “hidden” behind the

software-hardware abstraction. In SSM, that meant that all the tests we created, whether

as a compiled application or as tasks driving the shim interface, did not depend on cache

size, associativity, etc. This is a benefit of placing the driver on a clear-cut interface such

as the processor interface. Having multiple memory models in SSM, on the other hand,

did impact the system at the software layers, so we did have to create three sets of tests

and runtime environments; one each for streams, transactional and cache coherent memory

models.

The second and bigger challenge is to create a reference model that tolerates many

configurations, to check that the results of tests conform to the desired memory protocol.

Even in a fixed design, building a reference model is difficult, since the precise output will

vary depending on the cycle-by-cycle behavior of the underlying machine. In some designs,

this hurdle can be skipped over by having the verification environment “cheat,” by using

the details of the actual RTL implementation. A chip generator however, requires a stricter

approach, since different configurations of the chip are likely to result in drastically different,

yet correct, outcomes.

To avoid dependencies on the exact configuration, when we verified SSM our test suite

performed end-to-end checking, rather than cycle accurate checking, even though we knew

that performance bugs may sometimes evade end-to-end checkers. In doing so, we rejected

the single-correct-output reference required by conventional models, relaxing this constraint

to allow a set of multiple possible outcomes. We still had to create slightly different sets of

scoreboard check/update rules to account for differences in SSM’s memory models; however,

this relaxed scoreboard enabled us to run strenuous random vectors on dozens of design

configurations within each model.

The relaxed scoreboard ideas and implementation were developed in collaboration with

Megan Wachs. A detailed report of the technique, as well as code examples and measured

results, can be found in [90]. Section 4.3 quickly summarizes the essence of that study and

extends the discussion to chip generators.

Once the configuration space is constrained and verification components capable of han-

dling (or agnostic to) these configurations are created, actual testing and coverage closure

can start. Typically in design houses, the most seasoned verification team members analyze

the architecture, to come up with the coverage list—a list of scenarios that must be seen
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in simulation to “prove” that the DUT handles them gracefully, and is ready for tapeout.

More often than not, this would also be the bottleneck of the design/validation process since

it takes a long time to simulate/emulate the design to reach high coverage, and since bugs

that are found and fixed late require a “reset-and-rerun” of the coverage counters. While

thus far, we have seen that there is overhead in making validation infrastructure for chip

generators (although the entire validation effort is then amortized across multiple chips),

for coverage purposes, chip generators may present an advantage. Since the goal is to stress

many corner cases faster, what better way is there to induce corner cases in some module

X than, say, to introduce different loads to its interfaces? We already do this on the bound-

aries of the design by using bus-functional-models (BFM) so why not do the same inside

the design? For example, we can test a cache controller better if we test it with various

sizes and associativities of caches. A producer-consumer design can be better tested if we

set the FIFO between the producer and consumer to be very big (to avoid back pressure)

or very small (to always have back pressure). This observation implies that chip generators

may even be useful for verification, even for the first chip instance. This is not to say that

initial development of the template and the verification environment would not be done on

some “canonic” configuration. For example, in SSM we did manual development of tests

and design features on configuration number 200 for cache coherence, 10200 for transactions

and 1000 for streams. But once stable, in order to generate more “interesting” events, on

each regression run our suite randomly picked numerical configurations for each test. In

Section 4.5 we perform a postmortem analysis that quantifies the usefulness of using many

configurations for bug discovery in SSM, but first, in Section 4.3 we deepen the discussion

of reference models, and in Section 4.4 we show results and statistics from making the SSM

configuration-agnostic verification environment.

4.3 Creating A Reference Model1

Verification of complex systems is challenging. One of the greatest challenges is trans-

forming a system “spec” (the document that contains the specification) into an automatic

all-knowing checker—a piece of software that can run alongside the system simulation, and

for every input, assert whether the observed output is “correct”. This all-knowing checker

is often referred to as a reference model, a gold model or a scoreboard. It greatly aids

1The work presented in Section 4.3 was done in collaboration with Megan Wachs
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simulation based validation since it enables testing with random input vectors, rather than

self-checking diagnostics only. Unfortunately, accurate scoreboards are complex and hard

to create since often the “correct” output value (or time of appearance) depends on specific

implementation details.

Moreover, protocols are often defined mathematically using non-deterministic automata.

This is especially common for high level protocols like chip multiprocessor memory systems

or network routing. The inherent non-determinism implies that when implemented in RTL,

multiple correct designs may exist, each of which may produce different traces of execution.

When considering a chip generator, the problem may be even more severe: a chip generator

framework can generate many different implementations/configurations of the high level

architecture! Consequently, a traditional golden model for one implementation cannot be

used for a different implementation.

Therefore, a more robust solution is needed, one that encapsulates the non-determinism

of the protocol, and hence can be used to verify different implementations of the proto-

col. One good example is the TSOtool [52], a suite of post-mortem algorithms for trace

analysis, which checks that a CMP implementation complies with the Total Store Order-

ing consistency model. Similar work has been done to verify Transactional Coherence and

Consistency (TCC [50]) implementations [73]. Instead of dealing with the complexity of the

implementation, TSOtool’s post-mortem analysis checks that the observed trace values are

logically correct with respect to the consistency model. Since it does not specify what the

output should be at each cycle, or even what the ordering must be, it reduces the coupling

between the verification model and the design details. The key insight is that this undesir-

able verification-design coupling can be broken by creating a checker that allows multiple

output traces to be correct. Therefore any TSO implementation, whether manually coded,

runtime configured or automatically generated, can be verified using TSOtool.

Because of the nature of the work presented in this thesis, which revolves mostly around

generating CMP systems, for the rest of the discussion here we will focus on creating

reference models for CMP memory systems2. Verification of a shared memory system is in

essence the attempt to prove that the hardware complies with the mathematical definition of

the coherence and consistency model from a programmer standpoint. For example, deciding

whether a set of processor execution traces complies with sequential consistency is known as

Verifying Sequential Consistency (VSC) [45]. Similar definitions apply for other consistency

2Having said that, we strongly believe that the same concepts apply to other complex systems as well
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Init State:
Mem[a]=0

Mem[a]=1

Mem[a]=2

Mem[a]=2

Mem[a]=3

Mem[a]=3

Mem[a]=1 Mem[a]=3 Mem[a]=2

Mem[a]=1

Memory State Diagram

X=MEM[a]

Mem[a]=3

Mem[a]=2

Time

Mem[a]=1CPU 1:

CPU 2:

CPU 3:

CPU 4:

Instruction Trace

Figure 4.4: Race condition in a CMP trace. Bottom: Processors 1, 2, and 3 all attempt to
write to location a. Processor 4 loads a value from location a and receives some value after
a short time. Top: Three of the many possible memory state diagrams that correspond to
the trace below. In the up-most, processor 1’s write went through, followed by processor 2’s
write, followed by processor 3’s write. However, in a real system, with caching, arbitration
and other race situations, the other state diagrams are also possible. It is therefore difficult
to predict what is the exact value that processor 4 will see.
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models [32]. When dealing with RTL/architectural verification, as opposed to post silicon

verification, an attractive verification approach is to leverage not only the values observed

on the system’s ports, but also their temporal information—the time at which they were

observed. By using temporal information, a checker can also flag errors that obey the

consistency model but should not occur in real hardware. The temporal version of VSC is

known as Verifying Linearizability (VL) or Atomic Consistency [46]. It was further proven

that all aforementioned versions of the memory verification problem are Non-deterministic

Polynomial-time Complete (NPC) [46, 32]. The implication is that an end to end checker

that completely proves correctness must have a worst case exponential runtime (e.g. the

first TSOtool implementation is polynomial but not complete [52]; the second version is

complete, but may have an exponential computation time in pathological cases [72]).

When faced with the task of verifying SSM, we realized we can build on the work

of [52] and [73], to create a new approach to scoreboard design that makes the construction of

a memory system scoreboard easier—the Relaxed Scoreboard. In comparison to a TSOtool-

like checker which strives to verify existence of a logical order of operations based on the

memory system consistency model, the relaxed scoreboard strives to verify the existence of

a temporal order of operations. The latter is a stronger condition because all temporal

orders are also logical order, but not vice-versa, as we showed in [90].

The Relaxed Scoreboard verification methodology attempts to come as close as possible

to verifying the temporal behavior of the CMP memory system implementation, while

avoiding exponential complexity. Like a traditional scoreboard, the relaxed scoreboard is

constructed to be an intuitive and simplified model of the memory system, but like TSOtool,

it is not tied to a specific implementation. The decoupling of the relaxed scoreboard from

the implementation is done, similar to earlier work by Saha et al [87], by having a set of

multiple possible values associated with each memory location. This set includes all values

that could possibly be legally read from this address by any processor in the system.

In order to understand why a single value might be hard to predict but a bounded set is

not, consider the following example (Figure 4.4): four processors in a shared memory system

access a single address—a situation that inevitably produces race conditions. In this case

processors 1, 2 and 3 are initiating writes to address a while processor 4 is reading the value

saved at that address. The data is returned some time after the load started, as noted by

the elongated arrow. Depending on the exact arbitration mechanism, each of the values 1,

2 or 3 may be returned as a valid result of this load instruction. Creating a reference model
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that “cheats” by peeking into the various arbiters and buffers in the design would enable

accurate prediction of the expected result, but would render it useless for a chip generator

environment, where the internals of the design are different from one generated instance to

the other. It is also a bad solution from a methodological stand point, since the checker

would then be tied to the design it is checking. However, while it is difficult to predict the

one value that the system would actually return, it is easier to consider the design as a

“black box,” and answer the question of what are the possibly correct values. In this case

these are simply one of 1, 2, or 3.
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Figure 4.5: Size of SSM’s relaxed scoreboard uncertainty window (the size of the set of
possibly correct values) during random and directed tests. The uncertainty window is a
measure for how tight the scoreboard checks are (smaller is better) as well as how stressful
the test is for the system (bigger is better). Note that the uncertainty window is always
constrained, even under tests that constantly produce races (32 processors targeting only
10 addresses). The importance of random testing is evident from the little stress that a self
checking diagnostic actually put on the system, as shown in (d).
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Maintaining a set of values is a simple task that can easily be done using any search-

able data structure. The entries are sorted by address and chronological time, and each

entry is associated with a sender ID, value, and start and end time stamps, as observed

during runtime on the relevant processor interface. In addition, each entry contains a set of

expiration times, one for each possible interface on which this transaction may be observed.

Upon arrival of a new transaction from a monitor, the scoreboard performs a series of checks

followed by a series of updates. The checks produce the scoreboard’s answer—transaction

is valid or transaction is erroneous—based on the previously stored values in the data

structure. Updates are a completing and crucial part of the scoreboard. Updates use the

outputs of the design under test, and according to the rules of the implemented protocol,

reduce the set of possible values, keeping it up to date so that it contains all possibly correct

values but no stale values.

Overall, a relaxed scoreboard is essentially a set of global protocol-level assertions. The

assertions are constructed to verify that certain rules of the protocol are followed at a

high level, without actually relying on, or examining the implementation details. Adding

more assertions (i.e., checks and updates) as the design matures, has the positive impact of

decreasing the set of possibly correct values. Therefore, the size of that set, which we call

the uncertainty window, is a measure for how tight the scoreboard’s checks are. Since the

size of the set is tied to the number of transactions racing at a given time, it is also a rough

measure for how stressful a test is for the system.

For SSM, a relaxed scoreboard was implemented as an object oriented programming class

using OpenVera. Vera’s Aspect Oriented Programming (AOP) capability was leveraged to

connect the scoreboard into the existing verification environment, which already included

code to monitor key interfaces. To verify SSM’s cache coherency mode, the scoreboard’s

data structure contained an associative array of queues, one queue per writable address in

the system. For TCC, the scoreboard also maintained a queue for each processor, containing

pointers to the transaction’s read and write sets, and flags to indicate the state of the current

transaction. Checks and updates were written based on the protocol rules of earlier work by

others [19][50]. Examples for how protocol properties are translated to checks and updates

are shown in our previous paper [90]. Complete source code of the relaxed scoreboard

implementation for Smart Memories can be found at http://www-vlsi.stanford.edu/

smart memories/RSB/index.html.

Due to the scoreboard’s black-box approach, it was usable without modification across

http://www-vlsi.stanford.edu/smart_memories/RSB/index.html
http://www-vlsi.stanford.edu/smart_memories/RSB/index.html
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dozens of different cache-coherent configurations and dozens of different TCC configurations

(of course, a different set of checks/updates was required for the cache-coherence vs. TCC

protocol properties). Moreover, it was applied to both single-quad (8 processors) and four-

quad (32 processors) testing environments, with the only difference being the number of

monitor instances that fed the scoreboard with information.

Figure 4.5 shows the size of the uncertainty window for several SSM test-runs with 32

processors. Each sub-figure shows a histogram of the number of possibly allowed values for

every simulated load in the test. Figure 4.5(a) shows that for a random test, limited to 10

addresses for all 32 processors, the average uncertainty is 35 values and never exceeds 81.

Figures 4.5(b) and 4.5(c) show that as there is less contention for the addresses there is also

less uncertainty. Figure 4.5(d) shows the results for a real application, in which there is

very little uncertainty, and the scoreboard only occasionally needs to maintain more than

one value. In all cases, the size of the set of possibly correct values is bounded, even when

the test focuses on a very small address range.

Figure 4.5(d) further shows that for a self-checking diagnostic such as matrix multipli-

cation, a relaxed scoreboard behaves almost identically to a golden reference model. In

addition, it is important to note how much more stressful a random test with true sharing

is (Figure 4.5(a)) in comparison to a deterministic self-checking diagnostic (Figure 4.5(d)).

The latter rarely induced any races. This emphasizes the initial motivation for creating

an end-to-end reference model that can be used with random tests, for a more efficient

verification environment.

A relaxed scoreboard methodology introduces a number of traits that are important for

chip generator verification. Most important, is the complete decoupling from the low level

implementation details, which makes it a good fit for chip generators. The construction of

the scoreboard is derived directly from the relevant consistency model properties. Each of

those properties can be considered separately, thereby enabling the verification environment

to be developed incrementally along with the design. In contrast to static trace analysis

algorithms, the relaxed scoreboard is designed to be a dynamic on-the-fly checker, meaning

that any error will be reported immediately. Table 4.1 compares and contrasts the relaxed

scoreboard with other memory system verification schemes across a number of dimensions

(bold text indicates the most desired value). With a reference model that can be used across

all configurations in place, next we look at real bug and configuration statistics from the

SSM environment.
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Table 4.1: Qualitative comparison of the relaxed scoreboard methodology to other memory
system validation schemes

Attribute Self check-
ing tests Gold model

TSOtool-
like
(base) [52]

TSOtool-
like (com-
plete) [72]

Relaxed
Scoreboard

Correctness Criteria VL (RA) VL VSC VSC VL
Completeness No Yes No Yes No
Algorithm Complexity NA NA Pol. Exp. (WC) Pol.
On-The-Fly Capable No Yes No No Yes
Post-Mortem Capable Yes Yes Yes Yes Yes
Incremental Additions Yes No No No Yes
Black Box /
Chip Gen Capable Varies No Yes Yes Yes

VSC = Verifying Sequential Consistency ; VL = Verifying Linearizability
Pol = Polynomial ; Exp = Exponential
RA = Races Avoided ; WC = Worst Case

4.4 Flexible Architecture Verification Results

Throughout the design and validation of SSM we rigorously collected bug statistics into a

database, which finally contained over 600 bugs found and fixed. In this section, we look

back at these errors to learn what was the impact of flexibility and having many system

configurations, on the type and amount of those bugs. Obviously, this study is empirical

and represents one “data point” (i.e., one domain, one architecture, one design, one design

team, one validation team). While a controlled experiment in which two, equally capable,

design and validation teams implement the same set of chips, one as configurable and one

as a set of separate instances, is what we desire, this sort of experiment is not likely to

happen because the amount of time invested into making each chip today is many man

years. At the same time, the results we do have from verifying SSM, though circumstantial,

are consistent and show clear trends.

Figure 4.6 shows the breakdown by component of the bugs in the database leading up

to tapeout. While the majority were RTL bugs, a significant number were also due to

software (compiler, runtime) and environment (tests, reference model). In the context of

chip generator it is interesting to note that the “Config” section represents configuration

bugs that may have not been present in a non-configurable design. However, had this been

a generator, these are bugs that would have been fixed without changing a single Genesis2

or Verilog line—only the XML configuration file. In SSM these represent bugs that could
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Figure 4.6: Breakdown of bugs found on the path up to tapeout of SSM. MC=Memory
Controller, PPC=Protocol Controller, Config=System Configuration, NS=Network Switch,
Mat=Memory Mat
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have been solved after tapeout, without having modified the RTL, simply by changing the

configuration code to implement work-arounds.

It is encouraging to see that the cost (in terms of bugs found) of additional program-

ming models was incremental, and not exponential as some (including us) may initially

have suspected. Figure 4.7 shows the total accumulation of bugs in the SSM bug database

throughout its design and verification period. The chip was taped out in September, 2008,

when the bug discovery rate went to zero (as illustrated by the flattening of the curves).

Focusing on the TCC bug accumulation, for example, we see that despite the delayed start,

it flattens out just as fast as the CC Bugs curve or the Common Bugs curve. We suspect

that because in SSM, the template of the architecture (i.e. the high level interconnect of

components and the operations these flexible components supported) was the same regard-

less of programming model, each additional programming model we implemented revealed

fewer bugs than its predecessor, since common bugs were already flushed from the system.

As a result, TCC-related bugs account for only 24% of the total bugs found, and the biggest

group of bugs found were Common Bugs—bugs that had to be dealt with whether TCC

was implemented or not. Note that the same argument applies to generators. In fact,

at the unit level, it is already a common practice to use scripts as “module generators,”

for example to produce register files or reduction trees, because most bugs are common so

once they get flushed out, the output of those generators is more likely to be correct, even

when operating on new design parameters, and definitely more likely to be correct than

hand-coding/changing the module time and time again.

Looking over our bug database at some of the bugs caught late in the design confirms

that these errors are not necessarily intrinsically complex, but rather their expression re-

quires a combination of events that occur with low probability. This is a well known result

in validation — the hard problem is to force the system under test to operate in these situ-

ations, to expose these errors. To get a sense of the kinds of errors and types of situations

required to expose these bugs, we next describe a few of them. As Bug 405 shows, the error

can be very simple, all that is required to make it a hard to find bug is for the bug trigger

to be rare.

Bug 405 was detected in the network switch that connected SSM chips to each other and

to the memory controllers. For implementing fair allocation of bandwidth, the switch used

priority encoders to determine grant signals given to input requests. In the erroneous case,

the logic that determined the virtual channel that should be served was granting a request
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to a high priority virtual channel in the middle of switching a low priority packet. This was

causing flits from different packets to be interleaved and wrong data to be sent in the packet.

While this was a simple logical problem that existed even when only one physical port was

used (e.g. one quad connected to one MC) it only appeared under high-load situations,

which were very rare for a single quad. Thus, this error was not discovered until much later

in the verification process, when we were testing a configuration in which all physical ports

(eight) were stressed by four quads and four memory controllers (a 32-processor system).

In fact, sometimes it is not even clear why the trigger is a low probability event: this is

what makes debugging so interesting. For example, Bug 386 was discovered during a TCC

test run, and indicated an error in the request-merging logic in the MSHR (Miss Status

Holding Register). To increase performance, the protocol controller was allowed to merge

cache misses from different processors in the quad and serve all of them after the cache

line was acquired. Cache miss requests were assigned an MSHR and all merging requests

shared the same entry. Requests were rejected when there was no MSHR entry to allocate

to the cache miss. However, when there was no available MSHR entry, an exception would

be made for requests that could be merged with an existing MSHR entry. In this particular

bug the indication for merging was incorrect, and was causing a request that should have

not been accepted to get accepted after the MSHR was already full, hence overwriting a

previous request’s entry. While this problem was discovered when running a TCC test case,

it clearly applied to the CC programming model as well.

Not all bugs were simple errors. Some arose from situations that were not considered dur-

ing the logical design process, and required a change to the implemented micro-architecture

to correct them. Bug 272 was an example of this type of error. In TCC, we chose to

merge data from commits from previous transactions if they overlapped with a currently

outstanding store miss. To accomplish this merge, commit data was placed in the line

buffer associated with the cache miss request inside the protocol controller, and was then

merged with the rest of the cache line. This bug occurred when two different transactions

completed their commit phases while a third transaction had an outstanding cache miss. In

this particular case, both committing transactions were trying to update the same word in

the missing cache line. The error was that after the first transaction’s commit, the valid bit

for that particular word in the line buffer was set. Since this state was also associated with

data that the processor may have written, when the second transaction’s commit came, it

did not override the word with an updated value. As a result, the transaction with the



4.4. VERIFICATION RESULTS 91

60

70

80

ov
er
ed

 
n

10

20

30

40

50
gi
na

lly
  D

is
co

Co
nf
ig
ur
at
io
n

0

10
_ 
_ 
_

_0
_

2_
0

20
0

20
1

21
0

22
0

24
0

24
5

25
0

26
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

40
0

45
0

46
0

50
0

51
0

52
0

53
0

55
0

56
0

56
1

Bu
gs
 O
ri
g

on
 C

Configuration Numberg

Figure 4.8: Number of bugs originally found on a variety of cache-coherent/non-cached
configurations. (Figure 4.3 showed how to interpret each numeric code.) Configuration 200
was the “canonical” CC configuration and therefore found a disproportionate number of
bugs.

outstanding cache store miss was seeing stale data from the first commit instead of fresh

data from the second.

To resolve this problem, instead of two states for each word, we needed to have three:

invalid, valid with transaction commit data, and valid with processor write data. Therefore,

we extended the micro-architectural state of the line buffer by adding a second set of valid

bits. This way, store misses from the processor set both of the valid bits, while commits

from other transactions set only one of the valid bits. By checking these valid bits, commits

were thus allowed to overwrite each other (when only one valid bit was set), while they were

prevented from overwriting processor’s store data if both valid bits were set.

These errors show that creating a variety of stress on the system is essential to creating

a good validation environment. It was in this context that we began to see benefit from the

ability to change the configuration of our memory systems. Each configuration generated a

different ordering of events, and thus pushed the machine to explore different aspects of the

hardware design. This benefit is shown in Figures 4.8 and 4.9, which give the breakdown

of bugs found per configuration tested for the CC and TCC memory models. We see that

configurations 200 and 10200 “found” the most bugs, which makes sense since these were

our “canonic” configurations, used for developing new tests and for evaluating new RTL

features. We ran all tests on these configurations first. What is interesting is that all the

other configurations found errors, and while some of these errors were configuration specific,

most were errors, like those described above, that existed in all the configurations but were

only exercised by our test suite in some configurations.
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Figure 4.9: Number of bugs originally found on a variety of TCC configurations. An in-
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action FIFO. Configuration 10200 was the “canonical” TCC configuration and therefore
found a disproportionate number of bugs.

If true, this would be an important observation for chip generators: It would mean that

the generator can also be leveraged by the validation team to generate many related variants

of the target chip configuration. The validation team would then run the already existing

tests on those variants. Next, we try to quantify whether/how this aspect of flexibility can

help expose design errors.

4.5 Impact Of Architectural Flexibility On Bug Discovery

The results shown in Figures 4.8 and 4.9 are critical for verification aspects of chip genera-

tors. First, we clearly see that an approach in which the design and verification team focus

on one configuration first (the “canonic” configuration) makes sense since it enables them

to expose/flush out most of the errors in the system, and because the amount of bugs in

any subsequent configuration is likely to be much lower (an order of magnitude lower in

SSM’s case). This is encouraging since the premise of a chip generator is that many of the

architectural knobs are going to be set late in the process, by an application designer or

even an optimization script. Second, and more important is the question “how come some

bugs, that were not configuration specific, were only found on particular configurations?”

In particular, we need to investigate whether bugs would have slipped through to tape-out,

had we not taken advantage of having many configurations to test.
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Figure 4.10: Number of test runs on which bug 458 was exercised, using random seeds. The
same diagnostic was run 250 times on each configuration, a total of 6250 runs. The bug
was only exercised on 48 of the 6250.

To perform this hindsight investigation, we went back and examined our SSM bug

database. We found that a small number of errors were particular to a specific configuration,

and would therefore never show on other configurations. This is the expected additional

validation cost of a configurable system. Let us then focus on the opposite effect: how

flexibility helped our validation effort. We specifically searched for errors that existed across

multiple configurations and, in particular, our canonic configurations. These are bugs that

slipped through our initial testing but were caught by a random change in architectural

configuration.

Our first example is bug 458. It was exercised on the QuadShim environment, in which

the eight processors were replaced with behavioral drivers. In this test, each processor ini-

tiated 10,000 random loads, stores, and prefetches to different data addresses. The transac-

tions were randomized in operation, address, value, and timing, seeded by a random value.

Bug 458 occurred because the protocol controller (PPC) could not correctly handle back-

to-back messages (i.e. when the “valid in” signal was asserted for two consecutive cycles).

As apparent in the results below, this was a rare occurrence (due to caching).

For our retrospective experiment, we ran this test 250 times on each of the 25 con-

figurations, where each individual run used a different random seed. Figure 4.10 shows

the results. The bug was exercised in only 48 out of 6250 cases, of which 28 were found

on configurations 210, 310, and 510 (the bug was originally found on configuration 330).

The probability of hitting the bug on these configurations seems to be at least an order of

magnitude higher than on most configurations.
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Table 4.2: Number of test runs on which bug 458 was exercised on 49 seeds, known to
exercise the bug in at least one configuration (48 from the experiment in Figure 4.10 plus
the original seed from our database logs). The same diagnostic was used for each run. Seed
1 corresponds to the seed which originally found the bug during testing.

Cfg→ 200 210 230 240 260 310 320 340 360 400 460 510 520 540 560
Seed↓ 201 220 250 300 330 350 450 500 530 550 Total

Seed 1 x x x 3
Seed 2 x 1
Seed 3 x x 2
Seed 4 x 1
Seed 5 x 1
Seed 6 x 1
Seed 7 x 1
Seed 8 x 1
Seed 9 x 1
Seed 10 x 1
Seed 11 x 1
Seed 12 x x 2
Seed 13 x 1
Seed 14 x x 2
Seed 15 x 1
Seed 16 x 1
Seed 17 x 1
Seed 18 x 1
Seed 19 x 1
Seed 20 x 1
Seed 21 x x 2
Seed 22 x 1
Seed 23 x 1
Seed 24 x 1
Seed 25 x x 2
Seed 26 x 1
Seed 27 x 1
Seed 28 x 1
Seed 29 x x 2
Seed 30 x 1
Seed 31 x 1
Seed 32 x x x 3
Seed 33 x x x 3
Seed 34 x x 2
Seed 35 x x 2
Seed 36 x 1
Seed 37 x 1
Seed 38 x x 2
Seed 39 x x 2
Seed 40 x 1
Seed 41 x 1
Seed 42 x 1
Seed 43 x 1
Seed 44 x 1
Seed 45 x 1
Seed 46 x 1
Seed 47 x 1
Seed 48 x 1
Seed 49 x 1

Total 0 0 15 1 5 0 0 0 1 13 2 7 0 0 0 0 0 0 0 10 5 6 0 0 0 65
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Since each run was using its own random seed, we considered the possibility that the

cause for this anomaly was the seed, and perhaps the “bad” seeds would exercise the bug

on different configurations. We ran the test again on all configurations, this time with the

48 seeds that were already known to exercise the bug, plus the original seed that found the

bug in the first place (total of 49 “bad” seeds). The results are shown in Table 4.2. Seed 1,

that corresponds to the original seed known to exercise the bug (as recorded in SSM’s bug

database), and it actually exercises the bug on three configurations. A few other seeds were

also especially “bad/lucky,” and also found the bug up to three times, but the configuration

matters more: some of the “bad/lucky” configurations, especially 210, found the bug up to

15 times.

To make this result more statistically sound, we compared the “good” configuration

(210) with the canonic configuration (configuration 200, which is the same as 210 but with

a smaller data cache). We ran the test an additional 650 times on each configuration only to

find that the bug was exercised 27 more times on configuration 210 and still never appeared

on configuration 200. Since we know that the bug does exist in both configurations, testing

the additional configurations may have saved us from taping out a broken chip (for example,

had we only been interested in a fixed system with the characteristics of configuration 200).

We ran a similar experiment for bug 395, in which a stall signal inside the PPC was

causing a one-cycle memory read delay, but no delay in the corresponding write. This

resulted in incorrect data and meta-data being written to the cache. The test that discovered

this bug was the same as the one for bug 458, but on a different configuration and seed.

We ran this test 25 times on 25 different configurations, with each of the 625 runs using an

independently chosen random seed. The results of this experiment are shown in Figure 4.11.

This stall situation was not as rare as in the previous bug, and across the 625 runs the bug

was exercised 86 times. However, the majority of the failed tests were on a few configurations

(210, 330, 510), which exercised this bug in over 50% of the tests. The main commonality

among the failing configurations was a large data cache, which for this test resulted in more

misses being satisfied locally (as opposed to off-chip). While restricting the size of a cache

might seem like the intuitive exercise for inducing interesting corner cases, in this example

the larger data cache was actually the factor that helped expose the bug in another module.

In order to be sure that these results were not isolated only to this testbench, test, or

even the memory model, we now consider bug 538, a TCC bug. This bug was found in

the QuadXT environment, which simulates the entire quad, including the processors’ RTL.
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Figure 4.11: Number of test runs on which bug 395 was exercised, using random seeds. The
same diagnostic was run 25 times on each configuration (a total of 625 runs).
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Figure 4.12: Number of test runs on which bug 538 was exercised, using random seeds. The
same diagnostic was run 20 times on each configuration (a total of 380 runs).

In this test, “flipper,” all threads constantly access a shared address and try to flip one of

the data bits. As a result, many transactions violate and many of the TCC mechanisms

are strenuously exercised. We consider this test as one of the best stress tests in our TCC

verification arsenal.

The design error that caused this bug was an incorrect opcode sent to the memory mat’s

PLA (the PLA handles meta-data manipulation as described in Section 4.1). This led, under

certain conditions, to an incorrect value for the TCC Speculatively Read meta-data bit.

Once again, we re-introduced the bug, and ran it 20 times on 19 different TCC configu-

rations (380 runs in total). The results are presented in Figure 4.12. We find that this TCC

bug exhibits behavior just like earlier CC bugs—some configurations are significantly more

likely than others to encounter this corner case. This time, the 10x6x configurations (which

have very small data caches) seem to find the bug frequently while the slightly bigger data
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Figure 4.13: Number of test runs on which bug 511 was exercised, using random seeds. The
same diagnostic was run 5 times on each configuration (a total of 175 runs).

cache configurations (e.g., 10x5x) hardly ever see it. The error, located in the PPC-tile

interface, was very subtle; during critical word accesses, in some rare cases, one state bit

was not set correctly. Clearly having a large set of different configurations that used the

same hardware to implement the same memory model was very helpful for finding errors in

the hardware/protocol.

When bringing up a machine, errors are not just confined to the hardware. Software

errors are also a huge issue. Recently, a number of groups have been looking at debug-

ging parallel programs, and a common theme of introducing variability in ordering and

resource arbitration has emerged [2, 30]. Could the inherent flexibility already present in

chip generators be used in a similar way?

To test that, we examined another SSM bug that was actually in the software layer, i.e.

an application we ran on SSM. Bug 511 in the SSM database came from a cache coherent

C++ test that was designed to stress synchronization operations. The bug came about

because in the application code we used a shared variable that was protected by a lock, but

was not declared “volatile”. As a result the test would sometimes deadlock.

The simulations for finding this bug were run on the FourQuadXT environment, in

which C/C++ code was compiled and run on 32 active CPUs. Figure 4.13 shows the

results after running this test five times on 35 different configurations, 25 of which were

homogeneous (all four quads with the exact same configuration), while the remaining 10

were random heterogeneous configurations. Even a brief look at the figure reveals that some
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configurations were more efficient in exposing this software bug (e.g. homo/235, homo/255)

and others were not (homo/240, homo/250 etc.). Interestingly, the configurations that failed

frequently were all xx5—random sizes and associativities of D and I caches, with a common

property of separate I-caches. While we can try to reason why the separate I-cache is

important, few would have predicted this would turn out to be critical.

We did not expect this synergistic behavior among the configurations, helping to find

errors in each other, when we designed SSM and even while we were busy verifying its

functionality. Of course, now that the data has forced us to notice it, these results are

really not surprising. Validation engineers often make small changes in a design to help

“randomize” the tests—changing the sizes of queues is a common example. They do it

because writing more and more diagnostic tests takes much more time and effort than

(randomly) changing a few internal parameters. Configurable machines just do this at a

larger, system-level scale. As we have seen, these changes are helpful, since each induces

different (unexpected) corner cases, which is the goal of validation.

Changing a particular cache configuration in SSM did not test that cache better, but

slightly changed the ordering of events seen by the cache controller. Similarly, replacing one

processor with another changes the access patterns to the cache, and trading one program-

ming model for another changes the access patterns for the network switch. The recurring

theme is that when each component is just a little flexible, we can tweak it to better test

the rest of the machine. Intuitively speaking, in a chip generator template whose internal

components can be configured in many ways, verifying each of the first (N − 1) system

configurations increases our confidence in the correctness of the N th one. Taken one step

further, even if one is not interested in all N systems, running tests on all may turn out to

be a useful exercise.

4.6 Putting It All Together

Our experience and results from validating a highly reconfigurable chip multiprocessor con-

firmed some of the expected costs related to creating a flexible design, but at the same

time showed that, when done thoughtfully, flexibility can be leveraged to improve the ef-

fectiveness of the validation suite. The added costs were obvious in the overheads needed

to construct SSM’s verification environment, because test vectors and reference model im-

plementations had to be extended to cover all cases. However, with careful design and
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Enhanced Validation Process

Verif-only Design #2

Verif-only Design #n

Target Design

Verif-only Design #1

Architectural 
Description

Architectural 
Template
(Chip Generator)

(Semi-Random) 
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Enhanced Design Process

Figure 4.14: Leveraging chip generators for RTL validation. The top box represents the
original goal of a chip generator—quickly generating design instances for different target
applications or physical constraints. However, results here showed that a second, but not
secondary, benefit is the ability to quickly generate multiple variants of the RTL for valida-
tion purposes (bottom box). Running the validation suite on semi-random configurations in
addition to the real target configuration, can potentially make a corner-case of that target
configuration, into a common case of some of its variant configurations.

planning of the architecture and verification environment, this cost was made feasible, and

the architecture’s flexibility did not cause a state explosion in verification. In fact, the

knowledge that certain properties and architectural knobs are going to be flexible in the

chip generator encourages a more robust verification environment, like creating end-to-end

checkers that do not depend on small design implementation choices. Having constructed

this robust environment, flexibility may even improve the verification effort by facilitating

better coverage and faster bug exposure.

The underlying mechanism is simple; while obvious and common errors can be caught

quickly within a single configuration, running a second configuration modifies the cycle-

by-cycle behavior of module X in the generated design, which in turn induces different

internal states, therefore exercising different corner cases for module Y in that generated

design. At the same time, there isn’t a need for a whole lot of parameters to start seeing

these benefits—A handful of knobs in each block, put together, span a huge combinatorial

space. In SSM’s case, within each memory model we only tweaked D/I cache size and

associativity and used one of 2-3 versions of the processor The fact that we have not (yet)

found an error in SSM’s silicon running in the lab is evidence that varying the configurations
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before tape-out helped our validation efforts.

These results are encouraging, since they mean a generator may even lead to better,

faster verification. To this extent, it calls for a new validation methodology (Figure 4.14):

when possible, run simulation/emulation tests on many variants of the target design to

shorten the long tail of hitting all corner cases and finding more bugs.
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Conclusion

The early years of the new millennium has been an inflection point in the life cycle of the

Integrated Circuit (IC) industry. For almost three decades, Dennard’s constant-field-scaling

rules enabled us to maintain the electric properties of the IC’s basic unit, the transistor,

while at the same time decreasing its physical area, decreasing the required energy per

switch and speeding that transistor up. Due to physical limitations, this paradigm broke

around the 90nm node (∼2005), and to this day (32nm, 2011), while transistors still get

smaller and faster, their energy efficiency is only scaling slowly. As if to make things even

worse, the biggest growing market, and the driver of the IC industry during this decade,

are battery operated mobile and hand held devices. Power has became the main design

constraint.

In a power constrained world, the only way to achieve more performance, that is, achieve

more operations per second, is to reduce the energy required per operation. To do that we

must tailor the systems we build to the application they are being built for. However,

here lies another problem: As the systems we build get bigger and more complex, the non-

recurring engineering costs of making those systems grow rapidly. In 2005 (90nm), the cost

of design validation and software were $10M. In 2010 (45nm) they are already more than

three times that, and these costs are expected to grow to over $100M by the time we reach

the 22nm technology node [63]. The result is that unless a solution is found, only a few

applications will have big enough markets to justify these high design costs for hardware

solutions.

In this dissertation, we argue for a new approach to system design, called “chip gener-

ators,” that fills the void between power-inefficient general-purpose designs and expensive

101
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application-specific ones. A chip generator uses a fixed system architecture to simplify ver-

ification and software development, but it is built of highly flexible components that are

configured to optimally match the target application in terms of allocated resources, re-

quired performance and power constraints. Once the configuration is chosen, it is compiled

and the required design and validation collateral are generated. Since making new and

different systems becomes a matter of configuration, rather than a re-design, the bulk of

the costs are amortized.

The key insight of the chip generator approach is that the most valuable resource for

making new chips is the human knowledge of how the system works, how the specialized

units perform, and what are the implications of any change in the specification. Therefore

our first and main goal should always be to encompass domain-specific designer knowledge

regarding trade-offs and the design process, in the system itself. We must code that knowl-

edge, instead of just the result of applying that knowledge to a particular problem. When

we code knowledge, we open the system to a world of automation: it is easy(er) to change

the system if you don’t need to worry about the low level details time and time again. It

becomes possible to accept external input to how the system should be constructed, and

even build a stack of customization tools that take even higher level input.

Unfortunately, existing design tools do not enable an easy, standardized way of embed-

ding the engineers’ knowledge into the system, or into the modules they create. Hardware

descriptive languages (HDL) focus, for the most part, on describing just the functionality.

Adding the ability to describe how a system needs to be constructed is much like the ad-

dition of constructors in C++ to C. To overcome these limitations of HDLs, we proposed

Genesis2—a tool that adds an explicit “constructor” layer on top of a regular HDL. By

doing that we enjoy the full capabilities of a software language (Perl) for describing how

the system is to be constructed while getting all the benefits of a synthesizable language

(System Verilog) for the hardware description. Both the concept and the implementation of

Genesis2 are simple, and mostly leverage known techniques such as constructors, templates

and pre-processors. However, the benefit is great: on the one hand, designers can now

make templates (or constructor-programs or “recipes”) for modules, which explicitly incor-

porate their thought process and trade-off analysis. On the other hand, the input to those

constructors comes from an external, standardized XML based architectural description, to

enable the creation of that customization stack.

Hand in hand with chip design comes RTL validation. The key to handling validation of
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a chip generator is the understanding that we must verify the generated design instances, not

the generator. To make this process efficient we need to create a validation infrastructure

that is, for the most part, configuration agnostic. Some parts of the validation collateral

can/should also be generated along side the design. We have shown here that while one

should expect a small upfront cost in making the validation infrastructure configuration

agnostic, it can be done. In fact, making configuration-agnostic validation environments is

already something designers do anyway when they make runtime reconfigurable chips (as

we showed for the Stanford Smart Memories). The important part is that by investing in a

configuration-agnostic validation environment, we enable the amortization of the validation

costs across many chips. This is, of course, a worthwhile trade-off.

However, the best part of validation, when it comes to generators, is not that one

infrastructure can be used for all configurations. While we were working hard to prove

that we can reuse that infrastructure we observed what we initially thought was a strange

phenomena: there was synergy between configurations. That is, some bugs were found

orders of magnitude faster on certain configurations than on others. Furthermore, we did

not find one configuration that was always best at finding bugs. In hindsight, the mechanism

of this phenomena is clear and is already being exploited to various degrees in verification

teams today. A change in configuration changes the cycle by cycle behavior of the system

and introduces different scenarios and loads to the various modules. A chip generator just

does this at a larger, system-level scale. For example, a cache controller is better tested

when the system uses many different sizes and associativities of caches because the ordering,

the timing, and the number of requests it needs to handle varies from one configuration to

the other. The implication is most interesting: using a chip generator, we can quickly and

easily generate many (semi-random) variants of a target chip, and run our test suite on all

these variants to achieve better coverage at a shorter time.

This thesis focused on the definition of a chip generator and the enabling mechanisms:

Genesis2, a configuration-agnostic validation environment, and the relaxed scoreboard ref-

erence model. However, this is just the tip of the iceberg, and it opens up new questions in

many directions.

The first direction involves further integration of chip generator tools. For example,

the integration of a system level optimization engine that could assign optimal values to

all lower level design parameters (referred to as free parameters in Section 3.3) would be

very powerful. As mentioned in Section 2.4, Azizi showed one such framework that samples
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the design space and does joint circuit and micro-architecture optimization [25, 24]. With

Genesis2 in place, these two tools can be combined such that given a high level configura-

tion, the optimal design is immediately generated. This would complete the automation of

optimal design generation—the functionality depicted as the HW Optimization and Gen-

eration block shown in Figures 2.7(a) and 2.7(b). As a second step down that same road,

a higher level, domain specific co-optimizer for hardware and software can assist in the

automation of the per-application software and hardware customization (noted by the red

curved arrows in Figure 2.7(a)). Mohiyuddin et al demonstrate that co-tuning significantly

improves hardware area and energy efficiency for a number of applications that are heavily

used in supercomputing [76].

Until complete automation of the customization process can be achieved, lower hanging

fruit might be the creation of a user-friendly customization interface. Exemplifying the

benefit from embedding the designer knowledge in the design on one hand, and the clear

XML-based interfacing that separates the architectural decisions from their low level im-

plementation, we have already created a prototype of a client-server based customization

portal. This portal, when completed, will enable a user to log in, choose a Genesis2-based

template, and through a GUI, iteratively modify any of the architectural decisions through-

out the hierarchy on a per-instance basis to create a complete heterogeneous system. The

user, an architect or application expert, need never touch a single line of Verilog.

Nevertheless, we believe that even after exposing these architectural knobs to the user,

further levels of abstraction should be, and will be built. Genesis2 provides an opportunity

for easily converting higher level abstractions into low-level code, by providing a way to con-

figure flexible primitives like interfaces, microcode tables, message buffers, and so on. This

makes it easier to move beyond simple numeric parameters, into complex state machines

and protocols. Where an architecture written in Genesis provides a known abstraction,

domain specific languages can be compiled into these flexible structures. For example, one

future research direction involves taking a language designed to specify cache coherence

protocols for simulation [74], and providing an interface which makes it easy to compile into

the XML format used by Genesis2, so as to implement the memory protocols in hardware.

Thus, the protocol designer can operate at a high level, and different back-ends can produce

the XML configuration for different “protocol controller generators” written with Genesis2.

An important direction, and a great challenge on its own, is the software stack that
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runs on the generated hardware. Once again we are optimistic as others have shown prac-

tical ways to build a software stack for customized and heterogeneous systems: Tensilica

automatically produces a compiler and linker for each of its generated cores [9, 47], and

GRAMPS is a programming model that permits arbitrary processing elements and con-

nectivity graphs [96]. In fact, work is already under way for the development of a chip

multiprocessor generator using Genesis2. When completed, this CMP generator will be

paired with the GRAMPS heterogeneous runtime to give researchers a powerful tool for

hardware/software co-design, providing a comprehensive generator for imaging and graph-

ics applications.

Thus far our results have demonstrated the feasibility of our chip generator approach,

as well as the potential energy savings it could foster. Now, with Genesis2 as the framework

to create generators, and with better understanding and confidence in the ability to verify

chip generators, work is already under way to construct one. If success continues, we hope

that people will someday look back at RTL coding the way they now look back at assembly

coding and custom IC design: although working at these lower levels is still possible, working

at higher levels is more productive and yields better solutions in most cases.
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Appendix A

Genesis2 User Guide

The following is meant to serve as a user guide for Genesis2 users. The ideas, methodology

and programming concepts of Genesis2 were described in Chapter 3. This Appendix is

meant to augment that text with the “dirty” implementation dependent details required for

using Genesis2 to build a generator. We start by instruction for installation and environment

setting in Section A.1. We then move to describe all the required input files and the

generated files in Section A.2, followed by instructions for activating the Genesis2 program

in Section A.3. Section A.4 provide information regarding syntax and built-in methods,

followed by debugging hints and suggestions in Section A.5. Finally, Section A.6 provide a

design example for a generator of a register file, written using Genesis2.

A.1 Setting Your Environment For Genesis2

Adding Genesis2 To Your Execution Path

In order to invoke the Genesis2 scripts, it is best to add them to the default execution

path. For example, install the Genesis2 files under USER/bin/PerlLibs/Genesis2. You

should now be able to see (at least) the following files:

neva-2:~/bin/PerlLibs/Genesis2>ls -R

.:

Auxiliary/ Genesis2.pl Manager.pm UniqueModule.pm

./Auxiliary:

TypeConv.pm

Then, to add Genesis2 to your execution path, simply type (or place at the end of your
.cshrc file):

107
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setenv GENESIS_LIBS "~USER/bin/PerlLibs"

set path=($GENESIS_LIBS/Genesis2 $path)

Missing Perl Libraries?

Genesis2 is written in Perl. However not all Linux distributions are born equal and as a

result, some machine lack a couple of Perl Libraries that are required by Genesis2. So far,

the libraries that I have seen missing were XML::Simple and XML::SAX / XML::Parser

(you only need one of SAX / Parser).

These libraries are freely available from the Comprehensive Perl Archive Network (CPAN,

http://www.cpan.org). To install these libraries simply follow the following steps:

1. Login as root

2. Open a CPAN shell:

perl -MCPAN -e shell

3. Install the library XML::SAX (required by XML::Simple). Make sure to answer yes
for installing all library dependencies!

cpan> install XML::SAX

4. Install the library ”XML::Simple”

cpan> install XML::Simple

Setting Emacs/XEmacs Verilog Mode

To set Emacs or XEmacs such that it starts in Verilog mode, add the following code to

your USER/.emacs (for Emacs users) or USER/.xemcas/init.el (for XEmacs users) file:

;; Load verilog mode when needed

(autoload ’verilog-mode "verilog-mode" "Verilog mode" t )

(setq auto-mode-alist

(append ’(

("\\.v\\’" . verilog-mode);; for verilog files

("\\.vh\\’" . verilog-mode);; for verilog header files

("\\.vp\\’" . verilog-mode);; for pre-processed Genesis files

("\\.vph\\’" . verilog-mode));; for pre-processed Genesis header files

auto-mode-alist))

http://www.cpan.org
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Note that a loader for Verilog mode may have already been defined. In that case either

modify it to identify .vp and .vph files, or replace with the above code. Of course, you

would have to make sure that you have the file /elisp/verilog-mode.el which is freely

available on the web.

A.2 Genesis2 File Types

There are a number of input and output files that are associated with each Genesis2’s run.

In Section A.2.1 we describe the main file types and their role in the process of generation.

Section A.2.2 describes a few more output files that Genesis2 can generate, which are useful

for downstream tools such as simulator and synthesis compilers.

A.2.1 Main File Types

SomeModule.vp And SomeIncluded.vph Files

These are the user’s files. That is, when a hardware designer writes a hardware template

that (for Genesis2 generation), he/she should write it in a file named base template name.vp.

For example, if the template name is onehotmux, it should be placed in a file named one-

hotmux.vp.

Included files should be named whatever.vph. In fact, this requirement is not real and

whatever.anything or even whatever would work. However, for nice coding style, and for

XEmacs/Emacs Verilog mode to work nicely, the whatever.vph style is recommended.

SomeModule.pm Files

Genesis2 generates intermediate Perl module files. Given the file filename1.vp, Genesis2

would generate filename1.pm. Typically there is no reason to look at these files, except for

debugging of parsing errors and their like.

* Note: Genesis2 works in two stages as described in Section 3.4: First all the .pm files

are generated. This is, in fact, a complete object oriented program in Perl, where each

Perl package is in fact a Verilog module generator. Then, after all the Perl packages were

created, Genesis2 execute the newly created Perl program that in turn generates Verilog.

SomeModule.v Files
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The final type of file of interest is the generated Verilog file. This code should consist

of only Verilog, and will eventually be fed to VCS/dc shell/other tools.

* Note: For every somemodule.vp input file, there may be more than one Verilog files

generated. If somemodule is instantiated in different places using different parameters,

each different instance would be uniquified. The resulting Verilog files would be named

somemodule unq0.v, somemodule unq1.v, etc.

Program.xml File

The XML input program has a very simple structure. An example follows. Note that

the structure-wise:

1. There are just a few reserved element names. Those are: BaseModuleName, Instance-

Name, Parameters, ImmutableParameters, SubInstances, UniqueModuleName, Clo-

neOf, HashType, ArrayType, ArrayItem, InstancePath. Avoid using these key words

in any context other than the one explained here or in Section A.2.2.

2. There is a single root element which is the name of the top module of the design (since

the top module is not instantiated, it is referred to by its module name and not by

its instance name).

3. Each element in the hierarchy has the following sub-elements:

(a) Parameters: a list of parameter definitions, where the definition def of a pa-

rameter param name would be coded as <param name>def</param name>.

More complicated data structures are also supported: Use the <HashType> to

show that a parameter is a hash rather than a string/scalar. Use <ArrayType>

to show that a parameter is an array rather than a string/scalar, and the

<ArrayItem> notation to express items in that array. Use <InstancePath> to

express that a parameter represent a reference to a particular instance in the

design hierarchy. See examples below.

(b) SubInstances: (Optional) A list of XML elements that represent the names of

sub-instances in the current hierarchy level. The same rules apply recursively for

each of these elements.

If an instance is encountered during elaboration, but is missing from the XML

tree, it will be assumed that it uses the default parameters or the instantiation

line parameters, as coded by the hardware designer in the .vp files.
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An example of an XML input file:

<name_of_top_module>

<Parameters>

<some_param_name_1>12</some_param_name_1>

<some_param_name_2>15</some_param_name_2>

</Parameters>

<SubInstances>

<name_of_sub_instance_1>

<Parameters>

<some_param_name_1>5</some_param_name_1>

<some_param_name_2>3</some_param_name_2>

<my_empty_array>

<ArrayType></ArrayType>

</my_empty_array>

<my_empty_hash>

<HashType></HashType>

</my_empty_hash>

<some_array_param_name>

<ArrayType>

<ArrayItem>element_1</ArrayItem>

<ArrayItem>element_2</ArrayItem>

</ArrayType>

</some_array_param_name>

<some_hash_param_name>

<HashType>

<some_key_1>val_1</some_key_1>

<some_key_2>val_2</some_key_1>

</HashType>

</some_hash_param_name>

</Parameters>

</name_of_sub_instance_1>

<name_of_sub_instance_2>

<Parameters>

<some_param_name_1>73</some_param_name_1>

<some_param_name_2>45</some_param_name_2>

<some_instance_ref>

<InstancePath>

name_of_top_module.name_of_sub_instance_1

</InstancePath>

</some_instance_ref>

</Parameters>

<SubInstances>

<name_of_sub_sub_instance_1>

<Parameters>

<some_param_name_1>1</some_param_name_1>

<some_param_name_2>2</some_param_name_2>

</Parameters>
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<SubInstances>

</SubInstances>

</name_of_sub_sub_instance_1>

</SubInstances>

</name_of_sub_instance_2>

</SubInstances>

</name_of_top_module>

A.2.2 Additional (Output) File Types

On top of the final Verilog files, Genesis2 produce some additional outputs: a depen-

dent list (using the -depend depend file name flag), a product list (using the -product

product file name flag), and an xml hierarchy representation of the design (using the

-hierarchy hierarchy file name flag). See Section A.3 for full description of all Genesis2

flags.

Depend List

List of the source .vp files and included .vph files that were used by Genesis2 during the

generation process.

Product List

This very important list is a list of the generated Verilog .v files. This list is convenient,

for example for use as input to downstream tools such as VCS, or for use in makefiles.

Note that the list is ordered in reverse hierarchical order which means the lowest level

modules are listed first, and the top module last. The reason for this reversed order is so

that it can be easily used for compilation by other tools.

Hierarchy Out

The XML hierarchy output representation is almost identical to the input XML program.

It also has a very simple structure, but it adds more information about source and target

modules and files.

In addition to providing useful feedback to the designer, the hierarchy XML was designed

to use as a template for the XML input program.

An example of a hierarchy outfile follows. Note that structure-wise:

1. There are a few reserved element names: BaseModuleName, InstanceName, Parame-

ters, ImmutableParameters, SubInstances, UniqueModuleName, CloneOf, HashType,
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ArrayType, ArrayItem, InstancePath. Avoid using these key words in any context

other than the one explained here or in Section A.2.1.

2. There is a single root element which is the name of the top module of the design (since

the top module is not instantiated, it is referred to by it’s module name and not by

it’s instance name).

3. Each element in the hierarchy may have the following sub elements:

(a) BaseModuleName: name of the template before module generation and uniquifi-

cation

(b) InstanceName: name of the instance that was instantiated

(c) Parameters: a list of parameter definitions, where the definition def of a pa-

rameter param name would be written as <param name>def</param name>.

More complicated data structures are also supported: Use the <HashType> to

show that a parameter is a hash rather than a string/scalar. Use <ArrayType>

to show that a parameter is an array rather than a string/scalar, and the

<ArrayItem> notation to express items in that array. Use <InstancePath> to

express that a parameter represent a reference to a particular instance in the

design hierarchy. See examples below.

(d) ImmutableParameters: a list of parameter definitions with the exact same

structure of the previously mentioned Parameters element. However, while

Parameters can be altered and re-fed into Genesis2 to create new RTL, Im-

mutableParameters are parameters that where already assigned a value, either us-

ing the $self->force param(...) call or at instantiation using the $self->unique inst(...)

call. More about the different possible ways to assign values to parameters in

Section A.4.2.

(e) SubInstances: A list of XML elements that represent the names of sub-instances

in the current hierarchy level. The same rules apply recursively for each of these

elements.

(f) UniqueModuleName: name of the generated module after uniquification

(g) CloneOf: if the instance is a clone of another instance, the field CloneOf appears

instead of the fields Parameters and SubInstances. CloneOf would then have a
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sub-element, InstancePath, that holds the a text path to the original instance

(e.g., top.dut.subinst.subsubinst).

An example of the XML hierarchy design space representation output:

<name_of_top_module>

<BaseModuleName>name_of_top_module</BaseModuleName>

<Parameters>

<some_param_name_1>12</some_param_name_1>

<some_param_name_2>15</some_param_name_2>

</Parameters>

<SubInstances>

<name_of_sub_instance_1>

<BaseModuleName>name_of_base_module_for_sub_instance_1</BaseModuleName>

<InstanceName>name_of_sub_instance_1</InstanceName>

<ImmutableParameters>

<some_forced_param>5</some_forced_param>

<some_inherited_param>3</some_inherited_param>

</ImmutableParameters>

<Parameters>

<some_param_name_1>5</some_param_name_1>

<some_param_name_2>3</some_param_name_2>

<my_empty_array>

<ArrayType></ArrayType>

</my_empty_array>

<my_empty_hash>

<HashType></HashType>

</my_empty_hash>

<some_array_param_name>

<ArrayType>

<ArrayItem>element_1</ArrayItem>

<ArrayItem>element_2</ArrayItem>

</ArrayType>

</some_array_param_name>

<some_hash_param_name>

<HashType>

<some_key_1>val_1</some_key_1>

<some_key_2>val_2</some_key_1>

</HashType>

</some_hash_param_name>

</Parameters>

<UniqueModuleName>name_of_generated_module_for_sub_instance_1</UniqueModuleName>

</name_of_sub_instance_1>

<name_of_sub_instance_2>

<BaseModuleName>name_of_base_module_for_sub_instance_2</BaseModuleName>

<InstanceName>name_of_sub_instance_2</InstanceName>

<Parameters>

<some_param_name_1>73</some_param_name_1>
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<some_param_name_2>45</some_param_name_2>

</Parameters>

<SubInstances>

<name_of_sub_sub_instance_1>

<BaseModuleName>neta</BaseModuleName>

<InstanceName>netisnt</InstanceName>

<Parameters>

<some_param_name_1>1</some_param_name_1>

<some_param_name_2>2</some_param_name_2>

</Parameters>

<SubInstances>

</SubInstances>

<UniqueModuleName>

name_of_generated_module_for_sub_sub_instance_1

</UniqueModuleName>

</name_of_sub_sub_instance_1>

<name_of_sub_sub_instance_2>

<BaseModuleName>neta</BaseModuleName>

<CloneOf>

<InstancePath>

name_of_top_module.name_of_sub_instance_2.name_of_sub_sub_instance_1

</InstancePath>

</CloneOf>

<InstanceName>netisnt2</InstanceName>

<UniqueModuleName>

name_of_generated_module_for_sub_sub_instance_2

</UniqueModuleName>

</name_of_sub_sub_instance_1>

</SubInstances>

<UniqueModuleName>name_of_generated_module_for_sub_instance_2</UniqueModule_Name>

</name_of_sub_instance_2>

</SubInstances>

<UniqueModuleName>name_of_top_module</UniqueModuleName>

</name_of_top_module>

A.2.3 Extending Genesis2 With Home-made Perl Libraries

One of the best things about using Perl as the language on top of Verilog, is that it is very

easily extended. This means that one can use any Perl library in the world as part of the

knowledge base that create a template’s micro-architecture.

1. Adding Perl Built-in Library:

To add one of the thousands of Perl libraries that were written in Perl Simply put a
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”//; use LibraryName;” in your text, just as you would do for any Perl script.

The following is an example of using the POSIX library. In this code snippet, which is

taken from a flip-flop based register file template, we make use of the the mathematical

ceiling function to calculate the number of bits required for the address bus. The

complete code can be found in Section A.6.3. Here, pieces of code which were not

relevant were replaced by “...” (three dots):

// Parameters declaration

//; my $reg_list = \$self->define_param(REG_LIST => [...]);

//; # Import Perl Libraries to Scope

//; use POSIX;

//; my $num_regs = scalar(@{$reg_list});

//; my $num_addr_bits = POSIX::ceil(log($num_regs)/log(2));

// Verilog code for the module

module ‘mname‘ (

input Clk,

input Reset,

input [‘$num_addr_bits-1‘:0] Addr,

...

);

endmodule // ‘mname‘

2. Adding Your Own Perl Library:

Assuming your homemade Perl package is called MyLib.pm, place it in the folder

$GENESIS LIBS/Genesis2/Auxiliary/. There are two ways for your Genesis2 mod-

ules to get the functions of a home-made library into their name space:

(a) Typical Perl ”use” system (preferred way for not polluting the name space): In

your module (e.g., your file flop.vp) add a line that reads use MyLib;. Now

you can call MyLib::funcName(args). If you want some (or all) of the func-

tions to be embedded in the name space, you can also add their names to

the Perl package EXPORT or EXPORT OK lists. In the following example, the file

$GENESIS LIBS/Genesis2/Auxiliary/TypeConv.pm has these lists marked with

”METHOD 1 FOR INHERITING ALL METHODS”

(b) Inheritance: You can tell all Genesis2 templates to inherit Perl methods from
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your package. In order to do that, we force the UniqueModule (which is the

base class of all Genesis2 templates) to inherit from this package. Then, given

a method with name methodName, each and every template in Genesis2 would

be able to call it by invoking $self->methodName. To activate this inheritance

follow these two steps:

i. Push the current package into the ISA of the base module UniqueModule.

In the following example, the file $GENESIS LIBS/Genesis2/Auxiliary/-

TypeConv.pm, the Perl lines that are annotated as ”METHOD 2 FOR IN-

HERITING ALL METHODS”).

ii. Add the Genesis2 flag -perl modules MyLib (for the example below this

would be -perl modules TypeConv) to your command line. Alternatively,

for advanced users only, add the Perl command use MyLib; (or use TypeConv;

for the example below) to your Genesis2.pl script at the appropriate location,

which would force this library to always be used.

The following is a stub of a library file. In this example, the new Perl package defines

one new function for scalar-array type conversion.

package TypeConv;

use strict;

use vars qw($VERSION @ISA @EXPORT @EXPORT_OK);

use Exporter;

@ISA = qw(Exporter);

$VERSION = ’1.00’;

# *********** METHOD 1 FOR INHERITING ALL METHODS *************

# To make a function available in the name space of the

# including package, simply place it in the EXPORT or EXPORT_OK

# lists.

# Example: ‘‘@EXPORT = qw(funcName);’’

@EXPORT = qw();

@EXPORT_OK = qw();

# **************************************************************

# ************ METHOD 2 FOR INHERITING ALL METHODS *************

# Uncomment the following line to activate inheritance

#push (@Genesis2::UniqueModule::ISA, qw(TypeConv));

# ***************************************************************
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#################################################################

################ ACTUAL TypeConv CODE STARTS HERE ###############

#################################################################

sub make_array{

my $item = shift;

if (ref ($item) eq ’ARRAY’){

return $item;

}

else {

return [$item];

}

}

1;

A.3 Genesis2 Command Line Arguments

In this section, we describe the command line argument that Genesis2 accept. The main
invocation script for Genesis2 is located at $GENESIS LIBS/Genesis2/Genesis2.pl, and
the format of the command is:

Genesis2.pl [-option value, ...]

Genesis2.pl -help

Note that there are two distinct stages in Genesis2—Parsing and Generation—as explained

in Section 3.4. However, one can also call the script once with both the -parse and the

-generate flags on. Genesis2 would perform parsing and then move immediately to gener-

ating. The following is a description of the parse-time and generation-time options.

A.3.1 Parsing Mode

Parsing mode performs the first transformation: From the designer’s source code (.vp files)

to an object oriented set of packages in Perl. Each Perl module (.pm files) is a code generator

for its corresponding Verilog module (.v file), but verilog generation is not yet done at this

stage, and therefore there is no significance to the order of parsing the template (.vp) files.

Parsing options are:

• -parse: Activates Genesis2 in parse mode
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• -sources—srcpath dir: Where to find source files

• -includes—incpath dir: Where to find included files

• -input file#1 .. file#n: List of files to parse

• -depend filename: Should Genesis2 generate a dependency file list? (list of input

files)

• -perl modules modulename: Additional perl modules to load

A.3.2 Generation Mode

Generation mode is the stage where Genesis2 is asked to start doing the target Verilog code

generation, starting from some specified top level (does not need to be the absolute top

level of your design). This is when the previously created .pm files generate the final .v

files. Generation options are:

• -generate: Activates Genesis2 in generate design hierarchy mode (Final Verilog code

generation)

• -top topmodule: Name of top module to start generation from

• -product filename: Should Genesis2 generate a product file list? (list of output

files)

• -hierarchy filename: Should Genesis2 generate a hierarchy representation tree?

• -xml filename: Input XML representation of definitions

• -perl modules modulename: Additional perl modules to load

A.3.3 Help and Debugging

• -debug level: Set debug level

• -help: prints the script’s usage message
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A.4 Genesis2 Source File Structure and Built-in Methods

This section describes the “dirty” details of how template designers should write their

code when using Genesis2. To make the adoption of Genesis2 easy, the code structure for

using Genesis2, is the same as the target language that Genesis2 is expected to generate,

annotated with meta-language code and using a minimal amount of pre-defined methods,

that Genesis2 compiles into the target language. In our case, the target language is Verilog

or System Verilog. The meta language that is used on top is simply Perl. As a result, you

now have the strength of Perl in your hands when you write Verilog. Use it wisely.

A.4.1 Genesis2 Source Code Structure

Genesis2 enables user to code in two languages simultaneously and interleaved. One is

Verilog that describes the hardware functionality. The other is Perl that describes the

construction of the Verilog. By default, any code written is considered as Verilog, and

special escape characters mark snippets of code or even complete lines that should be

handled using the Perl interpreter. There are two types of Perl escapes that can be used:

• Full Line Escape: This escape sequence tells Genesis2 that the entire line is Perl.

To use it, simply type “//;” (i.e. Verilog line comment followed by a semi-colon) at

the beginning of the line (white space before is also allowed).

Note that this would look like a comment to the XEmacs’s (or any other editor’s)

Verilog mode. Hence, coloring and indentations would not be influenced.
Descriptive example:

This is regular (though not legal Verilog) text that

would go directly to output.

// This is regular text that would go directly to the

// output as Verilog comment.

//; This is text that would be evaluated as a part of

//; the meta-language constructor (but since the meta-

//; language is Perl, this code generates a syntax error ;-))

Compile-able (though not meaningful) example:

assign verilog_wire = some_other_verilog_wire;

// I am a verilog comment line

//; my $to_be_perl_var = "This is Perl";
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• Part-Of-Line Escape: This escape sequence tells Genesis2 that a part of the line,

which is delimited in-between two “ ‘ “ (i.e. grave accent) signs, is to be evaluated

using the Perl interpreter. The result of the Perl evaluation of the block is to be

printed to screen.

Note that this would look like a ”tick-define” to the XEmacs’s (or any other editor’s)

Verilog mode. Hence, coloring and indentations would not be influenced.

Example:

//; my $width = 5;

assign some_wire[‘$width-1‘:0] = some_other_wire[‘$width+9‘:10];

//; foreach my $idx (0,1,2,3){

assign wire_‘$idx‘ = wire_‘($idx+1)%4‘;

//; }

Which will produce:

assign some_wire[4:0] = some_other_wire[14:10];

assign wire_0 = wire_1;

assign wire_1 = wire_2;

assign wire_2 = wire_3;

assign wire_3 = wire_0;

Note About The Perl print Function: Though not recommended as a methodology, it
is some times convenient to use the built-in Perl print function. Therefore for the users
convenience, printing is done by default to the output file (i.e. the Verilog modulename.v
file). However, if you wish to print progress or debug statements that need to go to the
screen use:

//; print STDOUT "your text here\n"

or

//; print STDERR "your text here\n"

A.4.2 Genesis2 Special Built-in Methods

As mentioned before, the entire effort of creating such tool is to enable scopes, enhance

parametrization and most importantly uniquification of modules. For this reason, there are

a handful of pre-built Perl methods that were defined.

Data Structure Related Methods
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• sub get parent: Returns a pointer to the parent instance

//; my $parent = $self->get_parent();

• sub get subinst: Returns a pointer to the object of a sub instance (by name)

//; my $subInst_of_someInst = $someInst->get_subinst("addr_flop");

or

//; my $subInst_name = "data_fifo";

//; my $subInst_of_someInst = $someInst->get_subinst($subinst_name);

• sub get subinst array: Returns a handle to an array of sub instance objects that
match a pattern

//; my $subinsts_of_someinst = $someinst->get_subinst_array($pattern);

• sub get instance path: API method that returns a complete path to the given
instance object. An instance path has the strict format of “topModule.subInst.-
subSubInst.subSubSubInst....”. For example: top.dut.regfile.addr flop.

//; my $instPath = $inst_obj->get_instance_path();

• sub get instance obj: API method that accepts an instance path (or an instance
object) and returns the corresponding instance object. An instance path has the strict
format of “topModule.subInst.subSubInst.subSubSubInst....”. For example: top.dut.-
regfile.addr flop.

//; my $instObj = $self->get_instance_obj($instPath);

Parametrization Methods

• sub define param: API method for defining a new parameter (just like defining

a parameter in Verilog). Note that using the define param, parameters can only

be defined inside the template to which they belong (i.e., a call to another object’s

define param will be flaged by Genesis2 as generation error).

However, parameters can also be defined at instantiation using the unique inst method

as shown below. Definition at instantiation time overwrite definitions done within the

module (just like in Verilog). As a middle ground, parameter definitions that are not
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bounded by instantiation can be set using the input XML configuration file. For more

details on parameter’s strengths and priorities, turn to Section 3.3.2.

In the following example, the parameter is registered with name prmName and receive
the value prmVal. The value is also returned to the Perl variable $val.

//; my $val = $self->define_param(prmName => $prmVal);

• sub force param: API method for defining an IMMUTABLE parameter. This
is pretty much the equivalent of the localparam keyword in Verilog. It defines a
parameter and other modules (up or down the hierarchy) can query its value using
the get param method (see next definition). However, this parameter definition is
immutable—it cannot be altered neither at module instantiation nor through the
XML configuration file (See more at Section 3.3.2).

//; my $val = $self->force_param(prmName => $prmVal);

• sub get param: API method for extracting a parameter’s value from the parameter’s
registry. This method is useful when a module needs to read a parameter from a
different module:

//; my $val = $other_module->get_param(’prmName’);

The get param method is also useful as a mean for forcing instantiators or the external
XML input to always provide the definition of a particular parameter. If neither of
them defines the parameter prior to the get param call, an error is thrown.

//; my $val = $self->get_param(’prmName’);

• sub get top param: API method for extracting a parameter’s value from the top
level parameter’s registry. Conceptually, the top level testbench is where global
definitions may reside. These definition may include for example SVA MODE or
SYNTHESIS MODE.

//; my $val = $self->get_top_param(’prmName’);

Note that get top param is merely syntactic sugar for:

//; $tmp = $self;

//; while (defined $tmp1){

//; $tmp2=$tmp1;

//; $tmp1=$tmp1->get_parent();

//; }

//; my $val = $tmp2->get_param(’prmName’);

Module Generation / Template Instantiation Methods
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• sub unique inst: The main function call for generating (and later instantiating) a
new module. Note that this call on it’s own does not print anything to the output
module. Rather, it will return a pointer to the instance module ($newObj in the
code example below). Use the get module name (syntactic sugared as mname) and
get instance name (syntactic sugared as iname), as well as other methods as described
above to query for the generated module’s name and properties.

//; my $newObj = $self->unique_inst(’templateName’, ’instName’,

//; prm1 => val1, prm2 => val2, ...);

• sub generate: This is syntactic sugar for $self->uniqu inst(...)—the main function
call for generating (and later instantiating) a new module. No need for the $self
reference.

//; my $newObj = generate(’templateName’, ’instName’,

//; prm1 => val1, prm2 => val2, ...);

• sub clone inst: An API method for replicating a module based on an existing in-
stance

//; my $clonedObj = $self->clone_inst($srcInst, ’clonedInstName’);

Note that srcInst can either be a path (e.g., “top.subInst.subSubInst”) or it can be

just an instance object (like the ones returned by unique inst or clone inst).

• sub clone: This is syntactic sugar for $self->clone inst(...)—A method for replicating
a module based on an existing instance. No need for the $self reference.

//; my $clonedObj = clone($src_inst, ’new_inst_name’);

Auxiliary Methods

• sub include: includes a (header) file to your text

//; include("some_header_file.vph");

• sub get instance name: Returns the name of the instance that this object is gen-
erating / already generated (can only be called on $self or on previously generated
instances)

//; my $inst_name = $someObj->get_instance_name();

• sub iname: Syntactic sugar for get instance name().

//; my $inst_name = iname();

OR

//; my $someObj_inst_name = $someObj->iname();
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• sub get module name: Returns the uniquified module name. This task is especially
important since whenever we declare a new module or System Verilog interface we
don’t really know whether or not it is going to be uniquified, and how many uniquifa-
tions of this module already happened. This enables us to leave the dirty work for
Genesis.

//; my $module_name = $self->get_module_name();

module ‘$module_name‘ (input logic Clk, ... );

// parameterized module code comes here

endmodule

• sub mname: Syntactic sugar for get module name(). No need for the $self reference.

module ‘mname‘ (input logic Clk, ... );

// parameterized module code comes here

endmodul

• sub instantiate: Syntactic sugar for $obj->mname() $obj->iname()—I.e., the mod-
ule and instance names of $obj for the purpose of instantiating that module.

module ‘mname‘(input clk, ...);

// some parameterized module code comes here

// Let’s generate and instantiate an ALU module:

//; my $ALU = generate(’ALU’, ’ALU_U’, param1=>val1, param2=>val2,...);

‘$ALU->instantiate‘ (.clk(clk),

.arg1(vector1),

.arg2(vector2),

.cmd(operation),

.result(result));

// more parameterized module code comes here

endmodule: ‘mname‘

• sub error: Prints an error message and exits with a printout of the current file and
line

//; $self->error("some error message");

• sub warning: Prints a warning message and a printout of the current file and line.
Does NOT exit.
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//; $self->warning("some message");

No other directives you need to remember. It is all

Verilog annotated with Perl from here on.

A.5 Useful Debugging Hints

The following are a few generic tips for debugging templates code with Genesis2.

Debug level

In order to see a more verbose messages from Genesis2 during parsing and generation

use the flag “-debug n” where n is a bit-wise verbosity level. The 0x0 level means “no

information required”; The 0x1 level will print progress messages as the different files are

parsed and different instances instantiated. In addition, it prints a synchronization message

to the target Verilog file every ten lines; The 0x2 level only provide information regarding

template files location during parsing phase; The 0x4 level provide information about the

hierarchy construction during generation, and regarding parameter definitions and value

assignments;

Error and warning messages

It is always a good habit to check the input (that can many times come from a user

filling an XML form), and printing errors or warnings accordingly. See the Section A.4.2

for the use of the error and warning predefined methods.

Debug messages to the Verilog file
To print debug messages during elaboration, such that they go to the output Verilog

file, one can either use simple text with inline Perl escapes, since simple text is printed to
the Verilog file by default. It is better however to make these statements look as Verilog
comments so they don’t disturb compilation. A few examples:

1. This text goes as is to the verilog file... but would cause

a verilog compile error since it’s not legal verilog

// 2. This text also goes to the verilog file... but no

// compile errors this time since for verilog it’s a comment.

// You can even use an inline escape such as x=‘$x‘ and the

// value of $x will be printed in the comment.
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//;# 3. This text does NOT go to the verilog file! It can

//;# serve as a way to write comments to self or to others

//;# reading the code. Essencially these lines are passed to

//;# the constructor for evaluation, but the # sign makes

//;# them look as a comment for the software (Perl) interpreter.

//; print "4. This is a Perl print command that prints this".

//; " line to the verilog file... expect verilog compile".

//; " errors...\n";

//; print "// 5. This is also a Perl print command. This text".

//; " also goes to the verilog file... no compile error".

//; " this time\n";

Debug messages to the screen
It is also possible to print a debug messages to the screen (printed during generation

phase):

//; print STDOUT "your text here\n"

or

//; print STDERR "your text here\n"

A.6 Flip-Flop Based Register File Design Example Using

Genesis2

In this section we provide a simple template design example, one that most designers had

to deal with in most their chips—A flip-flop based register file. Traditionally, these register

files are used as a (relatively) small configuration and debug memory.

Typically, every register output in that configuration space would be wired directly to

the logic that it controls and would be assigned with some default value for the Power-

on/Reset (PoR) stage. Similarly debug registers’ inputs will be connected to and driven by

the design logic, and in some cases debug registers would also have an enable input signal,

indicating when the debug value should be sampled.

Often times, such config and debug register files are automatically compiled from an

Excel spreadsheet or its like, using simple scripts. However using Genesis2, the engineer

essentially writes Verilog code and the construction script is interleaved, making it easier to

write. This example illustrates how Genesis2 compounds the notion of module “generator”
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scripts as a way to build a system generator. This is greatly beneficial to the design process

for various reasons:

1. There is no need to call the register-file script for every module of register file that

needs to be created in the design. More importantly, there is no need for the design

team to keep track of how many different register files were previously created and

what their module names were.

2. Once the register file is embedded as a generator in Genesis2, it is easy to change

all architectural properties of the generated hardware without ever needing to change

a single word of Verilog. For a register file these parameters will include the base

address of each instance and the default value of each register. (Note that whether

the register is used for configuration or debug or how many registers the register file

contains is an inherited parameter that must comply with the instantiating module)

3. Since we can use the same Genesis2 template to generate not only the modules but

also software and/or verification header files, any change to the register file (such as

the ones mentioned above) would automatically propagate to the verication testbench

and the software stack.

In order to create this register-file template, we first create a simple register template

(Section A.6.1) and a configuration bus interface (Section A.6.2). Then we move to the

main deal at Section A.6.3.

A.6.1 Basic Flip-Flop Template

The low level of this unit is a simple register. Note that here, we parametrize the register

by its type, its width and its default value. Also note that the type and width parameters

must inherited from/constrained by the instantiating module, since otherwise the interface

will break. The default value however, is an architectural parameter and can be set by the

application designer at a later stage.

Of course, there is nothing special in this parametrization that can not be done in Verilog,

however, by performing the parametrization through Genesis2, we enable any other instance

to query those parameters. More importantly, we enable an external user to change the

default value of each and every register instance, without worrying about the uniquification

implications on the rest of the design hierarchy.
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Below is the raw code for the flop template. Since this is the first example, it is also

followed by a number of generated flop modules.

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

//; my $flop_type = $self->define_param(FLOP_TYPE => "REFLOP");

//; my $flop_default = $self->define_param(FLOP_DEFAULT => "0");

//; my $flop_width = $self->define_param(FLOP_WIDTH => 1);

//; $self->error("Flop_type parameter = -->$flop_type<-- is not allowed! ".

//; "Allowed values: constant, flop, rflop, eflop, or reflop.")

//; unless ($flop_type =~ m/constant/i || $flop_type =~ m/flop/i ||

//; $flop_type =~ m/rflop/i || $flop_type =~ m/eflop/i ||

//; $flop_type =~ m/reflop/i);

module ‘mname‘(

//inputs

//; if ($flop_type !~ m/constant/i) {

input logic Clk,

input logic [‘$flop_width-1‘:0] data_in,

//; }

//;if ($flop_type =~ m/rflop/i || $flop_type =~ m/reflop/i) {

input logic Reset,

//; }

//; if ($flop_type =~ m/eflop/i || $flop_type =~ m/reflop/i) {

input logic Enable,

//; }

//outputs

output logic [‘$flop_width-1‘:0] data_out

);

//; if ($flop_type =~ m/^constant$/i) {
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assign data_out = ‘$flop_width‘’d‘$flop_default‘;

//; } else {

always @ (posedge Clk) begin

//;if ($flop_type =~ m/rflop/i || $flop_type =~ m/reflop/i) {

if (Reset) begin

data_out <= ‘$flop_width‘’d‘$flop_default‘;

end

else begin

//; }

//; if ($flop_type =~ m/eflop/i || $flop_type =~ m/reflop/i) {

if (Enable)

//; }

data_out <= data_in;

//; if ($flop_type =~ m/rflop/i || $flop_type =~ m/reflop/i) {

end // else: !if(Reset)

//; }

end // always @ (posedge Clk)

//; }

endmodule // ‘mname‘



A.6. GENESIS2 DESIGN EXAMPLE 131

An example of a top module to instantiate the registers (does not compile; for syntax
code example only):

module ‘mname‘;

/******************************************************************

* Calls to the unique_inst method / generate function invoke the

* generation of the relevant modules based on the template.

* Verilog instantiation is (intentionally) separated and must

* appear after the object was created.

* ***************************************************************/

//; my $const_flop_obj = generate(’flop’, ’const_flop_eg’, FLOP_TYPE=>’constant’,

//; FLOP_DEFAULT => 0xFF, FLOP_WIDTH => 32);

‘$const_flop_obj->instantiate()‘ (...);

//; my $simple_flop_obj = generate(’flop’, ’simple_flop_eg’, FLOP_TYPE=>’flop’,

//; FLOP_DEFAULT => 0b10101, FLOP_WIDTH => 32);

‘$simple_flop_obj->instantiate()‘ (...);

//; my $rflop_flop_obj = generate(’flop’, ’rflop_flop_eg’, FLOP_TYPE=>’rflop’,

//; FLOP_DEFAULT => 7, FLOP_WIDTH => 32);

‘$rflop_flop_obj->instantiate()‘ (...);

//; my $eflop_flop_obj = generate(’flop’, ’eflop_flop_eg’, FLOP_TYPE=>’eflop’,

//; FLOP_DEFAULT => 17, FLOP_WIDTH => 32);

‘$eflop_flop_obj->instantiate()‘ (...);

//;# Register with no default value binding so that we can bind it later

//;# through the XML input.

//; my $reflop_flop_obj = generate(’flop’, ’reflop_flop_eg’, FLOP_TYPE=>’reflop’,

//; FLOP_WIDTH => 32);

‘$reflop_flop_obj->instantiate()‘ (...);

endmodule : ‘mname‘
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Finally the resulting modules follow. Note that since we instantiated each flop with

different parameters, each flop got uniquified by Genesis2. Had some of the flops been

identical, Genesis2 would have remembered them and call their modules by the same name.

// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->FLOP_DEFAULT<-- = -->255<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_TYPE<-- = -->constant<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_WIDTH<-- = -->32<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

// flop->define_param: -->FLOP_TYPE<-- defined as:

// FLOP_TYPE->

// constant

// flop->define_param: -->FLOP_DEFAULT<-- defined as:

// FLOP_DEFAULT->

// 255

// flop->define_param: -->FLOP_WIDTH<-- defined as:

// FLOP_WIDTH->

// 32

module flop_unq1(

//inputs

//outputs

output logic [31:0] data_out

);

assign data_out = 32’d255;

endmodule // flop_unq1
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// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->FLOP_DEFAULT<-- = -->21<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_TYPE<-- = -->flop<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_WIDTH<-- = -->32<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

// flop->define_param: -->FLOP_TYPE<-- defined as:

// FLOP_TYPE->

// flop

// flop->define_param: -->FLOP_DEFAULT<-- defined as:

// FLOP_DEFAULT->

// 21

// flop->define_param: -->FLOP_WIDTH<-- defined as:

// FLOP_WIDTH->

// 32

module flop_unq2(

//inputs

input logic Clk,

input logic [31:0] data_in,

//outputs

output logic [31:0] data_out

);

always @ (posedge Clk) begin

data_out <= data_in;

end // always @ (posedge Clk)

endmodule // flop_unq2
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// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->FLOP_DEFAULT<-- = -->7<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_TYPE<-- = -->rflop<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_WIDTH<-- = -->32<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

// flop->define_param: -->FLOP_TYPE<-- defined as:

// FLOP_TYPE->

// rflop

// flop->define_param: -->FLOP_DEFAULT<-- defined as:

// FLOP_DEFAULT->

// 7

// flop->define_param: -->FLOP_WIDTH<-- defined as:

// FLOP_WIDTH->

// 32

module flop_unq3(

//inputs

input logic Clk,

input logic [31:0] data_in,

input logic Reset,

//outputs

output logic [31:0] data_out

);

always @ (posedge Clk) begin

if (Reset) begin

data_out <= 32’d7;

end

else begin
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data_out <= data_in;

end // else: !if(Reset)

end // always @ (posedge Clk)

endmodule // flop_unq3



136 APPENDIX A. GENESIS2 USER GUIDE

// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->FLOP_DEFAULT<-- = -->17<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_TYPE<-- = -->eflop<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_WIDTH<-- = -->32<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

// flop->define_param: -->FLOP_TYPE<-- defined as:

// FLOP_TYPE->

// eflop

// flop->define_param: -->FLOP_DEFAULT<-- defined as:

// FLOP_DEFAULT->

// 17

// flop->define_param: -->FLOP_WIDTH<-- defined as:

// FLOP_WIDTH->

// 32

module flop_unq4(

//inputs

input logic Clk,

input logic [31:0] data_in,

input logic Enable,

//outputs

output logic [31:0] data_out

);

always @ (posedge Clk) begin

if (Enable)

data_out <= data_in;

end // always @ (posedge Clk)

endmodule // flop_unq4
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// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->FLOP_TYPE<-- = -->reflop<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->FLOP_WIDTH<-- = -->32<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: flop.vp

*

* Description:

* My first attempt in using Genesis2 to make a flip-flop generator.

*

* Required Genesis2 Controlable Parameters:

* * FLOP_TYPE - constant, flop, rflop, eflop, or reflop

* * FLOP_WIDTH - integer value specifying register width

* * FLOP_DEFAULT - default value for the flop

* (only applies when flop_type=constant|rflop|reflop)

*

* ****************************************************************************/

/*******************************************************************************

* REQUIRED PARAMETERIZATION

******************************************************************************/

// flop->define_param: -->FLOP_TYPE<-- defined as:

// FLOP_TYPE->

// reflop

// flop->define_param: -->FLOP_DEFAULT<-- defined as:

// FLOP_DEFAULT->

// 0

// flop->define_param: -->FLOP_WIDTH<-- defined as:

// FLOP_WIDTH->

// 32

module flop_unq5(

//inputs

input logic Clk,

input logic [31:0] data_in,

input logic Reset,

input logic Enable,

//outputs

output logic [31:0] data_out

);

always @ (posedge Clk) begin

if (Reset) begin

data_out <= 32’d0;

end

else begin
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if (Enable)

data_out <= data_in;

end // else: !if(Reset)

end // always @ (posedge Clk)

endmodule // flop_unq5
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A.6.2 Config and Debug Interface

Nothing very unique about this configuration bus interface. It is just needed for the register

file example to be complete.

/* *****************************************************************************

* File: cfg_ifc.vp

*

* Description:

* Interface definitions and parametrization for the cfg_ifc primitive

*

* REQUIRED GENESIS PARAMETERS:

* ----------------------------

* * CFG_BUS_WIDTH - width of the configuration bus (default is 32bit)

* * CFG_ADDR_WIDTH - width of the configuration bus address (default is 32bit)

* * CFG_OPCODE_WIDTH - width of the configuration bus opcode (default is 2bit)

*

* Inputs:

* -------

* cfgIn.addr - input address for config transaction

* cfgIn.data - input data for config transaction

* cfgIn.op - nop/write/read/bypass enabler for the address specified on cfgIn.addr

* and the data specified by cfgIn.data

*

* Outputs:

* --------

* cfgOut.addr - output address for config transaction

* cfgOut.data - output data for config transaction

* cfgOut.op - output config opcode (for multi module concatenation)

*

* ****************************************************************************/

// ACTUAL GENESIS2 PARAMETERIZATIONS

//; my $cfg_bus_width = $self->define_param(’CFG_BUS_WIDTH’ => 32);

//; my $cfg_addr_width = $self->define_param(’CFG_ADDR_WIDTH’ => 32);

//; my $cfg_op_width = $self->define_param(’CFG_OPCODE_WIDTH’ => 2);

interface ‘mname()‘();

logic [‘$cfg_addr_width-1‘:0] addr;

logic [‘$cfg_bus_width-1‘:0] data;

logic [‘$cfg_op_width-1‘:0] op;

modport cfgIn(//messages arriving from prev cfg node

input addr,

input data,

input op
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);

modport cfgOut(// messages sent to next cfg node

output addr,

output data,

output op

);

endinterface: ‘mname()‘
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A.6.3 Config and Debug Register File Template

Now that we have created templates for a register and a configuration bus interface, we can

move on to incorporating them in a register file:

/* *****************************************************************************

* File: reg_file.vp

*

* Description:

* This file is using Genesis2 to make a register file.

* A register file have a config bus input port, and a config bus output port.

* The configuration request values are flopped and than handled:

* * If cfgIn_op is a no-op, nothing happens.

* * If cfgIn_op is a bypass op, the cfgIn_* signals are passed to the

* cfgOut_* ports.

* * If cfgIn_op is a read/write op, and cfgIn_addr is with in the address

* range, then the corresponding register is read/written. The values

* are streamed to the cfgOut_* ports, except for cfgOut_op that becomes

* a bypass-op.

* If cfgIn_addr is not in this reg_file address range, all the cfgIn_*

* signals are passed to the cfgOut_* ports. Someone else will answer...

*

* Note: All registers in the register file are write-able and readable by the

* configuration bus (even though some may only have output ports or only

* input ports).

*

*

* REQUIRED GENESIS PARAMETERS:

* ----------------------------

* * REG_LIST - List of registers. Each element in the list is a hash that contains

* * name - used for generating the enable and data output/input signals

* * width - register width

* * default - (optional) default value. Can be set later by XML input

* * IEO - I indicates this register connected to an input signal

* E indicates that the input is qualified by an enable

* O indicates that the output is connected to an output signal

* Valid options include: I, IE, O, IO, IEO

* * comment - (optional) description of the register

* * BASE_ADDR - Base address for this module

* * CFG_OPCODES - Interpretation of the opcode. Must contain the following feilds:

* * nop - value of cfgIn_op for a no-op (default is 0)

* * read - value of cfgIn_op for a read operation (default is 1)

* * write - value of cfgIn_op for a write operation (default is 2)

* * bypass - value of cfgIn_op for bypassing the control signals (default is 3)

* * IFC_REF - An instance of the reg_file_ifc (used as reference)

*

* Inputs:
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* -------

* Clk

* Reset

* cfgIn - Incomming config request

* foreach REG in REG_LIST (but depending on the IEO flag):

* * <REG.name>_en - enable signal for the register

* * <REG.name>_d - data input for the register

*

* Outputs:

* --------

* cfgOut - Outgoing reply for config request cfgIn

* foreach REG in REG_LIST (but depending on the IEO flag):

* * <REG.name>_q - data output for the register

*

*

* NOTE: registers with input from the design may become resource contention

* if both their private enable and their by-address enable signals are raised.

* Priority is always given to data from the cfg bus!

*

* ****************************************************************************/

//; # Perl Libraries

//; use POSIX;

//;

//;

// ACTUAL GENESIS2 PARAMETERIZATIONS

//; my $reg_list = $self->define_param(REG_LIST => [

//; {name => ’regA’, width => 5, default => 17, IEO => ’ie’, comment => ’this is a reg’},

//; {name => ’regB’, width => 10, default => 27, IEO => ’o’},

//; {name => ’regC’, width => 15, IEO => ’ieo’},

//; {name => ’regD’, width => 13, default => 4, IEO => ’i’},

//; ]);

//; my $num_regs = scalar(@{$reg_list});

//; my $base_addr = $self->define_param(’BASE_ADDR’ => 0);

//; my $cfg_ops = $self->define_param(’CFG_OPCODES’ => {nop=>0, read=>1, write=>2, bypass=>3});

//; my $ifc_ref = $self->define_param(IFC_REF => ’’);

//; $self->error("Missing parameter: IFC_REF") if ($ifc_ref eq ’’);

//;

//; # Extract paramteres from the interdace

//; my $cfgIn_ifc_obj = clone($ifc_ref, ’cfgIn’);

//; my $cfgOut_ifc_obj = clone($ifc_ref, ’cfgOut’);

//; my $cfg_bus_width = $cfgIn_ifc_obj->get_param(’CFG_BUS_WIDTH’);

//; my $cfg_addr_width = $cfgIn_ifc_obj->get_param(’CFG_ADDR_WIDTH’);

//; my $cfg_op_width = $cfgIn_ifc_obj->get_param(’CFG_OPCODE_WIDTH’);

//;

//;

//;# Verify correctness of register parameters:
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//; my $cnt = 0;

//; foreach my $reg (@{$reg_list}){

//; $self->error("Register $cnt is missing it’s name!")

//; unless defined $reg->{name};

//; $self->error("Register $reg->{name} (reg $cnt) is missing it’s width!")

//; unless defined $reg->{width};

//; $self->error("Register $reg->{name} (reg $cnt) is wider than the config bus!")

//; unless $reg->{width} <= $cfg_bus_width;

//; $self->error("Register $reg->{name} (reg $cnt) is missing it’s IEO!")

//; unless defined $reg->{IEO};

//; $self->error("Register $reg->{name} (reg $cnt) has an invalid IEO flag -->$reg->{IEO}<--!".

//; "(allowed values: I, IE, O, IO, IEO)")

//; unless ($reg->{IEO} =~ m/^(i|ie|o|io|ieo)$/i);

//; $cnt++;

//; } # end of "foreach my $reg..."

//;

//;# Verify correctness of opcode parameters:

//; $self->error("CFG_OPCODES must define values for all of {nop, read, write, bypass} opcodes")

//; if (!defined $cfg_ops->{nop} || !defined $cfg_ops->{read} ||

//; !defined $cfg_ops->{write} || !defined $cfg_ops->{bypass});

//; my $nop = $cfg_ops->{nop};

//; my $rdop = $cfg_ops->{read};

//; my $wrop = $cfg_ops->{write};

//; my $bypassop = $cfg_ops->{bypass};

//; $self->error("CFG_OPCODES values don’t fit within CFG_OPCODE_WIDTH bits")

//; if (($nop > 2**$cfg_op_width-1) || ($rdop > 2**$cfg_op_width-1) ||

//; ($wrop > 2**$cfg_op_width-1) || ($bypassop > 2**$cfg_op_width-1));

//;

//;

//; my $num_req_addr_bits = POSIX::ceil(log($num_regs)/log(2));

// Fix for reg files with single registers

//; if ($num_req_addr_bits == 0) {

//; $num_req_addr_bits = 1;

//; }

//; my $num_not_used_lsbs = POSIX::ceil(log($cfg_bus_width/8)/log(2));

//; my $usable_addr_range = ($num_req_addr_bits+$num_not_used_lsbs-1).":".$num_not_used_lsbs;

//; my $base_addr_range = ($cfg_addr_width-1).":".($num_req_addr_bits+$num_not_used_lsbs);

//; my $base_addr_width = $cfg_addr_width - ($num_req_addr_bits+$num_not_used_lsbs);

//; my $base_addr_trunc = $base_addr / 2**($num_req_addr_bits+$num_not_used_lsbs);

//; my $base_addr_hex = sprintf("%d\’h%x", $base_addr_width, $base_addr_trunc);

//;

// =============================================================================

// LIST OF REGISTERS IN THIS MODULE:

// =============================================================================

// LEGEND:
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// BASE_ADDRESS ‘sprintf("%d\’h%x", $base_addr)‘

// IEO: I for input (register samples design)

// O for output (register drives design)

// IE for enabled input (register samples design if enable is high)

//

// REGISTERS

//; $cnt = 0;

//; foreach my $reg (@{$reg_list}){

// ‘$reg->{name}‘ [‘$reg->{width}-1‘:0] IEO=‘$reg->{IEO}‘

// Offset=‘$cnt<<$num_not_used_lsbs‘ Comment:‘$reg->{comment}‘

//; $cnt++;

//; } # end of "foreach my $reg..."

// =============================================================================

// MODULE:

// =============================================================================

module ‘mname‘

(

// inputs for the config interface

‘$cfgIn_ifc_obj->mname‘.cfgIn cfgIn, // incoming requests

‘$cfgOut_ifc_obj->mname‘.cfgOut cfgOut, // outgoing responds

//; foreach my $reg (@{$reg_list}){

//; if ($reg->{IEO} =~ m/i/i){

// inputs for register ‘$reg->{name}‘

input [‘$reg->{width}-1‘:0] ‘$reg->{name}‘_d,

//; }

//; if ($reg->{IEO} =~ m/e/i){

input ‘$reg->{name}‘_en,

//; }

//; if ($reg->{IEO} =~ m/i/i){

//; }

//; } # end of foreach ...

//outputs

//; foreach my $reg (@{$reg_list}){

//; if ($reg->{IEO} =~ m/o/i){

// outputs for register ‘$reg->{name}‘

output [‘$reg->{width}-1‘:0] ‘$reg->{name}‘_q,

//; }

//; } # end of foreach ...
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// Generic inputs

input Clk,

input Reset

);

// floping cfg inputs to produce delayed signals:

logic [‘$cfg_addr_width-1‘:0] cfgIn_addr_del;

logic [‘$cfg_bus_width-1‘:0] cfgIn_data_del;

logic [‘$cfg_op_width-1‘:0] cfgIn_op_del;

//; my $flop_inst = generate(’flop’,’cfgIn_floper’,

//; ’FLOP_WIDTH’ => $cfg_addr_width+$cfg_bus_width+$cfg_op_width,

//; ’FLOP_TYPE’ => ’rflop’,

//; ’FLOP_DEFAULT’ => 0);

‘$flop_inst->instantiate‘ (.Clk(Clk), .Reset(Reset),

.data_in({cfgIn.addr, cfgIn.data, cfgIn.op}),

.data_out({cfgIn_addr_del, cfgIn_data_del, cfgIn_op_del}));

// internal wiring signals

logic [‘$num_regs-1‘:0] onehot_en;

logic addr_in_range;

logic [‘$num_req_addr_bits-1‘:0] cfgIn_addr_del_int; // internal (shorter) address signal

logic [‘$num_regs-1‘:0] regs_en;

logic [‘$cfg_bus_width-1‘:0] regs_d[‘$num_regs-1‘:0];

logic [‘$cfg_bus_width-1‘:0] regs_q[‘$num_regs-1‘:0];

// make sure that the input address is in range

assign addr_in_range =

((‘$base_addr_hex‘ == cfgIn_addr_del[‘$base_addr_range‘]) &&

(cfgIn_addr_del[‘$usable_addr_range‘] < ‘$num_req_addr_bits+1‘’d‘$num_regs‘))?

1’b1: 1’b0;

// Pick the right bits of the address signal (if out of range default to zero)

assign cfgIn_addr_del_int[‘$num_req_addr_bits-1‘:0] =

(addr_in_range)? cfgIn_addr_del[‘$usable_addr_range‘]: ’0;

// For config writes, there can be at most onehot enable signal

always_comb begin

onehot_en = ’0;

onehot_en[cfgIn_addr_del_int] = (cfgIn_op_del == ‘$wrop‘) && (addr_in_range == 1’b1);

end

// assign the config output ports

assign cfgOut.data =

// if not in range, pass the signal to the next guy
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(addr_in_range != 1’b1) ? cfgIn_data_del :

// if in range and this is a readop... read

(cfgIn_op_del == ‘$rdop‘) ? regs_q[cfgIn_addr_del_int] :

cfgIn_data_del;

assign cfgOut.addr = cfgIn_addr_del;

assign cfgOut.op =

// if not in range pass the signal to next guy

(addr_in_range != 1’b1) ? cfgIn_op_del :

// if in range (and not a nop) mark as done (bypass)

(cfgIn_op_del != ‘$nop‘) ? ‘$bypassop‘:

‘$nop‘; // else, it’s just a nop.

// Instantiate all the registers:

// ==============================

//; $cnt = 0;

//; foreach my $reg (@{$reg_list}){

//; my %params = ();

//; ## Match flop type to config/debug function:

//; ## i->flop, ie->eflop, io->rflop, ieo->reflop, o->reflop

//; $params{’FLOP_TYPE’} = ’reflop’; # default flop type

//; $params{’FLOP_TYPE’} = ’flop’ if ($reg->{IEO} =~ m/^i$/i);

//; $params{’FLOP_TYPE’} = ’eflop’ if ($reg->{IEO} =~ m/^ie$/i);

//; $params{’FLOP_TYPE’} = ’rflop’ if ($reg->{IEO} =~ m/^io$/i);

//; $params{’FLOP_WIDTH’} = $reg->{width};

//; $params{’FLOP_DEFAULT’} = $reg->{default} if exists $reg->{default};

//; $flop_inst = generate(’flop’,$reg->{name}."_reg", %params);

// register #‘$cnt‘:

// name:‘$reg->{name}‘, type:‘$reg->{IEO}‘, width:‘$reg->{width}‘

//; ## Pick the right enable signal based on parameters

//; if ($reg->{IEO} =~ m/e/i){

// flop on input_en or on cfg writes

assign regs_en[‘$cnt‘] = ‘$reg->{name}‘_en | onehot_en[‘$cnt‘];

//; }elsif ($reg->{IEO} =~ m/i/i){

// flop input with no qualifier

assign regs_en[‘$cnt‘] = 1;

//; }else{

// flop input only on cfg writes

assign regs_en[‘$cnt‘] = onehot_en[‘$cnt‘];

//; }

//;

//; ## Pick the right data input based on parameters

//; if ($reg->{IEO} !~ m/i/i){

// input only from cfg bus

assign regs_d[‘$cnt‘][‘$reg->{width}-1‘:0] =

cfgIn_data_del[‘$reg->{width}-1‘:0];
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//; }else{

// give priority to cfg bus writes, otherwise input from module input

assign regs_d[‘$cnt‘][‘$reg->{width}-1‘:0] =

(onehot_en[‘$cnt‘])?cfgIn_data_del[‘$reg->{width}-1‘:0]:

‘$reg->{name}‘_d[‘$reg->{width}-1‘:0];

//; }

//;

‘$flop_inst->instantiate‘

(.Clk(Clk),

//; if ($params{’FLOP_TYPE’} =~ m/r/i){

.Reset(Reset),

//; }

//; if ($params{’FLOP_TYPE’} =~ m/e/i){

.Enable(regs_en[‘$cnt‘]),

//; }

.data_in(regs_d[‘$cnt‘][‘$reg->{width}-1‘:0]),

.data_out(regs_q[‘$cnt‘][‘$reg->{width}-1‘:0]));

//; if ($reg->{IEO} =~ m/o/i){

// assign value to the relevant output

assign ‘$reg->{name}‘_q[‘$reg->{width}-1‘:0] = regs_q[‘$cnt‘][‘$reg->{width}-1‘:0];

//; }

//; if ($cfg_bus_width > $reg->{width}){

// pad the config bus with zeros

assign regs_q[‘$cnt‘][‘$cfg_bus_width-1‘:‘$reg->{width}‘] = ’0;

//; }

//; $cnt++;

//;} # end of foreach ...

endmodule // ‘mname‘
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Now let’s consider the following top module that instantiate two seemingly identical

register files. Note that this module does not really do anything useful and is used for the

purpuse of demonstration only. Having said that, this Genesis2’s template does compile

and does generate legal Verilog code:

/******************************************************************

* File: top.vp

* Simple top level that instantiates two register files

*****************************************************************/

module ‘mname‘();

/******************************************************************

* Calls to the unique_inst method generate function invoke the

* generation of the relevant modules based on the template.

* Verilog instantiation is (intentionally) separated and must

* appear after the object was created.

* ***************************************************************/

// First, for the sake of this example,

// let’s assume that these are the signals we care about:

logic [31:0] DataOut1;

logic [7:0] Status1;

logic [31:0] DataIn1;

logic DataRdy1; // qualifier for DataIn

logic SoftReset1;

logic [31:0] DataOut2;

logic [7:0] Status2;

logic [31:0] DataIn2;

logic DataRdy2; // qualifier for DataIn

logic SoftReset2;

// And also some generic wires

logic Clk;

logic Reset;

// Config interfaces to connect to/from the register files:

// For this example, we generate one and then clone it multiple times.

// We could have also easily just generate it with the same parameters

// which would have yielded the same results.

//

//; # Create the cfg interface object

//; my $tst_rf1_cfg_ifc_obj = generate(’cfg_ifc’, ’tst_rf1_cfg_ifc’,

//; CFG_BUS_WIDTH => 32,

//; CFG_ADDR_WIDTH => 32,

//; CFG_OPCODE_WIDTH => 2 );
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//; # Replicate the config interface

//; my $rf1_rf2_cfg_ifc_obj = clone($tst_rf1_cfg_ifc_obj, ’rf1_rf2_cfg_ifc’);

//; my $rf2_tst_cfg_ifc_obj = clone($tst_rf1_cfg_ifc_obj, ’rf2_tst_cfg_ifc’);

‘$tst_rf1_cfg_ifc_obj->instantiate‘();

‘$rf1_rf2_cfg_ifc_obj->instantiate‘();

‘$rf2_tst_cfg_ifc_obj->instantiate‘();

// Instantiate the first register file

//; my $reg_list =

//; [{name => ’DataOut’, width => 32, IEO => ’i’, comment => ’Proc debug data’},

//; {name => ’Status’, width => 8, IEO => ’i’, comment => ’Debug status’},

//; {name => ’DataIn’, width => 32, IEO => ’ie’, comment => ’Returned data’},

//; {name => ’SoftReset’, width => 1, IEO => ’o’, comment => ’Proc Reset signal’},

//; ];

//; my $reg_file = generate(’reg_file’, ’rf1’,

//; IFC_REF => $tst_rf1_cfg_ifc_obj,

//; REG_LIST => $reg_list);

‘$reg_file->instantiate‘

(

.Reset(Reset),

.Clk(Clk),

.cfgIn(tst_rf1_cfg_ifc), // from testbench

.cfgOut(rf1_rf2_cfg_ifc),// to reg file 2

// signals to register

.DataOut_d(DataOut1),

.Status_d(Status1),

.DataIn_d(DataIn1),

.DataIn_en(DataRdy1),

// registered outputs

.SoftReset_q(SoftReset1)

);

// Instantiate the second register file

//; my $reg_file = generate(’reg_file’, ’rf2’,

//; IFC_REF => $tst_rf1_cfg_ifc_obj,

//; REG_LIST => $reg_list);

‘$reg_file->instantiate‘

(

.Reset(Reset),

.Clk(Clk),

.cfgIn(rf1_rf2_cfg_ifc), // from reg file 2

.cfgOut(rf2_tst_cfg_ifc),// to testbench

// signals to register

.DataOut_d(DataOut2),

.Status_d(Status2),
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.DataIn_d(DataIn2),

.DataIn_en(DataRdy2),

// registered outputs

.SoftReset_q(SoftReset2)

);

endmodule // ‘mname‘
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The resulting top.v follows. Note that as expected Genesis2 used the same generated

register file module for both instances.

// ----------------------- Begin Unique Status Reprot -----------------------

// ------------------------ End Unique Status Reprot ------------------------

/******************************************************************

* File: top.vp

* Simple top level that instantiates two register files

*****************************************************************/

module top();

/******************************************************************

* Calls to the unique_inst method invoke the generation of the

* relevant modules based on the template.

* Verilog instantiation is (intentionally) separated and must appear

* after the object was created.

* ***************************************************************/

// First, for the sake of this example,

// let’s assume that these are the signals we care about:

logic [31:0] DataOut1;

logic [7:0] Status1;

logic [31:0] DataIn1;

logic DataRdy1; // qualifier for DataIn

logic SoftReset1;

logic [31:0] DataOut2;

logic [7:0] Status2;

logic [31:0] DataIn2;

logic DataRdy2; // qualifier for DataIn

logic SoftReset2;

// And also some generic wires

logic Clk;

logic Reset;

// Config interfaces to connect to/from the register files:

// For this example, we generate one and then clone it multiple times.

// We could have also easily just generate it with the same parameters

// which would have yielded the same results.

//

cfg_ifc_unq1 tst_rf1_cfg_ifc();

cfg_ifc_unq1 rf1_rf2_cfg_ifc();

cfg_ifc_unq1 rf2_tst_cfg_ifc();
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// Instantiate the first register file

reg_file_unq1 rf1

(

.Reset(Reset),

.Clk(Clk),

.cfgIn(tst_rf1_cfg_ifc), // from testbench

.cfgOut(rf1_rf2_cfg_ifc),// to reg file 2

// signals to register

.DataOut_d(DataOut1),

.Status_d(Status1),

.DataIn_d(DataIn1),

.DataIn_en(DataRdy1),

// registered outputs

.SoftReset_q(SoftReset1)

);

// Instantiate the second register file

reg_file_unq1 rf2

(

.Reset(Reset),

.Clk(Clk),

.cfgIn(rf1_rf2_cfg_ifc), // from reg file 2

.cfgOut(rf2_tst_cfg_ifc),// to testbench

// signals to register

.DataOut_d(DataOut2),

.Status_d(Status2),

.DataIn_d(DataIn2),

.DataIn_en(DataRdy2),

// registered outputs

.SoftReset_q(SoftReset2)

);

endmodule // top();
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The register file reg file unq1.v that was generated follows:

// ----------------------- Begin Unique Status Reprot -----------------------

// Parameter -->REG_LIST<-- = -->ARRAY(0xcbc270)<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// Parameter -->IFC_REF<-- = -->cfg_ifc=HASH(0xb23050)<-- (Priority = _GENESIS2_INHERITANCE_PRIORITY_=3)

// ------------------------ End Unique Status Reprot ------------------------

/* *****************************************************************************

* File: reg_file.vp

*

* Description:

* This file is using Genesis2 to make a register file.

* A register file have a config bus input port, and a config bus output port.

* The configuration request values are flopped and than handled:

* * If cfgIn_op is a no-op, nothing happens.

* * If cfgIn_op is a bypass op, the cfgIn_* signals are passed to the

* cfgOut_* ports.

* * If cfgIn_op is a read/write op, and cfgIn_addr is with in the address

* range, then the corresponding register is read/written. The values

* are streamed to the cfgOut_* ports, except for cfgOut_op that becomes

* a bypass-op.

* If cfgIn_addr is not in this reg_file address range, all the cfgIn_*

* signals are passed to the cfgOut_* ports. Someone else will answer...

*

* Note: All registers in the register file are write-able and readable by the

* configuration bus (even though some may only have output ports or only

* input ports).

*

*

* REQUIRED GENESIS PARAMETERS:

* ----------------------------

* * REG_LIST - List of registers. Each element in the list is a hash that contains

* * name - used for generating the enable and data output/input signals

* * width - register width

* * default - (optional) default value. Can be set later by XML input

* * IEO - I indicates this register connected to an input signal

* E indicates that the input is qualified by an enable

* O indicates that the output is connected to an output signal

* Valid options include: I, IE, O, IO, IEO

* * comment - (optional) description of the register

* * BASE_ADDR - Base address for this module

* * CFG_OPCODES - Interpretation of the opcode. Must contain the following feilds:

* * nop - value of cfgIn_op for a no-op (default is 0)

* * read - value of cfgIn_op for a read operation (default is 1)

* * write - value of cfgIn_op for a write operation (default is 2)

* * bypass - value of cfgIn_op for bypassing the control signals (default is 3)

* * IFC_REF - An instance of the reg_file_ifc (used as reference)

*

* Inputs:
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* -------

* Clk

* Reset

* cfgIn - Incomming config request

* foreach REG in REG_LIST (but depending on the IEO flag):

* * <REG.name>_en - enable signal for the register

* * <REG.name>_d - data input for the register

*

* Outputs:

* --------

* cfgOut - Outgoing reply for config request cfgIn

* foreach REG in REG_LIST (but depending on the IEO flag):

* * <REG.name>_q - data output for the register

*

*

* NOTE: registers with input from the design may become resource contention

* if both their private enable and their by-address enable signals are raised.

* Priority is always given to data from the cfg bus!

*

* ****************************************************************************/

// ACTUAL GENESIS2 PARAMETERIZATIONS

// reg_file->define_param: -->REG_LIST<-- defined as:

// REG_LIST->

// ARRAY(

// HASH{

// width->

// 32

// comment->

// Proc debug data

// IEO->

// i

// name->

// DataOut

// },

// HASH{

// width->

// 8

// comment->

// Debug status

// IEO->

// i

// name->

// Status

// },

// HASH{

// width->
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// 32

// comment->

// Returned data

// IEO->

// ie

// name->

// DataIn

// },

// HASH{

// width->

// 1

// comment->

// Proc Reset signal

// IEO->

// o

// name->

// SoftReset

// },

// )

// reg_file->define_param: -->BASE_ADDR<-- defined as:

// BASE_ADDR->

// 0

// reg_file->define_param: -->CFG_OPCODES<-- defined as:

// CFG_OPCODES->

// HASH{

// nop->

// 0

// bypass->

// 3

// read->

// 1

// write->

// 2

// }

// reg_file->define_param: -->IFC_REF<-- defined as:

// IFC_REF->

// top.tst_rf1_cfg_ifc

// Fix for reg files with single registers

// =============================================================================

// LIST OF REGISTERS IN THIS MODULE:

// =============================================================================

// LEGEND:

// BASE_ADDRESS 0’h0

// IEO: I for input (register samples design)

// O for output (register drives design)
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// IE for enabled input (register samples design if enable is high)

//

// REGISTERS

// DataOut [31:0] IEO=i

// Offset=0 Comment:Proc debug data

// Status [7:0] IEO=i

// Offset=4 Comment:Debug status

// DataIn [31:0] IEO=ie

// Offset=8 Comment:Returned data

// SoftReset [0:0] IEO=o

// Offset=12 Comment:Proc Reset signal

// =============================================================================

// MODULE:

// =============================================================================

module reg_file_unq1

(

// inputs for the config interface

cfg_ifc_unq1.cfgIn cfgIn, // incoming requests

cfg_ifc_unq1.cfgOut cfgOut, // outgoing responds

// inputs for register DataOut

input [31:0] DataOut_d,

// inputs for register Status

input [7:0] Status_d,

// inputs for register DataIn

input [31:0] DataIn_d,

input DataIn_en,

//outputs

// outputs for register SoftReset

output [0:0] SoftReset_q,

// Generic inputs

input Clk,

input Reset

);

// floping cfg inputs to produce delayed signals:
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logic [31:0] cfgIn_addr_del;

logic [31:0] cfgIn_data_del;

logic [1:0] cfgIn_op_del;

flop_unq1 cfgIn_floper (.Clk(Clk), .Reset(Reset),

.data_in({cfgIn.addr, cfgIn.data, cfgIn.op}),

.data_out({cfgIn_addr_del, cfgIn_data_del, cfgIn_op_del}));

// internal wiring signals

logic [3:0] onehot_en;

logic addr_in_range;

logic [1:0] cfgIn_addr_del_int; // internal (shorter) address signal

logic [3:0] regs_en;

logic [31:0] regs_d[3:0];

logic [31:0] regs_q[3:0];

// make sure that the input address is in range

assign addr_in_range =

((28’h0 == cfgIn_addr_del[31:4]) &&

(cfgIn_addr_del[3:2] < 3’d4))?

1’b1: 1’b0;

// Pick the right bits of the address signal (if out of range default to zero)

assign cfgIn_addr_del_int[1:0] =

(addr_in_range)? cfgIn_addr_del[3:2]: ’0;

// For config writes, there can be at most onehot enable signal

always_comb begin

onehot_en = ’0;

onehot_en[cfgIn_addr_del_int] = (cfgIn_op_del == 2) && (addr_in_range == 1’b1);

end

// assign the config output ports

assign cfgOut.data =

// if not in range, pass the signal to the next guy

(addr_in_range != 1’b1) ? cfgIn_data_del :

// if in range and this is a readop... read

(cfgIn_op_del == 1) ? regs_q[cfgIn_addr_del_int] :

cfgIn_data_del;

assign cfgOut.addr = cfgIn_addr_del;

assign cfgOut.op =

// if not in range pass the signal to next guy

(addr_in_range != 1’b1) ? cfgIn_op_del :

// if in range (and not a nop) mark as done (bypass)

(cfgIn_op_del != 0) ? 3:

0; // else, it’s just a nop.
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// Instantiate all the registers:

// ==============================

// register #0:

// name:DataOut, type:i, width:32

// flop input with no qualifier

assign regs_en[0] = 1;

// give priority to cfg bus writes, otherwise input from module input

assign regs_d[0][31:0] =

(onehot_en[0])?cfgIn_data_del[31:0]:

DataOut_d[31:0];

flop_unq2 DataOut_reg

(.Clk(Clk),

.data_in(regs_d[0][31:0]),

.data_out(regs_q[0][31:0]));

// register #1:

// name:Status, type:i, width:8

// flop input with no qualifier

assign regs_en[1] = 1;

// give priority to cfg bus writes, otherwise input from module input

assign regs_d[1][7:0] =

(onehot_en[1])?cfgIn_data_del[7:0]:

Status_d[7:0];

flop_unq3 Status_reg

(.Clk(Clk),

.data_in(regs_d[1][7:0]),

.data_out(regs_q[1][7:0]));

// pad the config bus with zeros

assign regs_q[1][31:8] = ’0;

// register #2:

// name:DataIn, type:ie, width:32

// flop on input_en or on cfg writes

assign regs_en[2] = DataIn_en | onehot_en[2];

// give priority to cfg bus writes, otherwise input from module input

assign regs_d[2][31:0] =

(onehot_en[2])?cfgIn_data_del[31:0]:

DataIn_d[31:0];

flop_unq4 DataIn_reg

(.Clk(Clk),
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.Enable(regs_en[2]),

.data_in(regs_d[2][31:0]),

.data_out(regs_q[2][31:0]));

// register #3:

// name:SoftReset, type:o, width:1

// flop input only on cfg writes

assign regs_en[3] = onehot_en[3];

// input only from cfg bus

assign regs_d[3][0:0] =

cfgIn_data_del[0:0];

flop_unq5 SoftReset_reg

(.Clk(Clk),

.Reset(Reset),

.Enable(regs_en[3]),

.data_in(regs_d[3][0:0]),

.data_out(regs_q[3][0:0]));

// assign value to the relevant output

assign SoftReset_q[0:0] = regs_q[3][0:0];

// pad the config bus with zeros

assign regs_q[3][31:1] = ’0;

endmodule // reg_file_unq1
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Following is the XML representation of this design.

<top>

<BaseModuleName>top</BaseModuleName>

<ImmutableParameters></ImmutableParameters>

<InstanceName>top</InstanceName>

<Parameters></Parameters>

<SubInstances>

<rf1>

<BaseModuleName>reg_file</BaseModuleName>

<ImmutableParameters>

<IFC_REF>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</IFC_REF>

<REG_LIST>

<ArrayType>

<ArrayItem>

<HashType>

<IEO>i</IEO>

<comment>Proc debug data</comment>

<name>DataOut</name>

<width>32</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>

<IEO>i</IEO>

<comment>Debug status</comment>

<name>Status</name>

<width>8</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>

<IEO>ie</IEO>

<comment>Returned data</comment>

<name>DataIn</name>

<width>32</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>

<IEO>o</IEO>

<comment>Proc Reset signal</comment>

<name>SoftReset</name>

<width>1</width>

</HashType>

</ArrayItem>
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</ArrayType>

</REG_LIST>

</ImmutableParameters>

<InstanceName>rf1</InstanceName>

<Parameters>

<BASE_ADDR>0</BASE_ADDR>

<CFG_OPCODES>

<HashType>

<bypass>3</bypass>

<nop>0</nop>

<read>1</read>

<write>2</write>

</HashType>

</CFG_OPCODES>

</Parameters>

<SubInstances>

<DataIn_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>eflop</FLOP_TYPE>

<FLOP_WIDTH>32</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>DataIn_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq4</UniqueModuleName>

</DataIn_reg>

<DataOut_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>flop</FLOP_TYPE>

<FLOP_WIDTH>32</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>DataOut_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq2</UniqueModuleName>

</DataOut_reg>

<SoftReset_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>reflop</FLOP_TYPE>

<FLOP_WIDTH>1</FLOP_WIDTH>
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</ImmutableParameters>

<InstanceName>SoftReset_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq5</UniqueModuleName>

</SoftReset_reg>

<Status_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>flop</FLOP_TYPE>

<FLOP_WIDTH>8</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>Status_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq3</UniqueModuleName>

</Status_reg>

<cfgIn>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>cfgIn</InstanceName>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</cfgIn>

<cfgIn_floper>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

<FLOP_TYPE>rflop</FLOP_TYPE>

<FLOP_WIDTH>66</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>cfgIn_floper</InstanceName>

<Parameters></Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq1</UniqueModuleName>

</cfgIn_floper>

<cfgOut>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>cfgOut</InstanceName>
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<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</cfgOut>

</SubInstances>

<UniqueModuleName>reg_file_unq1</UniqueModuleName>

</rf1>

<rf1_rf2_cfg_ifc>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>rf1_rf2_cfg_ifc</InstanceName>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</rf1_rf2_cfg_ifc>

<rf2>

<BaseModuleName>reg_file</BaseModuleName>

<ImmutableParameters>

<IFC_REF>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</IFC_REF>

<REG_LIST>

<ArrayType>

<ArrayItem>

<HashType>

<IEO>i</IEO>

<comment>Proc debug data</comment>

<name>DataOut</name>

<width>32</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>

<IEO>i</IEO>

<comment>Debug status</comment>

<name>Status</name>

<width>8</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>

<IEO>ie</IEO>

<comment>Returned data</comment>

<name>DataIn</name>

<width>32</width>

</HashType>

</ArrayItem>

<ArrayItem>

<HashType>
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<IEO>o</IEO>

<comment>Proc Reset signal</comment>

<name>SoftReset</name>

<width>1</width>

</HashType>

</ArrayItem>

</ArrayType>

</REG_LIST>

</ImmutableParameters>

<InstanceName>rf2</InstanceName>

<Parameters>

<BASE_ADDR>0</BASE_ADDR>

<CFG_OPCODES>

<HashType>

<bypass>3</bypass>

<nop>0</nop>

<read>1</read>

<write>2</write>

</HashType>

</CFG_OPCODES>

</Parameters>

<SubInstances>

<DataIn_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>eflop</FLOP_TYPE>

<FLOP_WIDTH>32</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>DataIn_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq4</UniqueModuleName>

</DataIn_reg>

<DataOut_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>flop</FLOP_TYPE>

<FLOP_WIDTH>32</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>DataOut_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq2</UniqueModuleName>
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</DataOut_reg>

<SoftReset_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>reflop</FLOP_TYPE>

<FLOP_WIDTH>1</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>SoftReset_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq5</UniqueModuleName>

</SoftReset_reg>

<Status_reg>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_TYPE>flop</FLOP_TYPE>

<FLOP_WIDTH>8</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>Status_reg</InstanceName>

<Parameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

</Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq3</UniqueModuleName>

</Status_reg>

<cfgIn>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>cfgIn</InstanceName>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</cfgIn>

<cfgIn_floper>

<BaseModuleName>flop</BaseModuleName>

<ImmutableParameters>

<FLOP_DEFAULT>0</FLOP_DEFAULT>

<FLOP_TYPE>rflop</FLOP_TYPE>

<FLOP_WIDTH>66</FLOP_WIDTH>

</ImmutableParameters>

<InstanceName>cfgIn_floper</InstanceName>

<Parameters></Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>flop_unq1</UniqueModuleName>

</cfgIn_floper>
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<cfgOut>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>cfgOut</InstanceName>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</cfgOut>

</SubInstances>

<UniqueModuleName>reg_file_unq1</UniqueModuleName>

</rf2>

<rf2_tst_cfg_ifc>

<BaseModuleName>cfg_ifc</BaseModuleName>

<CloneOf>

<InstancePath>top.tst_rf1_cfg_ifc</InstancePath>

</CloneOf>

<InstanceName>rf2_tst_cfg_ifc</InstanceName>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</rf2_tst_cfg_ifc>

<tst_rf1_cfg_ifc>

<BaseModuleName>cfg_ifc</BaseModuleName>

<ImmutableParameters>

<CFG_ADDR_WIDTH>32</CFG_ADDR_WIDTH>

<CFG_BUS_WIDTH>32</CFG_BUS_WIDTH>

<CFG_OPCODE_WIDTH>2</CFG_OPCODE_WIDTH>

</ImmutableParameters>

<InstanceName>tst_rf1_cfg_ifc</InstanceName>

<Parameters></Parameters>

<SubInstances></SubInstances>

<UniqueModuleName>cfg_ifc_unq1</UniqueModuleName>

</tst_rf1_cfg_ifc>

</SubInstances>

<UniqueModuleName>top</UniqueModuleName>

</top>

Note that by simply modifying the parameters’ values in this XML document, for in-

stance changing the base address or the default value for any of the registers, we force

Genesis2 to create a differnt, uniquified module (which will be named reg file unq2 ). This

is done using the -xml program.xml command line flag as described in Section A.3. Gen-

esis2 will also update the module name at the top.



Bibliography

[1] Bluespec, the Synthesizable Modeling Company(tm). http://www.bluespec.com/.

[2] Corensic Concurrency Debugger and Thread Debugger for Parallel Applications and

Multicore Software. Corensic Jinx.

[3] MyHDL - From Python to Silicon.

[4] Open SystemC Initiative (OSCI). IEEE Std. 1666-2005.

[5] RHDL - Ruby Hardware Description Language.

[6] Sonics, On-Chip Communication Network for Advanced SoCs.

http://www.sonicsinc.com/.

[7] STMicroelectronics. http://www.st.com/index.htm.

[8] Synfora, Productivity = Abstraction x QoR. http://www.synfora.com/.

[9] Tensilica: Customizable Processor Cores. http://www.tensilica.com/.

[10] Tensilica Instruction Extension (TIE) Language Reference Manual. Chapter 31, pg

229-233.

[11] Texas Instruments, Microcontrollers Units (MCU).

http://focus.ti.com/mcu/docs/mcuhome.tsp.

[12] The Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org/cpu2006/results/. SPEC CPU2006 Results.

[13] Ieee standard hardware description language based on the verilog(r) hardware de-

scription language. IEEE Std 1364-1995, page i, 1996.

167



168 BIBLIOGRAPHY

[14] Ieee standard for system verilog-unified hardware design, specification, and verifica-

tion language. IEEE STD 1800-2009, pages C1 –1285, 2009.

[15] Ieee standard vhdl language reference manual. IEEE Std 1076-2008 (Revision of IEEE

Std 1076-2002), pages c1 –626, jan. 2009.

[16] International Technology Roadmap for Semiconductors.

http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2009. Design Technology

Working Group.

[17] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series).

Addison-Wesley Professional, 2004.

[18] Robert Adams. Take command: The m4 macro package. Linux J., 2002:6–, April

2002.

[19] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A

tutorial. Computer, 29(12):66–76, 1996.

[20] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.

Computer, 29(12):66–76, Dec 1996.

[21] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS ’67: Proc. of the April 18-20, 1967, Spring Joint

Computer Conference, pages 483–485, New York, NY, 1967. ACM.

[22] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer

system modeling. Computer, 35(2):59–67, 2002.

[23] Omid Azizi. Design and Optimization of Processors For Energy Efficiency: A Joint

Architecture-Circuit Approach. PhD thesis, Stanford University, 2010.

[24] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay Patel, and Mark Horowitz.

Energy-Performance Tradeoffs in Processor Architecture and Circuit Design: A

Marginal Cost Analysis. In ISCA ’10: Proc. 37th Annual International Symposium

on Computer Architecture. ACM, 2010.



BIBLIOGRAPHY 169

[25] Omid Azizi, Aqeel Mahesri, John P. Stevenson, Sanjay Patel, and Mark Horowitz.

An Integrated Framework for Joint Design Space Exploration of Microarchitecture

and Circuits. In DATE ’10: Proc. Conf. on Design, Automation and Test in Europe,

pages 250–255, March 2010.

[26] J. Balfour, W.J. Dally, D. Black-Schaffer, V. Parikh, and JongSoo Park. An Energy-

Efficient Processor Architecture for Embedded Systems. Computer Architecture

Letters, 7(1):29 –32, Jan-Jun 2008.

[27] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.

The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.

[28] Bruno Bougard, Bjorn De Sutter, Sebastien Rabou, David Novo, Osman Allam,

Steven Dupont, and Liesbet Van der Perre. A coarse-grained array based baseband

processor for 100mbps+ software defined radio. Design, Automation and Test in

Europe Conference and Exhibition, 0:716–721, 2008.

[29] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible

markup language (XML) 1.0. W3C recommendation, 6, 2000.

[30] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-

garakatte. A randomized scheduler with probabilistic guarantees of finding bugs.

In Proceedings of the fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems, ASPLOS ’10, pages 167–178, New

York, NY, USA, 2010. ACM.

[31] Cadence. Incisive Enterprise Specman Elite Testbench.

http://www.cadence.com/products/fv/enterprise specman elite/pages/default.aspx.

[32] JF Cantin, MH Lipasti, and JE Smith. The complexity of verifying memory coherence

and consistency. Parallel and Distributed Systems, IEEE Transactions on, 16(7):663–

671, 2005.

[33] G. Castagna. Object-oriented programming: a unified foundation. Birkhauser, 1997.

[34] L. Chang, D.J. Frank, R.K. Montoye, S.J. Koester, B.L. Ji, P.W. Coteus, R.H. Den-

nard, and W. Haensch. Practical strategies for power-efficient computing technologies.

Proceedings of the IEEE, 98(2):215 –236, 2010.



170 BIBLIOGRAPHY

[35] M. Chu, N. Weaver, K. Sulimma, A. Dehon, and J. Wawrzynek. Object ori-

ented circuit-generators in java. In FPGAs for Custom Computing Machines, 1998.

Proceedings. IEEE Symposium on, pages 158 –166, April 1998.

[36] Ronald E. Collett. Executive session: How to address today’s growing system com-

plexity. DATE ’10: Conference on Design, Automation and Test in Europe, March

2010.

[37] R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc.

Design of ion-implanted MOSFET’s with very small physical dimensions. Proceedings

of the IEEE (reprinted from IEEE Journal Of Solid-State Circuits, 1974), 87(4):668–

678, 1999.

[38] Christophe Dubach, Timothy Jones, and Michael O’Boyle. Microarchitectural design

space exploration using an architecture-centric approach. In MICRO ’07: Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

262–271, Washington, DC, 2007. IEEE Computer Society.

[39] Stijn Eyerman and Lieven Eeckhout. Modeling Critical Sections in Amdahl’s Law and

its Implications for Multicore Design. In ISCA ’10: Proc. 37th Annual International

Symposium on Computer Architecture. ACM, 2010.

[40] David Fick. DePerlify. University of Michigan’s VLSI Design Automation Laboratory.

[41] A. Firoozshahian, A. Solomatnikov, O. Shacham, Z. Asgar, S. Richardson,

C. Kozyrakis, and M. Horowitz. A Memory System Design Framework: Creating

Smart Memories. In ISCA ’09: Proc. 36th Annual International Symposium on

Computer Architecture, pages 406–417. ACM, 2009.

[42] Amin Firoozshahian. Smart Memories: A Reconfigurable Memory System

Architecture. PhD thesis, Stanford University, 2008.

[43] Erik Max Francis. EmPy. European Python and Zope Conference, 2003.

[44] Gary Smith EDA. Private communication with Mr. Gary Smith.

http://www.garysmitheda.com/.

[45] E. Gibbons, P.B.; Korach. The complexity of sequential consistency. Symposium on

Parallel and Distributed Processing, pages 317–325, 1992.



BIBLIOGRAPHY 171

[46] P.B. Gibbons and E. Korach. Testing Shared Memories. SIAM Journal on Computing,

26(4):1208–1244, 1997.

[47] R.E. Gonzalez. Xtensa: a configurable and extensible processor. Micro, IEEE,

20(2):60–70, Mar/Apr 2000.

[48] Douglas Grose. Keynote: From Contract to Collaboration Delivering a New Approach

to Foundry. DAC ’10: Design Automation Conference, June 2010.

[49] Michael Gschwind. Chip multiprocessing and the cell broadband engine. In CF ’06:

Proceedings of the 3rd conference on Computing frontiers, pages 1–8. ACM, 2006.

[50] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben

Hertzberg, and K. P Manohar. Transactional memory coherence and consistency. In

International Symposium on Computer Architecture (ISCA ’04), page 102, 2004.

[51] Wei Han, Ying Yi, Mark Muir, Ioannis Nousias, Tughrul Arslan, and Ahmet T.

Erdogan. Multicore architectures with dynamically reconfigurable array processors

for wireless broadband technologies. Trans. Comp.-Aided Des. Integ. Cir. Sys.,

28(12):1830–1843, 2009.

[52] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, and Juin-Yeu Joseph Lu.

TSOtool: A Program for Verifying Memory Systems Using the Memory Consistency

Model. In ISCA ’04: Proc. 31st Annual International Symposium on Computer

Architecture, page 114. ACM, 2004.

[53] Pat Hanrahan. Keynote: Why are graphics systems so fast? In Parallel Architectures

and Compilation Techniques, 2009. PACT ’09. 18th International Conference on, Sep

2009.

[54] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-

Free Data Structures. In ISCA ’93: Proceedings of the 20th Annual International

Symposium on Computer Architecture, pages 289–300, New York, NY, USA, 1993.

ACM.

[55] M.D. Hill. Multiprocessors should support simple memory consistency models.

Computer, 31(8):28–34, Aug 1998.



172 BIBLIOGRAPHY

[56] R. Hofmann and B. Drerup. Next generation coreconnect trade; processor local bus

architecture. pages 221 – 225, sep. 2002.

[57] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph
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