
MIXED EQUATION-SIMULATION

CIRCUIT OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Metha Jeeradit

November 2011

This dissertation is online at: http://purl.stanford.edu/gd378jp6776

© 2011 by Metha Jeeradit. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/gd378jp6776

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Stephen Boyd

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Boris Murmann

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

One of the main challenges in designing analog circuits today is to cope with the

complex behaviors of modern devices. For example, the drain current of a deep-

submicron MOSFET device can no longer be predicted by the long-channel mod-

els, due to various effects including carrier velocity saturation, vertical-field induced

mobility degradation, drain-induced barrier lowering (DIBL), and narrow channel ef-

fects, to name only a few. In addition, the characteristics of each individual device

can be further affected by random variability and proximity effects. As a result, it

is extremely difficult to design an optimal circuit at the presence of these complex

phenomena without relying on computational aids, e.g. circuit optimizers. However,

many circuit optimizers based on global optimization techniques such as simulated an-

nealing or evolutionary algorithms may also have difficulties unless they are provided

with good initial guesses.

This research focuses on building a circuit optimizer that leverages designer’s in-

tent to help the simulation-based optimizers find solutions quickly. The technique is

inspired by continuation techniques in numerical analysis where a difficult problem is

solved by constructing an easier problem first and gradually refining its solution to

that of the hard problem. In a circuit optimization context, the designer’s simplified

equations for the circuit serve as the easier problem. These simplified design equa-

tions are easy to write as they need not be completely accurate and have solutions

that are easy to reason about.

iv

While these design equations may not generate a good initial design for optimizing

real circuits directly, they can help guide the optimizer towards an optimal solution

by constructing and solving a series of intermediate problems that gradually change

from the initial problem based on design equations to the real circuit problem with

accurate device models. Assuming that the solutions to these intermediate problems

change only gradually along this path, each problem can be solved very efficiently via

local optimization methods, using the solution to the previous problem as a starting

point. Although more problems have to be solved, since each is solved very efficiently,

the overall computational costs can be lower than that of solving the final problem

directly. We apply our circuit optimization approach to several design examples

and investigate the importance of the initial designer’s equations by comparing our

optimizer’s performances against those of a local optimizer and a generic continuation-

based optimizer.

We extend this basic idea to leverage hierarchy to help optimize large circuits, and

demonstrate this technique with a PLL design example. Besides the runtime benefit,

performing optimization hierarchically is also intuitive and more in line with how a

circuit designer would approach designing a large circuit problem like the PLL.

v

Acknowledgement

For the longest time, this just didn’t seem like it was going to happen. And were it

not for the supports, advices, and encouragements that I have received from various

people over the years, this probably wouldn’t have happened. I would like to thank

all these great people who have made my Ph.D. at Stanford possible.

First and foremost, I would like to thank my adviser, Prof. Mark Horowitz, for

being a great mentor and for giving me the freedom to work on what I wanted to.

Mark has always been very helpful, kind and generous, and I always feel that I can

go and talk to him on just about anything. He also has this uncanny ability to

understand my problems quickly — even when I sometimes do not understand what

problems I am having myself — and would usually be able to suggest solutions to

their problems that have helped saved me a lot of sleepless nights. I feel incredibly

lucky to have Mark as my adviser.

I would like to also thank my reading and Oral committee members. I would like to

thank Prof. Boris Murmann for his expertise and insights on analog circuits design,

and for always keeping his door opened so that I can randomly drop by unannounced

to get his advice. I would like to thank Prof. Stephen Boyd for his expertise and

insights into various optimization techniques. I would also like to thank Prof. Ada

Poon and Prof. Philip Wong, for agreeing to be on my Oral committee on a fairly

short notice. I want to thank my former adviser Prof. Thomas Lee who has been

incredibly patient with me while I was exploring various options during my time as

a part-time student.

vi

I want to also thank Prof. Jaeha Kim, who has also been of a tremendous help in

just about everything — from providing expertise on analog circuit design to helping

me grow as a person. His support and guidance to me have been beyond amazing

even since the time when he was my boss and mentor at Rambus to the time that he

was my mentor at Stanford. I feel incredibly fortunate to have known and to have

worked with such a great person. I owe him my deepest gratitude.

I want to also thank everyone in Mark’s group, both past and present — James

Mao, Byongchan Lim, Sabrina Liaos, Frances Lau, Megan Wachs, Pete Stevenson,

Stephen Richardson, Sameh Galal, Ofer Shacham, Zain Asgar, Limor Bursztyn, An-

drew Danowitz, Kyle Kelley, Krishna Malladi, Kahye Song, Gordon Wan, Jim Weaver,

Valentin Abramzon, Bita Nezamfar, Donguk Moon, Mehmet Ozan, Hwang Ho Choi,

Tao Yu, Suyao Ji, and many others — for their friendship, fun group trips, and

stimulating discussions. I want to also thank Mark’s former and current wonderful

administrative assistants, Teresa Lynn and Mary Jane Swenson, for always making

sure that things are run smoothly.

My experience at Rambus also played a big part in shaping my research on analog

circuit optimization. I would like to thank my former bosses — Carl Werner, Jared

Zerbe, Nhat Nguyen, Bruno Garlepp, and Kevin Jones — and their group mem-

bers, Yohan Frans, Fred Chen, Andrew Ho, Jason Wei, Reza Navid, Brian Leibowitz,

Haechang Lee, Amita Agarwal, Simon Li, William Stonecypher, Qi Lin, Aida Varza-

ghani, Amir Amirkhany, Jafar Savoj, Aliazam Abbasfar, and many others, for the

fun experiences on designing chips as part of a big team.

I want to also thank Rambus for sponsoring the early part of my Ph.D. program

when I was a part time student and Texas Instruments, especially Martin Izzard and

Tom Vrostos, for sponsoring this project in the latter part of my Ph.D. program

through its completion.

And last but certainly not least, I would like to also thank my family — my Dad,

my Mom, my brother Jackerin (Jack), and my fiancée and my best friend Wirulda

vii

Pootakham (Nik). Dad, Mom, and Jack, thanks for your unconditional love and

support. I couldn’t have done this without you.

Nik, thanks for everything. Thanks for knowing when to push me and when to

support me. Thanks for always finding and searching for fun things to do together.

Without you, my Stanford experience just wouldn’t have been the same.

viii

Contents

Abstract iv

Acknowledgement vi

1 Introduction 1

2 What Makes a Good Circuit Optimizer? 5

2.1 Equation-based Optimizers . 8

2.2 Simulation-based Optimizers . 9

2.3 Mixed Equation-Simulation Optimizers 10

3 Designer-Centric Circuit Optimization 12

3.1 Homotopy Methods . 14

3.1.1 Intent-Based Homotopy . 17

3.2 Constrained Optimization . 19

3.3 Convergence of Homotopy Methods 23

3.4 Circuit Optimization Algorithm Details 25

3.4.1 Inner Local Optimization Loop 25

3.4.2 Adaptive Stepping Algorithm 26

3.4.3 Final Circuit Optimization Algorithm 27

4 Design Examples 29

4.1 Low Power, Low Phase Noise, Voltage Controlled Oscillator 31

4.2 Replica-Compensated Supply Regulator 37

ix

4.3 Clocked Comparator . 47

4.4 Charge-Pump . 53

4.5 Discussion . 64

5 Optimizer Analysis 65

5.1 Importance of Initial Design Equations 65

5.2 Optimizer Performance Analysis . 69

5.2.1 Computational Efficiency . 69

5.2.2 Perfect Initial Design Equations 73

5.2.3 Summary . 74

6 Hierarchical Optimization 76

6.1 Methodology . 76

6.1.1 Classifying Sub-Block Specifications 77

6.1.2 Top-Down Optimization . 80

6.1.3 Hierarchical Optimization Algorithm 81

6.1.4 PLL Top-Level Model . 82

6.2 Results . 86

6.3 Benefits and Limitations . 90

7 Conclusions 91

7.1 Future Work . 91

Bibliography 94

x

List of Tables

4.1 Simulation Result for the initial design point and the final design point. 36

4.2 Simulated performance comparison between the initial and the final

designs for the supply regulator circuit. 42

4.3 Simulated performance comparison between the initial and the final

designs for the StrongARM comparator circuit. 50

4.4 Simulated performance comparison between the initial and the final

designs for the charge-pump and filter circuit. 61

5.1 Optimizer performance comparison between intent-based homotopy,

SCP, and fixed-point homotopy. The last three columns on the right

show the number of simulations required by each optimization algorithm. 66

5.2 Comparison of the number of simulations taken by the optimizer for

different fitting functions. 70

5.3 Number of simulations taken by the optimizer with perfect initial prob-

lems. The “Min Number of Sample” column indicates the minimum

number of samples required by the optimizer to create one approximate

convex problem. The “List of Number of Inner Iterations” column gives

a list of the number of inner iterations. The size of this list is the num-

ber of outer homotopy iterations. For example, the VCO optimization

took only one outer iteration, and in this outer iteration, it took three

inner iterations. 74

6.1 Specification Types for the PLL sub-blocks 79

xi

6.2 Number of top-level simulations and total optimization time compari-

son between the flat approach, hierarchical approach with only equa-

tions at the top level and hierarchical approach with homotopy at the

top-level. Note that the number of simulations do not include the

sub-blocks data but the optimization times do. 86

6.3 Simulated performance comparison between the initial and the final

designs for the PLL circuit. 87

6.4 Breakdown of the number of simulations and optimization time for the

PLL design example using linear fitting function. 89

xii

List of Figures

1.1 High-level view of our optimization framework. Designers design their

circuits using their simplified equations and let optimizers take care of

the non-idealities by moving the initial design point in the equation

space to the final design point in simulation space. 3

2.1 Equation-based Circuit Optimization Approach. 6

2.2 Simulation-based Circuit Optimization Approach. 7

3.1 Designer’s intent in a differential amplifier. 13

3.2 Gain and bandwidth of the differential amplifier as predicted by the

designer’s model and by the BSIM4 simulation model. 15

3.3 Approximate problem generation. First, we evaluate E(x) and F (x)

functions on randomly generated design points around an initial point

(top left graph). Next, we interpolate the easy and hard samples from

the previous step to generate homotopy samples (top right graph). We

then fit these homotopy samples to an approximate (convex) model

(bottom graph) for each performance constraint function to generate

an approximate representation of the problem. 18

3.4 Infeasible intermediate constraint spaces. Starting from the left graph,

ge(x) ≤ 0 is the initial easy constraint and gf (x) ≤ 0 is the final hard

constraint. ge(x) = x2 − 4 and gf (x) = (x − 5)2 − 4. The feasible

region for each intermediate constraint is shaded. Between λ = 0.2

and λ = 0.8, the intermediate constraint spaces are empty as evident

by λ = 0.3 and λ = 0.7 graphs. 20

xiii

3.5 Constraint Relaxation. (a) Initial relaxation amount is equal to the

initial violation of the initial point in the hard constraint r = gf (x
0)+.

(b) Evolution of the relaxed constraint space through homotopy inter-

polation from λ = 0.0 (top left) to λ = 0.3 to λ = 0.7 then to λ = 1.0

(bottom left). The relaxation amount is gradually driven to zero as we

move from the easy problem to the hard problem. 22

4.1 5-stage Differential Voltage-Controlled Ring Oscillator. 30

4.2 Energy comparison between design equations and simulation results

over the design variable space. 35

4.3 Phase noise at 1MHz offset comparison between design equations and

simulation results over the design variable space. 35

4.4 Homotopy Solution Path for the VCO design example through Energy

vs. Phase Noise simulation space. 36

4.5 Replica-Compensated Supply Regulator. 38

4.6 Input-Output transfer function for the bad regulator design without

output resistance constraint. 41

4.7 VCO tuning range curve with the output frequency range specification

indicated as two dashed-lines. 41

4.8 Simulated regulator’s supply sensitivity AC transfer function for both

the initial and the final designs. 43

4.9 Simulated regulator’s AC transfer function for the amplifier stage (with

replica feedback) for both the initial and the final designs. 43

4.10 Simulated regulator’s AC transfer function for both the initial and the

final designs. 44

4.11 Regulator’s Input-Output transfer function for the final design. 45

4.12 Power solution path from the initial design point (λ = 0) to the final

design point (λ = 1.0) for the supply regulator design. 46

4.13 Supply sensitivity solution path from the initial design point (λ = 0)

to the final design point (λ = 1.0) for the supply regulator design. . . 46

xiv

4.14 Effective amplifier bandwidth solution path from the initial design

point (λ = 0) to the final design point (λ = 1.0) for the supply regula-

tor design. 47

4.15 StrongARM Comparator. 48

4.16 Power solution path from the initial design point (λ = 0) to the final

design point (λ = 1.0) for the StrongARM comparator design. 51

4.17 Clk-q delay solution path from the initial design point (λ = 0) to the

final design point (λ = 1.0) for the StrongARM comparator design. . 52

4.18 Input-referred-noise solution path from the initial design point (λ = 0)

to the final design point (λ = 1.0) for the StrongARM comparator design. 52

4.19 Charge-Pump and Filter. 53

4.20 Charge-pump output current due to charge-pump non-idealities in a

PLL locked state over a reference period. For example, due to current

mismatch, I1 = Iup − Idn, representing the mismatched current that

is on for a small period of time due to the minimum pulse width of

the input up and down signals (t1). I2 will represent the smaller down

current that is on for t2 amount of time to cancel out the charge dumped

on the control voltage node by the mismatched current. 58

4.21 Transient up and down currents for the initial design. 62

4.22 Transient up and down currents for the final design. 62

4.23 Comparison of charge-pump transfer function between initial and final

designs. 63

4.24 Comparison of output current histogram between initial and final designs. 63

5.1 Comparison of the solution paths of the local SCP optimizer and our

intent-based homotopy optimizer through Power-Delay-Noise space for

the StrongARM comparator design. The two initial points (1) and (2)

for the local optimizers are from solving the initial design equations

and from solving the relaxed initial design equations respectively. Our

intent-based homotopy optimizer starts from initial point (1). 67

xv

5.2 2D projection of the solution paths of the local SCP optimizer and our

intent-based homotopy optimizer through Power-Delay space. 68

5.3 2D projection of the solution paths of the local SCP optimizer and our

intent-based homotopy optimizer through Power-Noise space. 68

5.4 Ratio between the number of simulations used by the quadratic fitting

function method (Nquad) to the number of simulations used by the

linear fitting function method (Nlinear). 71

5.5 Number of samples vs. number of variables categorized by the feasibil-

ity of the initial point. These numbers are for optimization done with

quadratic fitting functions. The constraints in the regulator example

presented in Section 4.2 were also modified to generate an example

with feasible initial point. 72

6.1 18-variable PLL Specifications and Block Diagram 77

6.2 Power solution path from the initial design point (λ = 0) to the final

design point (λ = 1.0) for the PLL design example. 87

6.3 Jitter solution path from the initial design point (λ = 0) to the final

design point (λ = 1.0) for the PLL design example. 88

xvi

Chapter 1

Introduction

The main tasks facing a circuit designer during a typical circuit design process are

1) selecting an appropriate circuit topology that the designer deems most suitable

for their target application, 2) sizing the underlying circuits in the chosen topology

and verifying that its performance meet the application’ design specifications, and 3)

realizing the layout of the sized schematic and re-verifying its performance.

To help designers quickly evaluate different circuit topology options, they need a

fast and intuitive circuit sizing methodology. The traditional approach for accomplish-

ing this is to first form simple analytical equations to estimate critical performance

parameters based on the designer’s understanding of how the circuit should behave.

The circuit is then simulated based on the device sizes obtained from optimizing these

simplified equations. If the resulting circuit performance does not meet the design

specifications, the designer re-adjusts their equations to come up with new sizes before

simulating again. This cycle is then repeated until either the design specifications are

met or the designer becomes convinced that this topology cannot be made to work

in the target application.

While traditional approach to circuit sizing has worked well in the past, growing

device complexity as you scale down technology has made it very time consuming. If

1

CHAPTER 1. INTRODUCTION 2

the discrepancies between the device models the designers used to form their simpli-

fied equations and the actual device models used in simulation are sufficiently large,

the iterative procedure between hand calculations (forming and solving simplified

analytical equations) and simulations can become a blind search.

Even if the circuit designer chooses to reuse a circuit topology from another tech-

nology node where its design has been proven to work, its circuit sizing procedure

can also be as time consuming. There are two main reasons for this. First, because

the process non-idealities and limitations vary from process to process, the topology

that may be suitable in one process technology may not be suitable in another. For

example, a cascoded amplifier may work well in a 0.18µm process with a 3V supply

but may fail in a 45nm process with a 1V supply due to headroom limitations. Sec-

ond, the design may have worked in a previous process because it has been sized for a

different performance objective than what is being targeted for in the current appli-

cation. Perhaps the original design was sized for low power while the new application

may have high performance as its main objective. Clearly, we need to improve both

the way circuit sizing is done and the way the designer’s knowledge is transferred

from one technology process to another.

A natural step to improving the circuit sizing methodology is to automate it. Au-

tomation tries to accomplish two goals: speed and convenience. The approaches taken

by existing circuit optimizers are usually either fast or convenient but not both. For

them to be fast, the optimizers usually need a large amount of input from the de-

signers, usually in the form of very accurate design equations, making them difficult

to create. On the other hand, the optimizers that are easy to use will usually need

to treat the optimization problem as a black box since they require very little input

from the designers and thus have very little information about the underlying circuit,

making the optimization process very slow. Chapter 2 will examine the advantages

and disadvantages of these existing circuit optimizers in more detail.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: High-level view of our optimization framework. Designers design their cir-
cuits using their simplified equations and let optimizers take care of the non-idealities
by moving the initial design point in the equation space to the final design point in
simulation space.

The main focus of this work is on creating an improved circuit sizing methodology

through a circuit optimization framework that provides a good compromise between

speed and convenience. It also tries to retain the intuitive analysis of the traditional

circuit sizing approach while coping with the differences between these models and

the real transistor’s behaviors.

Our framework in Figure 1.1 accomplishes these goals by first letting the designers

size their circuits in the traditional way and then relying on the optimizer to handle

the device process non-idealities. In our methodology, the designers first use simplified

equations that best represent their design intent to initially size their circuits. The

optimizer then leverages these simplified equations to help it move the initial design

point in the equation space to the final design point in the simulation space using a

numerical continuation technique called homotopy.

CHAPTER 1. INTRODUCTION 4

Conceptually, we can view our approach as slowly introducing non-idealities into

the designer’s assumed device models and iteratively refining our solution as we move

towards the simulation space. The main assumption here is that the discrepancies

between the two models are second order, and without these non-idealities, the cir-

cuit would have worked exactly the way the designers had intended. Chapter 3 will

describe our approach in more details before going through a few design examples in

Chapter 4. Chapter 5 will then analyse the performance of our optimizer.

Because the approach described in Chapter 3 can still be quite slow for circuits with

a large number of parameters or with a long simulation time, Chapter 6 will investi-

gate how we can extend our methodology to size these circuits through hierarchical

optimization. The extended approach is demonstrated through a PLL optimization

example. Chapter 7 will then summarize and conclude our work and discuss possible

future directions.

Chapter 2

What Makes a Good Circuit

Optimizer?

As discussed in the introduction, a good circuit optimizer should be:

1. Intuitive to circuit designers, to give them confidence and understanding into

why the resulting device sizes have been chosen,

2. Fast enough to allow the circuit designers to explore different circuit topologies,

and

3. Easy to use such that the overhead in setting up new optimization runs is small.

This chapter examines prior and existing circuit optimization approaches against

these criteria to help us understand their strengths and weaknesses. A more detailed

survey of existing circuit optimizers can be found in [14].

Previous and current circuit optimizers largely take one of two approaches [14]:

equation-based or simulation-based approach. In an equation-based approach, shown

in Figure 2.1, the focus is on having a very fast optimization process by first creating

very accurate design equations and then performing the optimization in the equa-

tion space. The main drawback of this approach is that the resulting equations can

become complex and difficult to derive. Thus, they can provide little insight, losing

5

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 6

Figure 2.1: Equation-based Circuit Optimization Approach.

some of their merits as analytical formulas. In simulation-based approach shown in

Figure 2.2, the focus is more on making the tool convenient for users by leverag-

ing generic optimization algorithms. The user only has to provide the simulation

decks and optimization objectives to the optimizer and the tool will perform the opti-

mization using non-linear algorithms such as simulated-annealing, stochastic pattern

searches or evolutionary algorithms. The drawback here is that these methods are

very resource-intensive.

In the 1980s when computational resources were scarce, early approaches to device

sizing automation [8, 18] were equation-based. These approaches were not only fast,

which is to be expected of equation-based approaches, they were also very accurate

because the effects of the non-idealities in the old process technologies were not as

pronounced as the ones in current process technologies making it relatively easier then

to create accurate design equations. They were also intuitive because the sizes were

derived using easy-to-understand design scripts. However, these early approaches

took the view that only experienced designers should design circuits so the tasks for

writing the equations for the design scripts were reserved only for these experienced

designers, making the optimizers very easy to use for regular users.

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 7

Figure 2.2: Simulation-based Circuit Optimization Approach.

Hence, these ‘optimizers’ (more appropriately called synthesis tools) were packaged

as knowledge-based optimizers where the design equations (also known as formal

descriptions) for each circuit derived by experienced designers were stored in a library

along with its design plan or design scripts for determining its device sizes for a given

set of design specifications. Furthermore, if an optimization run fails, these optimizers

will attempt to tell you why it failed and will try to give hints as to how you may be

able to adjust the specifications to make the design feasible. The goal was to make

analog circuit design easily accessible to digital and junior analog circuit designers.

While these early tools seemed to have all the makings of a good circuit optimizer,

they were not widely adopted as the experienced designers found it difficult and

time-consuming to contribute new designs to the library. One of the main reason for

this is because “analog design heuristics are very difficult to formalize in a general

and context-independent way” [14], hence each new circuit topology required its own

custom design plan with little reuse from other design plans and the effort required

for creating a design script was found to be roughly four times more than what is

needed to actually design the circuit once [27]. Furthermore, designers also needed

to have some programming knowledge in order to incorporate their design plans into

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 8

the library making the process of adding new circuits to the library too complex even

for experienced circuit designers to use. While these tools did have some commercial

success (MIDAS [27], AZTECA [26], CATALYST [52], BLADES [9], ISAID [51]),

most of the circuits used by the customers in these tools were the ones that were

already provided by the tool developers [14].

2.1 Equation-based Optimizers

To make the tools more practical, more recent equation-based optimizers let users

directly input the design equations that should be reasonably accurate in order to

obtain solutions that are close to the actual optimums in simulation. Since the op-

timization engine in these tools does not rely on any simulation, having accurate

equations is essential to the accuracy of the final optimization results. This requires

including many sophisticated effects of the devices making it difficult to write the

equations. This process can be eased either by using template languages [21] or

by automatically generating equations via pilot simulations [16]. Nevertheless, the

resulting equations can become too complex to provide any useful insights, losing

their merits as analytical formulas. Furthermore, many optimizers in this category

[6, 7, 13, 16, 19, 20, 21, 22, 23, 24, 25, 31, 50] make the optimization process effi-

cient by forcing the equations to be convex or quasi-convex. However, because not

all design characteristics are easily captured in convex equation forms, creating ac-

curate design equations can be difficult. This is especially the case when the design

objectives involve optimizing large-signal or transient characteristics. Because of the

manual effort involved in creating accurate design equations, switching designs to a

different circuit topology, or even to the same design in different process technology,

can also incur significant overhead as new equations are needed specific to the new

topology or to a different set of non-idealities in the new process technology. As with

knowledge-based optimizers, the main problem with these equation-based optimizers

is the ability to derive accurate design equations quickly.

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 9

To help overcome this problem, attempts have been made to automate generat-

ing design equations, largely via symbolic analysis tools such as SYMBA [53] and

RAINER [59], with limited success. These tools faced scalability problems, gener-

ated large uninterpretable expressions, and were limited to only linearized circuits in

frequency domains. Because the number of terms in exact symbolic solutions scale

exponentially with circuit sizes, heuristic simplification and pruning algorithms were

required to make the symbolic analysis more manageable. Initial approaches such as

ISAAC [15], SYNAP [47], and ASAP [10], mimicked what designers would do during

hand-calculations by only retaining important circuit elements and generating expres-

sions only for the dominant contributions. However, they were still only applicable

to circuits with less than 15 transistors making them impractical. Later approaches

like SYMBA and RAINER, use more sophisticated simplification algorithms which

made them applicable to larger circuits. Nevertheless, the expressions generated by

these tools were still large and unwieldy, restricting their usefulness to designers.

More recent researches on symbolic analysis and generation try to tackle both the

accuracy and scalability problems concurrently. For example, Xu et al. in [57] demon-

strated a hierarchical symbolic analysis technique that can analyze a 44-transistor cir-

cuit exactly. Other researches in this area explore different applications of symbolic

analysis such as providing sensitivity analysis and visualization [37, 48], or imple-

menting a symbolic circuit simulator [5].

2.2 Simulation-based Optimizers

Instead of focusing on finding faster ways to generate accurate design equations,

simulation-based optimizers remove the need for the equations altogether and directly

optimize the circuit based on numerical simulation results [16, 28, 32, 36, 38, 39, 45,

58].

Since there is no special structure (e.g. convexity) to exploit, most optimizers

in this category rely on global nonlinear optimization techniques such as simulated

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 10

annealing [16], stochastic pattern search [45], geostatistics technique [58], evolutionary

algorithms [36] or a combination of algorithms [38]. All these methods are either slow

or resource-intensive. For instance, Phelps, et al. [45], reported that optimizing a

two-stage operational amplifier with 32 devices may take more than 104 simulations

using simulated annealing.

These approaches usually require little work from a designer and initially appear

“easy” to use. There is also very little work needed to switch to a different design

topology. However, these methods are often slow, as many simulations are run, and

their convergence may still be dependent on a good initial point, so the overall user

experience is generally not good.

2.3 Mixed Equation-Simulation Optimizers

A good compromise, it seems, lies somewhere between the two existing approaches.

An early attempt at this mixed equation-simulation approach was the ASTRX/OBLX

tool [42]. In place of simulation, ASTRX/OBLX uses Asymptotic Waveform Eval-

uation (AWE), a model reduction technique, to evaluate circuit objectives and per-

formances. Because AWE is a black-box modeling technique — mainly applicable

to relatively linear circuits — it was not much of an improvement on equation-based

optimizers in terms of providing design insights. Moreover, the underlying optimiza-

tion engine still relied on simulated annealing algorithm and, as a result, also did not

provide much improvement on speed over simulation-based optimizers.

Based on the characteristics of the existing circuit optimizers, we contend that:

1. For circuit optimizers to be fast, they need to leverage designer’s knowledge

(through design equations) to help guide the optimizer to the final solution.

2. For circuit optimizers to be intuitive, these design equations should not be too

complex and mainly contain the dominating contributions of relevant circuit

elements.

CHAPTER 2. WHAT MAKES A GOOD CIRCUIT OPTIMIZER? 11

3. For circuit optimizers to be easy to use, the optimizers should do most of the

work.

Our proposed circuit optimizer takes up the mixed equation-simulation approach

with these goals in mind which will be described in more details in the next chapter.

Chapter 3

Designer-Centric Circuit

Optimization

As discussed in the previous chapter, we would like our circuit optimizer to be

intuitive and fast like equation-based optimizers but require little equation setup like

simulation-based optimizers. Designers should be able to design their circuits using

simple and intuitive equations that allow them to reason and understand how their

circuits behave with respect to their design variables while the underlying optimiza-

tion engine should be responsible for taking care of the non-idealities that are not

present in the design equations by making sure that the final design point meets the

design specifications in the target process technologies.

Suppose you would like to estimate the output voltage of the differential amplifier

shown in Figure 3.1. As a circuit designer, you would not use the exact equations

from the device manual to estimate the current of the input devices as they can be

incredibly complex and hard to understand. Instead, supposed you knew that the

input voltages will be small — and hence so will the gate overdrives of the input

devices — then you would prefer to use a simple long-channel transistor model to

help you estimate the saturation current more easily. And because the circuit uses

resistive loading, you would also ignore the output resistances of the input pair in

the long-channel model. Non-idealities that were not modeled in the current design

12

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 13

Figure 3.1: Designer’s intent in a differential amplifier.

equations such as channel-length-modulation (CLM), drain induced barrier lowering

(DIBL), and substrate-current-induced-body-effect (SCBE) effects, would then ideally

be taken care of by the optimizer during its optimization process.

The circuit design process can be intuitive when designers are able to use assump-

tions about their circuit behaviors to keep the design equations simple and represen-

tative of their design intent. Designers pick a circuit architecture that they think is

best suited to the needs of their target application and each device in the circuit, in

turn, fulfills a particular purpose to help satisfy those needs.

Suppose your target application led you to choose the differential amplifier archi-

tecture in Figure 3.1 where you would then need to maximize its gain-bandwidth

product. You can use your knowledge of how each device in the amplifier is intended

to work to help you derive simplified gain and bandwidth equations. More specifi-

cally, as the role of the tail transistor is to be a current source and the input devices

are to be transconductors, we can use a simple ideal current source (IBIAS) to model

the tail transistor and a simple long-channel model to model the input pair. We can

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 14

then derive the following gain and bandwidth equations in terms of the input device’s

width (W) and length (L):

Gain = Gm ·RL =

√
2 · µCox ·

W

L
· IBIAS ·RL (3.1)

Bandwidth =
1

2π ·RL · (CL + Cj ·W)
(3.2)

where µ is the carrier mobility, Cox is the gate oxide capacitance per area, Cj is the

drain junction capacitance per unit width, and RL and CL are the load resistance

and capacitance, respectively.

Because the simplified design equations naturally exclude many non-idealities, the

actual behavior of the circuit in simulation will not behave exactly the way the sim-

plified design equations predict. Figure 3.2 shows the gain and bandwidth of the dif-

ferential amplifier as predicted by the design equations and by the simulation (using

BSIM4 device model) for various input device sizes. Although the design equations

and the simulation data exhibit similar gain and bandwidth trends, there are sig-

nificant differences in the actual values between the two models. Consequently, the

design point obtained from optimizing the simplified equations may be far from the

actual optimum and may not even meet the design specifications in the simulation

space. Hence, we will need the optimizer to help us move the initial design point

obtained from optimizing our ideal design space to the final design point that meets

the design specifications in the simulation space.

For the rest of this chapter, we will first provide a brief background on the homotopy

methods and then describe our circuit optimization algorithm and its issues.

3.1 Homotopy Methods

Homotopy is a numerical continuation technique that helps solve hard non-linear

problem by first solving an easier problem and then gradually converting the easier

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 15

Figure 3.2: Gain and bandwidth of the differential amplifier as predicted by the
designer’s model and by the BSIM4 simulation model.

problem to the harder problem through a series of intermediate problems. The idea

is that if the two successive intermediate problems are close enough, they should also

have close solutions and we can therefore leverage the known solution of the preceding

intermediate problem to help solve the next intermediate problem. An example use of

this homotopy technique in the circuit simulation field is in improving the convergence

of DC analysis [40] where the trivial DC solution of a circuit with the supply voltage

V DD equal to zero is solved first. The DC solution is then iteratively refined while

the supply voltage V DD is gradually ramped up to its desired value. A good analogy

of the homotopy technique is the transient simulation. To determine a node voltage

at a certain time point, you first start the transient simulation at time t = 0 and then

progresses the simulation until t reaches the desired time point while the simulator

iteratively refines the node voltage value along the way.

In general, a homotopy path between the easy and the hard problems is controlled

by a mapping parameter. The supply voltage V DD is the mapping parameter in the

DC convergence analysis example while the time t is the mapping parameter in the

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 16

transient simulation analogy.

Traditionally, homotopy methods have been used to solve systems of non-linear

equations and were capable of solving systems with over 100 variables since the 1980s

[54]. They were also capable of solving optimization problems by first converting them

to systems of non-linear equations and then applying homotopy methods on them.

A general algorithm for applying a homotopy method to an optimization problem

typically consists of:

1. Convert the optimization problem to a system of n nonlinear equations with n

unknowns, i.e., F (x) = 0 where x ∈ <n and F : <n → <n.

2. Construct a homotopy map H(x, λ) = 0 that satisfies H(x, 0) = E(x) (a known

easy system with known solution) and H(x, 1) = F (x) (the hard system from

step 1 above) where λ is the homotopy mapping parameter.

3. Track the zero curve (i.e., refine the solution of H(x, λ) = 0) while varying λ

from 0 (the solution of the easy system) to 1 (the solution of the hard system).

The third step — zero curve tracking — is an established process with a mature

software package available [56] while the second step — constructing a robust homo-

topy map — is least understood and even considered an art [55].

A commonly used homotopy map in the second step linearly interpolates between

the hard system F (x) and the easy system E(x):

λ · F (x) + (1− λ) · E(x) = 0 (3.3)

When the easy system in the above equation (3.3) is of the form E(x) = (x− x0),

where x0 is an arbitrary initial point given by the user, the method is called Fixed-

Point homotopy. This is one of the most widely used form of homotopy (along with

Newton homotopy [60]) because it only requires the user to provide an initial point and

not the whole easy problem. However, not every easy problem with an arbitrary initial

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 17

point can efficiently guide the convergence to the final solution and, as our examples

in a later chapter will show, we can usually guide the optimizer more efficiently using

user design equations than using general fixed-point homotopy.

3.1.1 Intent-Based Homotopy

We call our proposed approach intent-based homotopy because we use circuit de-

signer’s equations that represent their intent as the easy problem E(x) in the homo-

topy map (3.3). These design equations usually follow the general trends of the real

circuit behaviors albeit being inaccurate in the absolute quantities, like the gain and

bandwidth of the differential amplifier example in Figure 3.2. If a solution cannot be

reached with our intent-based homotopy then it is likely that the circuit is unsuitable

to perform the intended operation for the target technology (e.g., the circuit may

not have enough voltage headroom) which by itself is also a valuable feedback to the

designers.

Another difference between our approach and the traditional homotopy approach

to solving an optimization problem is that we do not first convert the problem to a

system of non-linear equations. Instead, because solutions of successive problems in

homotopy are close to one another, we directly leverage existing local optimization

packages to help solve each intermediate problem using the solution of the preceding

problem as the initial guess.

To create each intermediate problem, we use the linear homotopy map in Equation

(3.3) to generate homotopy functions H(x) = λ · F (x) + (1 − λ) · E(x) for each

performance constraint in the optimization problem. In circuit optimization context,

each E(x) function represents the designer’s equation for each performance metric

such as power equation as a function of transistor sizes. We can easily evaluate

these functions for any point in the design space with negligible cost. The F (x)

functions represent simulated values for the same performance metrics which can be

quite expensive to evaluate at any given design point.

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 18

Figure 3.3: Approximate problem generation. First, we evaluate E(x) and F (x)
functions on randomly generated design points around an initial point (top left graph).
Next, we interpolate the easy and hard samples from the previous step to generate
homotopy samples (top right graph). We then fit these homotopy samples to an
approximate (convex) model (bottom graph) for each performance constraint function
to generate an approximate representation of the problem.

Hence, instead of solving each actual intermediate problem directly, we solve an

approximate representations of each problem. Figure 3.3 demonstrates how we form

this approximate representation. First, we generate homotopy data samples by eval-

uating E(x) and F (x) functions on randomly generated design points (around an

initial point) and then interpolating their values. These samples are then fitted to

approximate (convex) models to generate an approximate representation of the prob-

lem.

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 19

We can now provide a high-level intent-based homotopy circuit optimization algo-

rithm:

1. Solve intent-based equations to get a starting point x0 and advance λ.

2. Form next intermediate optimization problem using intent-based homotopy and

locally solve it using previous solution xk−1 as initial point.

3. Advance λ.

4. Goto 2 and repeat until λ = 1.

Section 3.4 will go over this algorithm in more details after we first discuss a few

algorithmic issues in the next two sections.

3.2 Constrained Optimization

Most practical circuit design problems have design constraints that may either

be internally or externally imposed. The internal design constraints exist to ensure

circuit functionality such as making sure a current source in the circuit has enough

saturation margin or that the output impedance of a supply regulator is low enough

so that it can sink or source its load current. The external design specifications are

usually derived from the application specifications such as a jitter requirement for an

oscillator or a gain requirement for an amplifier.

The initial solution obtained from solving the simplified design equations, more

often than not, will not meet all of these constraints in the simulation space which

poses a serious problem to designers and optimizers. For example, it has been reported

[17] that for a two-stage operational amplifier design, roughly 90% of the design time

is spent on tweaking sizes in simulation to meet the design specifications even after

obtaining the initial design point from the design equations. When given an infeasible

initial design point, most optimizers either take an additional step to first find a

feasible point [4] or just simply discard the given initial point [3].

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 20

Figure 3.4: Infeasible intermediate constraint spaces. Starting from the left graph,
ge(x) ≤ 0 is the initial easy constraint and gf (x) ≤ 0 is the final hard constraint.
ge(x) = x2 − 4 and gf (x) = (x − 5)2 − 4. The feasible region for each intermediate
constraint is shaded. Between λ = 0.2 and λ = 0.8, the intermediate constraint
spaces are empty as evident by λ = 0.3 and λ = 0.7 graphs.

Our optimizer can also fail when the initial design point is infeasible in simulation

space if the homotopy map given in Equation (3.3) is used directly. For example,

as shown in Figure 3.4, suppose the constraints for the easy and the hard problems

are x2 − 4 ≤ 0 and (x − 5)2 − 4 ≤ 0 respectively, then the intermediate constraints

parameterized by lambda are x2 − 10λx + (25λ − 4) ≤ 0. For λ values between 0.2

and 0.8 the intermediate constraints have empty feasible space and the homotopy

methods can no longer trace the solution after λ = 0.2.

The reason why some of the intermediate constraints have empty feasible space is

because the feasible regions for the easy and the hard problems are non-overlapping.

Since a homotopy solution path connects a point inside the feasible region of the

easy problem to a point inside the feasible region of the hard problem, it will need

to cross over a region where both constraints are infeasible. As interpolating any

two infeasible points also result in an infeasible point, the infeasible region between

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 21

the easy and the hard problems can never become feasible in any of the intermediate

problems. Hence, there is no way for a point that starts inside the feasible region of

the easy problem to move across to the feasible region of the hard problem.

If you somehow have knowledge of a feasible point in the simulation space, one way

of addressing this issue is to adjust the easy problem so that this point is also feasible

in its constraint space. This can be done by simply applying a relaxation amount

based on the easy constraint value at this point to the easy constraint function.

More specifically, let ge(x) ≤ 0 and gf (x) ≤ 0 be the constraints for the easy and the

hard problems that have non-overlapping feasible spaces, and suppose there exists xf

such that gf (x
f) ≤ 0, then applying a relaxation amount r = ge(x

f) (which is always

positive due to the non-overlapping property) to the original easy constraint function

will make the feasible region of the new easy constraint function g∗e(x) ≤ 0 (where

g∗e(x) = ge(x)− r) overlap with the feasible region of the hard constraint because xf

is now feasible in both the new easy and the hard constraints.

In practice, we are unlikely to know of a feasible point in simulation space a priori, so

we use the solution to the easy problem instead to help estimate the initial relaxation

amount. This heuristic constraint relaxation technique is similar to [44].

Again, let ge(x) ≤ 0 and gf (x) ≤ 0 be the constraints for the easy and the hard

problems respectively, and let x0 be the solution to the easy problem, we can relax

the intermediate constraints as:

λ · gf (x) + (1− λ) · ge(x) ≤ (1− λ) · gf (x0)+ (3.4)

In other words, we use the violation amount of the initial point in the hard con-

straint, gf (x
0)+ (i.e., the positive part of gf (x

0)) as our initial relaxation amount

i.e., r = gf (x
0)+. This relaxation is gradually removed as we move towards the hard

problem as illustrated in Figure 3.5. Obviously, if the hard problem itself has empty

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 22

Figure 3.5: Constraint Relaxation. (a) Initial relaxation amount is equal to the initial
violation of the initial point in the hard constraint r = gf (x

0)+. (b) Evolution of the
relaxed constraint space through homotopy interpolation from λ = 0.0 (top left) to
λ = 0.3 to λ = 0.7 then to λ = 1.0 (bottom left). The relaxation amount is gradually
driven to zero as we move from the easy problem to the hard problem.

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 23

feasible space, then relaxation cannot help. Therefore, if the algorithm cannot ad-

vance its solution, it is highly indicative that the circuit cannot be realized as intended

for the target design specifications.

3.3 Convergence of Homotopy Methods

The path from the easy problem to the hard problem may be fraught with diffi-

culties as it may encounter many path irregularities. As the previous section shows,

the path may not exist from the easy problem to the hard problem even though the

hard problem is solvable because intermediate problems may become infeasible. The

path may start from one solution of the easy problem and then loops back to another

solution of the easy problem. The path may split or get stuck in an infinite spiral.

See [60] for a more comprehensive study of possible path singularities.

Fortunately, the convergence theory for homotopy methods have been studied ex-

tensively and the main criteria for the guaranteed existence of a homotopy path can

be informally summarized as [55]:

1. All intermediate constraints must not have empty feasible space.

2. The easy problem must yield a single, unique solution.

3. The solution path must have no singular points.

The first condition ensures that a path exists between the solutions of the easy and

the hard problems. We use a heuristic constraint relaxation technique described in

the previous section to help avoid this problem, assuming that the hard problem has

non-empty feasible space.

The second condition ensures that once we trace the path from the initial problem,

it does not come back and re-cross λ = 0 hyperplane but steadily progresses toward

reaching the final solution at λ = 1. One of the reason why the fixed-point homotopy

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 24

map is popular is because there is only one solution at λ = 0 given by x = x0

guaranteeing that we meet this second criteria.

In our case, since we do not impose upon the user to provide an initial problem

with only one, unique solution, we can meet the second condition by superposing

a fixed-point homotopy on the intent-based homotopy for the objective function.

Suppose that our design equation objective is to minimize fe(x) and our simulation-

based objective is to minimize fs(x), then we can construct our new superimposed

objective for the intermediate problems as:

minimize λ · fh(x, λ) + (1− λ)· ‖ x− x0 ‖2 (3.5)

where fh(x, λ) = λ · fs(x, λ) + (1− λ) · fe(x) is the basic linear-mapped homotopy of

the easy and the hard problems, and ‖ x− x0 ‖2 is the equivalent fixed-point form of

the easy problem in the optimization context. If x0 is chosen to be the minimum of

fe(x) (unlike in a general fixed-point homotopy where x0 can be any arbitrary point),

then the superimposed objective will only have one solution at x = x0. In practice,

however, we have not found a need to use this feature so it is turned off by default in

our optimizer as it also increases optimization time.

The third condition for path existence is to rule out strange behaviors such as path

bifurcation, path splitting or path turning points [60]. In real-numbered homotopy

systems, the only singularities that can occur along the solution path are quadratic

turning points [33, 35]. This simply means that the solution path may not be mono-

tonic with respect to any of the design parameters or the mapping parameter λ.

Consequently, optimizers that advance the homotopy mapping parameter λ mono-

tonically may encounter serious difficulties as the solution for the next intermediate

problem may actually be quite far away. To deal with these singular quadratic points,

we can use a different controlling parameter — typically the arc length of the path s

— to help advance the intermediate problem and then determine the next λ based on

the current arc length. This is what we also do in our adaptive stepping algorithm

that will be described in more details in the next section.

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 25

3.4 Circuit Optimization Algorithm Details

As shown in Section 3.1.1, our intent-based homotopy circuit optimization algo-

rithm consists of two nested loops. The outer homotopy loop drives the progression

from the easy problem based on the simple design equations to the final problem

based on simulation. The inner local optimization loop optimizes the intermediate

problems using previous solution as the initial guess.

3.4.1 Inner Local Optimization Loop

We implemented our inner local optimization loop based on sequential convex pro-

gramming (SCP) [11] which solves a non-convex optimization problem by solving

a sequence of approximate convex problems. We fit data samples to convex func-

tions to generate an approximate convex problem and then use optimization package

MOSEK (http://www.mosek.com) to efficiently solve the approximate problem. As

SCP technique does not require derivatives of the objective and constraint functions,

we can apply our algorithm on problems that have non-smooth or even discontinuous

surfaces.

Because each approximate problem is just that — an approximation — each ap-

proximate problem also has an associated trust region T k representing the set of

design points where we trust the models used to form the problem in iteration k. The

size of this trust region is updated adaptively as we progress through the sequence of

approximate convex problems in the SCP algorithm.

How the trust region T k updates depend on how well the optimizer is doing in each

iteration of the local optimization loop. One way of determining how well it is doing

is to look at the fitting error. If the fit is good, you increase the trust region and if it

is bad you make the trust region smaller.

Another way is to look at how much progress the optimizer is making in each

iteration. If it seems that it is moving too slow towards the local optimum, the trust

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 26

region is increased and vice versa. A good heuristic that is commonly used [44] to

determine optimizer progress is to look at how the predicted decrease in the penalty

function value compares to the actual decrease in the penalty value.

Let φ(xk) be the penalty function associated with simulation problem at iteration

k and φ̂(xk) be the penalty function associated with the convex approximation at

iteration k, then the predicted and the actual decrease are given by [1]:

∆predicted = φ(xk−1)− φ̂(xk)

∆actual = φ(xk−1)− φ(xk) (3.6)

If the actual decrease is more than (some fraction of) the predicted decrease, it

indicates that the model did a good job in predicting the decrease in φ so the trust

region is subsequently enlarged. Conversely, if the actual decrease was less, then it

indicates that the optimizer did a bad job in predicting the decrease in φ so the trust

region is subsequently shrunk.

3.4.2 Adaptive Stepping Algorithm

To help advance the homotopy mapping parameter λ, we use the arc length of the

path, s, as our controlling parameter to help us deal with singular turning points men-

tioned in Section 3.3 and use the following adaptive stepping algorithm to determine

how far along the arc we want to advance at each iteration step.

Let T k be the trust region associated with the approximate models generated at

each outer homotopy iteration, we can estimate the next amount of arc length ∆s to

move along the path by solving a linear sub-problem:

maximize ∆s

subject to xk + dx
ds
·∆s ∈ T k (3.7)

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 27

where xk is the solution of the current intermediate problem and dx
ds

is the solution

gradient with respect to the arc length parameter. What this does is to find the largest

amount of arc length ∆s possible that we can advance along the path while keeping

the design point within the trust region T k of the current intermediate problem.

Based on the next predicted arc length, the next homotopy mapping parameter can

then be derived as:

λk+1 = λk +
dλ

ds
·∆s (3.8)

Let the solutions to H(x, λ) = 0 be the solution path connecting the solutions of

the easy and the hard problems at λ = 0 and λ = 1 respectively, then the gradients
dx
ds

and dλ
ds

can be found by differentiating H(x, λ) = 0 and solving it:

[
∇xH(x, λ) ∂H(x,λ)

∂λ

]
·

[
dx
ds
dλ
ds

]
= 0 (3.9)

As ∇xH(x, λ) and ∂H(x,λ)
∂λ

can be analytically obtained from the approximate con-

vex models without requiring extra simulations, there is negligible extra computation

cost in implementing this adaptive stepping algorithm.

3.4.3 Final Circuit Optimization Algorithm

Our final intent-based homotopy circuit optimization algorithm below adds the

constraint relaxation described in Section 3.2 and the adaptive stepping algorithm

described in Section 3.4.2 to the general algorithm presented in Section 3.1.1:

1. Solve intent-based equations to get xintent.

2. Estimate constraint relaxation r based on simulated value at xintent i.e., r =

gf (x
intent) for each constraint function.

3. Solve relaxed initial problem below and use its solution as the initial point for

CHAPTER 3. DESIGNER-CENTRIC CIRCUIT OPTIMIZATION 28

the first intermediate problem in step 4).

minimize fe(x)

subject to gie(x) ≤ ri i = 1, . . . ,m (3.10)

4. Construct next intermediate problem using linear homotopy map in Equation

(3.3).

5. Locally solve each intermediate problem using previous optimal point as initial

point.

6. Estimate next λ based on the adaptive stepping algorithm in Section 3.4.2.

7. Repeat steps 4-6 until λ = 1.

We can reduce the total number of simulations required by the SCP technique by

recycling some of the simulation results obtained from the previous iterations. Sup-

pose each iteration step of the inner local optimization loop (step 5 in the algorithm

above) requires M samples to construct an approximate convex problem. Let T k be

the trust region associated with the approximate models generated at each iteration

k, then if a simulation sample from the previous iteration k−1 falls within the current

trust region T k, then we can reuse this sample as part of the M samples needed to

construct the current approximate problem.

Chapter 4

Design Examples

We will show through a series of examples in this chapter how our proposed opti-

mizer allows the designers to design their circuits using their simplified design equa-

tions while achieving a locally optimal solution in the simulation space.

Each example will start off with the design equations that are used to help guide

our intent-based circuit optimizer followed by a discussion on the optimizer results.

In the results section, we will discuss the discrepancies between the design equations

and the simulation results, and how the optimizer takes care of the non-idealities that

are not modeled in the design equations.

Our four examples will explore different aspects of our optimizer. We will start off

with a simple ring oscillator design example that shows how designers can use rela-

tively simple design equations to help guide our optimizer. Next, we will demonstrate

how our constraint relaxation technique works in practice with a replica-compensated

regulator design example. The StrongARM sense-amplifier latch design example will

show how difficult it is to write very accurate equations for some circuit behavior

— input-referred-noise in this case — and how our optimizer can be more robust

than a local optimizer when the initial design point, obtained from solving the design

equations, is infeasible. The last example, a charge-pump design, will demonstrate

a usage of statistical constraints in our design objectives. All the design examples

29

CHAPTER 4. DESIGN EXAMPLES 30

Figure 4.1: 5-stage Differential Voltage-Controlled Ring Oscillator.

in this section were done in 65nm PTM technlogy (http://ptm.asu.edu). Variants of

these examples also appeared in [29] which were done in TSMC 0.18µm technology.

CHAPTER 4. DESIGN EXAMPLES 31

4.1 Low Power, Low Phase Noise, Voltage Con-

trolled Oscillator

Our first design example is a 2-variable, 5-stage differential voltage-controlled ring

oscillator (VCO) with an output buffer stage, as shown in Figure 4.1.

Problem Description

The design objective for our VCO is to minimize its energy consumption in each

cycle measured at the nominal control voltage Vc = Vdd/2 (0.55V) subject to the

following constraints:

• Output Frequency Range. The VCO output frequency should span 1GHz-

2GHz range over the 0.4-0.8V control voltage tuning range.

• Output Phase Noise. The VCO output phase noise measured at 1MHz offset

should be less than -94dBc/Hz.

• Transistor Size Ratio. The pMOS-to-nMOS size ratio of the inverter element

should be less than 5.

The frequency and phase noise constraints are usually derived from the application

specifications while the size ratio constraint is internally imposed to ensure that the

resulting VCO sizes are reasonable.

The two design variables are the widths of the pMOS and nMOS transistors, Wp

and Wn, in each VCO delay element.

Design equations

As frequency is the inverse of delay, we can use an RC model for the transistors to

first estimate the delay of each inverter before summing up twice its delay around the

ring and then inverting to obtain the VCO oscillation frequency. In this RC model, the

switch on-resistance is inversely proportional to the transistor width while the node

CHAPTER 4. DESIGN EXAMPLES 32

capacitance at each output of the inverter consists of gate and drain capacitances

that are proportional to the transistor width i.e.,

Rn = Rsqn(Vc) ·
Ln
Wn

Rp = Rsqp(Vc) ·
Lp
Wp

Cnode = (Cg + Cj) · (Wn +Wp) (4.1)

where Rsqn and Rsqp are the equivalent sheet resistances of the nMOS and pMOS

transistors in Ω/� while Cg and Cj are gate and junction capacitances per unit

width in F/µm respectively. These four parameters can be calibrated for each control

voltage Vc for a given technology.

The oscillation frequency is then given by:

fosc =
1

2 ·N · td
td = 0.5 · (Rn +Rp) · Cnode (4.2)

where N = 5 is the number of stages in our ring oscillator.

As the power consumption of the VCO is mostly dynamic and proportional to

the total capacitance Ctotal being charged and discharged in each cycle, we can use

the same RC model to estimate the power consumption. The total capacitance Ctotal

consists of the 2N node capacitances (as there are two rings) that are being discharged

twice in a cycle plus the load capacitance, i.e., Ctotal = 4 ·N ·Cnode +Cld. The power

consumption is then given by:

Power = Ctotal · V 2
c · fosc (4.3)

where Vc is the input control voltage.

CHAPTER 4. DESIGN EXAMPLES 33

The energy consumption per cycle is then given by:

Energy =
Power

fosc
(4.4)

For the phase noise, we assume that it is inversely proportional to the power based

on the Leeson’s model [34]:

PN =
Kpn

Power
(4.5)

where Kpn is a proportionality constant that can be calibrated for a given technology

process.

Results

As this is a simple 2-variable problem, we can sweep the whole design space in

simulation and compare each performance function to its model counterpart. Figure

4.2 and 4.3 show comparisons between the design equations and the simulation results

for energy and phase noise (measured at 1MHz offset) over the design variable space

respectively. Even though our design equations were not very complex, they matched

up with the simulation results very well.

Figure 4.4 shows the solution path through the energy vs. phase noise space.

Since our equations underestimated energy and overestimated phase noise, the initial

optimal point from the design equations has higher energy and lower phase noise than

the final optimal point in simulation.

Table 4.1 shows the simulated results for the initial design point and final design

point. We comfortably met the frequency range specification so it played a negligible

role in the optimization process. As the energy and phase noise are roughly constant

for a given total capacitance (see Equation (4.4) and (4.5)), there may be many

multiple optimal solutions to our problem (along the hyperplane where Wp + Wn is

constant). Hence, we also constrained the pMOS-to-nMOS ratio to keep the size in

a practical range. Note that we could have added a minimum constraint on the size

CHAPTER 4. DESIGN EXAMPLES 34

ratio as well but since the optimizer gravitated towards large ratio size, it was not

necessary.

CHAPTER 4. DESIGN EXAMPLES 35

Figure 4.2: Energy comparison between design equations and simulation results over
the design variable space.

Figure 4.3: Phase noise at 1MHz offset comparison between design equations and
simulation results over the design variable space.

CHAPTER 4. DESIGN EXAMPLES 36

Figure 4.4: Homotopy Solution Path for the VCO design example through Energy
vs. Phase Noise simulation space.

Table 4.1: Simulation Result for the initial design point and the final design point.

CHAPTER 4. DESIGN EXAMPLES 37

4.2 Replica-Compensated Supply Regulator

Our next design example is a 7-variable replica-compensated supply regulator [2]

shown in Figure 4.5 which will be used in a PLL design example in Chapter 6 to drive

our VCO from the previous section.

Problem Description

The design objective here is to minimize its power consumption subject to the

following constraints:

• Supply Sensitivity. The maximum supply sensitivity (over frequency) should

be less than -24dB.

• Regulator Bandwidth. The overall regulator bandwidth should be greater

than 500MHz which is roughly 20 times greater than the PLL loop bandwidth.

• Effective Amplifier Bandwidth. The effective amplifier bandwidth (for the

transfer function from node Vin to Vbp) should be greater than 1.5GHz. This is

3 times greater than the regulator bandwidth (or roughly 60 times greater than

PLL loop bandwidth).

• Output Current. The regulator should be able to source at least 120µA of

load current at Vin = Vdd/2 = 0.55V .

The supply sensitivity constraint is usually derived from the application specifica-

tions. For our example, the supply sensitivity of -24dB translates into about 0.06%

change in regulated output voltage Vreg for every 1% change in supply voltage Vdd.

The bandwidth and output current constraints are internally imposed to ensure the

functionality of the regulator when it is used inside a PLL. The first two bandwidth

constraints ensure that the regulator will not degrade PLL stability assuming PLL

loop bandwidth is around 25MHz.

CHAPTER 4. DESIGN EXAMPLES 38

Figure 4.5: Replica-Compensated Supply Regulator.

The output current constraint is to ensure that the regulator is capable of sourcing

the VCO load current. From the VCO example in Section 4.1, the VCO consumes

roughly 65µW at Vc = 0.55V which translates to about 120µA of current that the

regulator has to source.

The seven design variables include six transistor widths (Wld, Win, Wbias, Wrpl,

Wreg, Wcap) and the weighting allocation between feed-forward and feedback path

(k).

Design Equations

Most of the design equations here are based on [2]. This section provides a brief

summary of the design equations relevant to our design problem.

As our regulator circuit is purely analog, we expect the power consumption to be

simply the sum of the static current in each branch multiplied by the supply voltage.

Power = (Ibias + Irpl + Ireg) · V dd (4.6)

CHAPTER 4. DESIGN EXAMPLES 39

where Ibias = (Wbias/Wref) · Iref , and Irpl and Ireg are the current through Mrpl

and Mreg, respectively. The expressions for the currents can be obtained using the

simple long-channel device model: I = (W/2L) · µCox · (Vgs − Vth)2.

As there are two main poles in the regulator — the pole due to the amplifier stage

and the pole due to the output stage driving a large load capacitance (e.g., from ring

oscillator) — the regulator bandwidth can be dominated by either of these poles.

However, as we want a high amplifier bandwidth to track out supply noise, our intent

is to have the output pole be the dominant one. Assuming this is the case, the

regulator bandwidth will then be approximately set by the output pole ωo (pole due

to parasitic capacitances at Vreg) as:

ωbw ≈
(1 + AaAo)

(1 + kAaAo)
· ωo ≈

ωo
k

(4.7)

where Aa and Ao are the open-loop DC gains of the amplifier stage and the output

stage respectively. In other words, the replica feedback reduces the amplifier gain by

roughly 1/k, which means, for unity gain feedback, the output pole pushes out by 1/k

as well. k is one of the design variables representing the weighting allocation between

feed-forward and feedback path.

The expression for the effective amplifier bandwidth is hard to derive exactly due

to the frequency dependent feedback of the local replica. However, as we intend the

replica pole to be much higher than the output pole so that all the amplifier gain can

be applied to suppress the supply noise, we can approximate the effective amplifier

bandwidth as the open-loop amplifier bandwidth multiplied by one plus the total DC

feedback gain i.e.,

ωaeff = (1 + kArepAa) · ωa (4.8)

where Arep represents the DC gain of the replica output stage (from Vbp to Vrpl), Aa

and ωa are the open-loop DC gain and bandwidth of the amplifier, respectively.

CHAPTER 4. DESIGN EXAMPLES 40

The supply sensitivity of the regulator mainly comes through the output device

Mreg where its open-loop sensitivity Svdd is equal to the resistive divider ratio between

the VCO resistance and the output device resistance. However, due to amplifier

feedback, the sensitivity is suppressed by one plus the feedback gain AaAo. Note

that because both the main path and the replica path in the amplifier stage respond

to supply noise, the amplifier will use all of its gain to suppress the supply noise,

and is independent of the k factor. The maximum sensitivity then occurs near ωbw

where the amplifier gain drops by ωa/ωbw. Hence the worst-case sensitivity can be

approximated by:

Smax = Svdd ·
ωbw

ωa · (1 + AaAo)
(4.9)

The output current can be obtained using long-channel device model applied to

the output PMOS transistor.

Results

Originally, we optimized the regulator without the output current constraint and

found that the PLL had serious trouble locking with this supply regulator. This is

because the regulator was not able to source enough current required by the VCO in its

operating frequency range, which resulted in the regulated output voltage saturating

out at a voltage lower than required by the VCO.

More specifically, Figure 4.6 shows the input-output transfer functions of the sup-

ply regulator for the ideal case and for the optimized regulator without the output

current constraint. In the ideal case, the output Vreg is a direct copy of the input

Vc. However, our regulator saturated out at around 0.5V while Figure 4.7 shows

that the control voltage range required for the VCO to operate between 1-2GHz is

roughly from 0.5-0.6V. Hence, our PLL failed to lock with this regulator because

the maximum regulator output voltage is outside the VCO operating range. This

failed example served to remind us of the “Garbage In Garbage Out” principle —

that the resulting design from performing the optimization is only as good as how we

constrained the problem.

CHAPTER 4. DESIGN EXAMPLES 41

Figure 4.6: Input-Output transfer function for the bad regulator design without out-
put resistance constraint.

Figure 4.7: VCO tuning range curve with the output frequency range specification
indicated as two dashed-lines.

CHAPTER 4. DESIGN EXAMPLES 42

Table 4.2: Simulated performance comparison between the initial and the final designs
for the supply regulator circuit.

Table 4.2 summarizes regulator’s simulated performance for both the initial and

the final design points (with the output current constraint). The initial design did

not meet supply sensitivity and effective amplifier bandwidth constraints. Figure 4.8

shows that the supply sensitivity of the initial design was not met because of a peak-

ing around regulator bandwidth frequency (1.1GHz), which was significantly reduced

in the final design. This is in agreement with our assumptions as, in deriving equa-

tion (4.9), we had expected the worst-case sensitivity to occur around the regulator

bandwidth frequency. This peaking behavior can also be seen in the regulator AC

transfer function for the initial design point as shown in Figure 4.10. Figure 4.9 shows

that the optimizer meets the final amplifier bandwidth specification by reducing the

amplifier gain from the initial design point and thus extends out the bandwidth.

To make sure that we no longer have the output voltage saturation problem, Figure

4.11 shows the input-output transfer function again for the new optimized design with

CHAPTER 4. DESIGN EXAMPLES 43

Figure 4.8: Simulated regulator’s supply sensitivity AC transfer function for both the
initial and the final designs.

Figure 4.9: Simulated regulator’s AC transfer function for the amplifier stage (with
replica feedback) for both the initial and the final designs.

CHAPTER 4. DESIGN EXAMPLES 44

Figure 4.10: Simulated regulator’s AC transfer function for both the initial and the
final designs.

the output current constraint. Our regulated output voltage here can comfortably

cover the required VCO input range of 0.5-0.6V.

Figure 4.12-4.14 shows optimizer solution paths from the initial design point (λ = 0)

to the final design point (λ = 0) for power, supply sensitivity, and the effective

amplifier bandwidth constraints. We can see that even though our initial design was

infeasible in simulation problem, the intermediate designs remained feasible in all

the relaxed intermediate problems where the relaxation was gradually removed as we

moved towards the final problem. Because the supply sensitivity was comfortably met

in our initial relaxed problem, the optimizer started off by focusing on reducing the

power (Figure 4.12) until the supply sensitivity hit the constraint boundary (Figure

4.13) roughly around λ = 0.6, at which point the homotopy power started to increase

back up to maintain feasibility.

CHAPTER 4. DESIGN EXAMPLES 45

Figure 4.11: Regulator’s Input-Output transfer function for the final design.

Based on the homotopy value and simulated value at λ = 0.0, Figure 4.13 and 4.14

tell us that we overestimated effective amplifier bandwidth and underestimated supply

sensitivity in our design equations. This is likely because we overestimated the gain

factors in our design equation by using simple long-channel model. Equation (4.8)

and (4.9) show that both the effective amplifier bandwidth and supply sensitivity are

dependent on the gain factors. Note that because ωa is inversely proportional to Aa

for a given power, the effective amplifier bandwidth is only dependent on the gm/C

factor of the amplifier stage and not on its output resistance. Hence, the error in

the effective amplifier bandwidth estimation is likely due to errors in estimating the

gm of amplifier stage and Arep while the error in the supply sensitivity is likely due

to errors in estimating gm of the amplifier stage and Ao. Figure 3.2 from Chapter 3

shows that we can overestimate gain (and hence gm because RL is fixed in Equation

3.1) by a factor of 4 based on this model. This is roughly 12dB which is close to the

discrepancy in our supply sensitivity results.

CHAPTER 4. DESIGN EXAMPLES 46

Figure 4.12: Power solution path from the initial design point (λ = 0) to the final
design point (λ = 1.0) for the supply regulator design.

Figure 4.13: Supply sensitivity solution path from the initial design point (λ = 0) to
the final design point (λ = 1.0) for the supply regulator design.

CHAPTER 4. DESIGN EXAMPLES 47

Figure 4.14: Effective amplifier bandwidth solution path from the initial design point
(λ = 0) to the final design point (λ = 1.0) for the supply regulator design.

4.3 Clocked Comparator

Our next design example is a 7-variable StrongARM comparator shown in Figure

4.15. This example will show that it can be very difficult to write accurate design

equations for some circuit performance behavior. More specifically, writing accurate

input-referred-noise equation for fully-dynamic StrongARM comparator is very dif-

ficult and has only recently been done analytically in [41]. Yet as we will see, the

solution provided by the complex analytical expression underestimated the noise by

almost a factor of 2 in our example and also did not meet the design specifications.

Problem Description

The design objective for the StrongARM comparator is to minimize its power con-

sumption subject to the following constraints:

• Clock-to-Output Delay. The clk-q delay should be less than 100ps.

CHAPTER 4. DESIGN EXAMPLES 48

Figure 4.15: StrongARM Comparator.

• Input-Referred-Noise. This should be less than 75µV rms.

Both of these two constraints are externally imposed by the application. The seven

design variables include six transistor widths (Wnclk, Wnin, Wninv, Wpinv, Wpeq, Wpchg)

and the input common-mode voltage (Vcm).

Design Equations

Power consumption is given by its dynamic power dissipation:

Power = α · Ctotal · V dd2 · f0 (4.10)

where Ctotal = Ctail + Cx + Cout + Cclkdrv + Cinputdrv is the total capacitance being

discharged in one cycle, fo is the operating frequency, and α is the average activity

factor. Cclkdrv and Cinputdrv are the total capacitances driven by the input and clock

buffers (not shown) in each cycle respectively including the gate capacitances of the

Mnin and Mpeq devices.

CHAPTER 4. DESIGN EXAMPLES 49

The clk-q delay is quite complex to estimate due to the cross-coupled transistors

so we will ignore their feedback effect to simplify our equations and use RC model to

model the delay through each transistor:

tclkq = ln(2) · (Rnclk · Ctail + (Rnclk +Rnin) · Cx + (Rnclk +Rnin +Rninv) · Cout)
(4.11)

As mentioned earlier, we will use slightly modified equations from [41] to model

our input-referred noise. The two main differences between our circuit and the one

in [41] are:

1. We do not have precharge transistors for nodes Xp and Xn, and

2. We have an extra equalization transistor Meq which we can ignore its noise

contribution as this transistor is off for the majority of the relevant time period.

The modified input-referred-noise equations are:

σ2
in = σ2

nin + σ2
ninv−pinv + σ2

pchg (4.12)

σ2
nin =

2 · kT · γ
CX · F

(4.13)

σ2
ninv−pinv =

kT · γ
2 · CX · F 2 ·H

+
kT · γ · Cout

8 · C2
X · F 2 ·H2

(4.14)

σ2
pchg =

kT

2 · Cout · F 2
+

kT

2 · CX · F 2 ·H
+

kT · Cout
8 · CX · F 2 ·H2

(4.15)

F =
2 · Vth · ρ

−1 + 2 ·
√

(Vdd − Vth) · (Vcm − Vth) · ρ
(4.16)

H =
Vdd − Vcm

Vth
·

Wninv

Lninv
· V 2

th

Wninv

Lnin
· (Vcm − Vth)2 − Wninv

Lninv
· V 2

th

(4.17)

where ρ = Wnin/Lnin

Wnclk/Lnclk
, k is the boltzmann constant, T is the temperature, γ is the tran-

sistor noise factor, Vcm is the input common-mode-voltage, Vth is transistor threshold

voltage, Vdd is the power supply, CX is the total capacitance at node CXp or CXn,

and Cout is the total output capacitance. The expressions for F and H were further

simplified from [41] by ignoring the body effect of the transistors.

CHAPTER 4. DESIGN EXAMPLES 50

Table 4.3: Simulated performance comparison between the initial and the final designs
for the StrongARM comparator circuit.

A rough explanation of what these equations mean is as follows. Equation (4.12)

sums up the input-referred-noise contributions from three main sources: the input

transistor, the two cross-couple transistors, and the precharge transistors. Each ther-

mal noise source is of the usual form kT/C in equations (4.13)-(4.15) and the addi-

tional factors in these equations are there to help refer the noises back to the input

node.

Results

Table 4.3 compares the StrongARM comparator simulated performance for both

the initial design point and the final design point. The initial point did not meet both

the clk-q and input-referred-noise specifications while the final design point was very

close to the limits of both specifications.

Figure 4.16-4.18 show the optimizer solution paths from the initial design point

(λ = 0) to the final design point (λ = 1). We can see that from the (λ = 0) point in

CHAPTER 4. DESIGN EXAMPLES 51

Figure 4.16: Power solution path from the initial design point (λ = 0) to the final
design point (λ = 1.0) for the StrongARM comparator design.

Figure 4.18 that despite our efforts to write accurate equations for the input-referred-

noise, the simulated noise was almost a factor of 2 higher than what our design

equation predicted.

CHAPTER 4. DESIGN EXAMPLES 52

Figure 4.17: Clk-q delay solution path from the initial design point (λ = 0) to the
final design point (λ = 1.0) for the StrongARM comparator design.

Figure 4.18: Input-referred-noise solution path from the initial design point (λ = 0)
to the final design point (λ = 1.0) for the StrongARM comparator design.

CHAPTER 4. DESIGN EXAMPLES 53

Figure 4.19: Charge-Pump and Filter.

4.4 Charge-Pump

Our next design example is a 5-variable charge-pump and filter circuit shown in

Figure 4.19. This example will show how to include statistical constraints in the op-

timization. We want to constrain the charge-pump mismatch and offset statistically.

Specifying statistical constraints in our optimizer is really not very different from

specifying any other constraints — you still write design equations to summarize the

statistical constraints and perform Monte Carlo simulations for the simulation prob-

lem. This charge-pump will be used inside a PLL that will be described in Chapter

6.

Problem Description

The design objective for our charge-pump and filter circuit is to minimize its power

consumption subject to the following constraints:

• Up-Down Current Mismatch. The combined systematic mismatch and 1-σ

random mismatch should be less than 10%.

• Charge Injection Current Overshoot. The amount of current injected into

the output node at each cycle due to charge-injection when the input switches

CHAPTER 4. DESIGN EXAMPLES 54

should result in less than 30% overshoot compared to nominal charge-pump

current.

• Input-referred Offset. The input-referred timing offset between the up and

down input signals should be less than 5ps.

• Voltage Ripple. Maximum voltage ripple caused by charge-pump mismatch

should result in less than -40dBc of spur when this charge-pump is used inside a

PLL. Assuming a VCO gain of 10GHz/V, this requires the ripple on the control

voltage be smaller than 2mV based on spur equation (6.7) at 1GHz operating

frequency.

• Supply Sensitivity. The nominal charge-pump current sensitivity to supply

noise should be less than 2% per 1% change in supply.

• PLL Natural Frequency. When this charge-pump is used inside a PLL, the

resulting PLL natural frequency based on the loop filter sizes should be less than

0.05 · ωref to ensure PLL stability where ωref = 2πfref with fref = 500MHz.

• PLL Damping Factor. When this charge-pump is used inside a PLL, the

resulting PLL damping factor based on the loop filter sizes should be greater

than 1/
√

2 to ensure that PLL has sufficient phase margin.

The first three constraints — mismatch, current overshoot, and offset — all have

the same goal of reducing the overall offset since charge-pump offset can be caused

by current or timing mismatch or charge-injection. The extra mismatch and charge-

injection constraints are there to ensure that the final offset value is not dominated

by just one single effect. These three constraints are usually internally imposed to

ensure charge-pump functionality.

The voltage ripple and supply sensitivity are usually externally imposed as they

can have a significant effect on the jitter performance when used inside a PLL. As the

voltage ripple is caused by charge-pump mismatch, its constraint is related to the first

three constraints on mismatch, overshoot, and offset. The difference is that the first

CHAPTER 4. DESIGN EXAMPLES 55

three constraints are imposed primarily for functionality while the ripple constraint

is there for jitter performance reasons.

The last two constraints — PLL natural frequency and PLL damping factor —

are there because the sizes of the loop filter have direct effect on these PLL parame-

ters. These two constraints can be externally or internally imposed depending on the

application.

The five design variables include three transistor widths (Win, Wld, Wbias) and the

resistor and capacitor in the loop filter (Rf , Cf).

Design Equations

Power is given by a sum of the static currents in the three branches multiplied by

the supply voltage:

Powercp = (2 · Icp + Iref) · Vdd (4.18)

where Icp = (Wbias/Wref) · Iref is the bias current in both differential pairs and Iref

is the reference current.

The current mismatch consists of two components: systematic mismatch µ∆Iout

and random mismatch σ∆Iout . We will assume that systematic mismatch is caused

primarily by channel-length modulation of the pMOS current mirror. We will derive

random mismatch based on Pelgrom’s transistor mismatch model [43].

For the systematic mismatch, we first determine the gate voltage of the pMOS

current mirror and then derive the up current (Iup) based on long-channel transistor

model:

Vcp =

√
Icp

Wld

2Lld
· µpCox

+ Vth (4.19)

Iup = Icp ·
(

1 + λp · (Vdd − Vc)
1 + λp · Vcp

)
(4.20)

CHAPTER 4. DESIGN EXAMPLES 56

where µp is the pMOS transistor mobility, Cox is the oxide capacitance, Vthp is the

transistor threshold voltage, λp is the channel-length modulation factor, and Vc is the

output bias voltage. The down current is simply equal to the bias current Icp. The

systematic mismatch is then given by:

µ∆Iout =

∣∣∣∣Iup − IdnIdn

∣∣∣∣ (4.21)

= λp ·
∣∣∣∣Vdd − Vc − Vcp1 + λp · Vcp

∣∣∣∣ (4.22)

The Pelgrom’s model accounts for the threshold voltage (Vth) and current gain

(β = W
2L
· µCox) variations as follows:

σ∆Vth =
0.6V · Tox√

WL
(4.23)

σ∆β =
2%√
WL

(4.24)

where Tox is the oxide thickness, W and L are the width and length of the transistor

respectively. The drain current variation in each transistor can then be derived as:

σ2
∆Id

=
σ2

∆β

β
· I2

cp + gm2 · (σ2
∆Vgs + σ2

∆Vth
) (4.25)

We can find random current mismatch for our charge-pump by applying equations

(4.23) - (4.25) to derive current variation in each transistor and then refering and

summing them at the output branch. This is given by:

σ2
∆Iout = σ2

∆Iup + σ2
∆Idn

(4.26)

σ2
∆Iup = σ2

∆βld
· I2

cp + gm2
ld · (σ2

∆Vthld
+ σ2

∆Vgsld
) (4.27)

σ2
∆Idn

= 1
4
·
(
σ2

∆βbias
· I2

cp + gm2
bias ·

(
σ2

∆Vthbias
+ σ2

Vthref
+ σ2

∆βref
· Iref
βref

))
(4.28)

The total mismatch is then given by:

∆Imismatch = µ∆Iout + σ∆Iout (4.29)

CHAPTER 4. DESIGN EXAMPLES 57

Extra current due to charge injection is given by the product of the input gate

capacitance and maximum dv
dt

of the input voltage signal:

∆Iinject = Cg ·
dv

dt

= Win · Cox ·
V dd

trf
(4.30)

where trf is the rise and fall time of the input voltage signal.

To determine the input-referred timing offset, we make use of the fact that the net

charge delivered to the output must be zero i.e., tup · Iup = tdn · Idn. The nominal

values for tup and tdn are given by the minimum pulse width (tmin) of the up and

down voltage signals. Hence, the input-referred offset is given by:

σtoffset = |tup − tdn| (4.31)

= tmin ·
∣∣∣∣1− Iup

Idn

∣∣∣∣ (4.32)

= tmin ·∆Imismatch (4.33)

For the voltage ripple, our main concern is its effect on the PLL output spur at

the reference frequency. This ripple is caused by current mismatch, timing mismatch,

and charge-injection in the charge-pump. The charge-pump output current in a PLL

locked state due to these charge-pump non-idealities is a periodic signal and will

usually have a profile over a reference period similar to that shown in Figure 4.20.

For example, suppose there is a current mismatch between the up and down currents,

I1 = Iup − Idn, representing the mismatched current that is on for a small period of

time due to the minimum pulse width of the input up and down signals (t1). I2 will

represent the smaller down current that is on for t2 amount of time to cancel out the

charge dumped on the control voltage node by the mismatched current.

CHAPTER 4. DESIGN EXAMPLES 58

Figure 4.20: Charge-pump output current due to charge-pump non-idealities in a
PLL locked state over a reference period. For example, due to current mismatch,
I1 = Iup − Idn, representing the mismatched current that is on for a small period of
time due to the minimum pulse width of the input up and down signals (t1). I2 will
represent the smaller down current that is on for t2 amount of time to cancel out the
charge dumped on the control voltage node by the mismatched current.

To estimate the ripple, we first decompose the periodic charge-pump output current

into a discrete Fourier series:

Iout =
∞∑
k=1

ck · ejkωref t (4.34)

and find the Fourier coefficient at the reference frequency to get the magnitude of the

mismatch current. This decomposition can be done separately for each non-ideality

effect resulting in three Fourier coefficients (at the reference frequency), one for each

mismatch source. These components are given by [49]:

c1i = π ·∆Imismatch · Icp ·
(
tmin
Tref

)2

(4.35)

c1t = 2π ·∆tmismatch · Icp ·

(
tmin
T 2
ref

)
(4.36)

c1c = π ·∆Iinject · Icp ·
(
trise
Tref

)2

(4.37)

CHAPTER 4. DESIGN EXAMPLES 59

where c1i, c1t, and c1c are the Fourier coefficients associated with current mismatch,

timing mismatch, and charge-injection respectively. tmin is the minimum pulse width

of the up and down signals. trise is the rise (or fall) time of the up and down signals.

Tref is the period of the reference signal. The voltage ripple is then given by:

∆Vripple = ∆Icp · Zf
= (c1i + c1t + c1c) · Zf (4.38)

where Zf is the loop filter impedance = Rf + 1
jωCf

.

A change in the supply voltage affects the source and gate voltages of the pMOS

transistors hence their Vgs will remain the same (assuming the gate node is perfectly

coupled to Vdd) while their Vds will vary. Consequently, the change in current due to

the change in supply is mainly because of the finite output resistance of the pMOS

current mirror transistor i.e., dI
dV dd

= gdsld where gdsld is the transistor drain-source

conductance. The current sensitivity is then given by:

SI =
dIcp/Icp
dVdd/Vdd

=
dIcp
dVdd

· Vdd
Icp

= gdsld ·
Vdd
Icp

(4.39)

The equations for the last two constraints, PLL’s natural frequency (ωn) and damp-

ing factor (ζ), use a second-order system to model the PLL. The resulting equations

are given by:

ωn =
√
K · ωz (4.40)

ζ = 1
2
·
√
K

ωz
(4.41)

K =
Kpfd ·Kvco ·Rf

N
(4.42)

ωz =
1

Rf · Cf
(4.43)

CHAPTER 4. DESIGN EXAMPLES 60

where Kpfd is the phase-frequency-detector gain, Kvco is the VCO gain, and N is the

PLL divider ratio.

Results

Table 4.4 compares the charge-pump and filter simulated performance for both

the initial design point and the final design point. The initial design point did not

meet the current overshoot and the input-referred offset specifications. Figure 4.21

and 4.22 show the transient waveforms of the up and down current for the initial

design and final design respectively. We can see a pronounced overshoot in the down

current in both designs (53% in the initial design and 30% in the final design) due to

charge-injection through the gate capacitance of the down input transistor. There is

no overshoot in the up current as the current signal from the up differential pair is

filtered by the pMOS current mirror.

Figure 4.23 compares the charge vs. input arrival time transfer function between

the two design points. The initial design needed an offset of 17ps to have zero net

charge at the output while the final design only needed 0.9ps.

Figure 4.24 compares the output current histogram between the two design points.

Although the final design has smaller systematic mismatch (µ) and smaller random

mismatch (σ) than the initial design, the magnitudes of the mismatches relative to

the charge-pump current are similar because the final design also has smaller charge-

pump current. The total mismatch percentage is around 10% in both cases.

CHAPTER 4. DESIGN EXAMPLES 61

Table 4.4: Simulated performance comparison between the initial and the final designs
for the charge-pump and filter circuit.

CHAPTER 4. DESIGN EXAMPLES 62

Figure 4.21: Transient up and down currents for the initial design.

Figure 4.22: Transient up and down currents for the final design.

CHAPTER 4. DESIGN EXAMPLES 63

Figure 4.23: Comparison of charge-pump transfer function between initial and final
designs.

Figure 4.24: Comparison of output current histogram between initial and final de-
signs.

CHAPTER 4. DESIGN EXAMPLES 64

4.5 Discussion

From the design examples that we have presented, we have shown that:

• Designing with our optimizer can be intuitive. We can use rough design equa-

tions, formed from our first order understanding of the circuit, to help guide

our optimizer. Because these equations have inherent assumptions, they will

not perfectly match their corresponding simulation behaviors and it is the op-

timizer’s job to take care of the non-idealities that are not modeled in our

equations.

• Our intent-based homotopy optimizer is not a substitute for experienced analog

circuit designers as the design problems in equation space can still be quite

complex to solve. Rather, the goal of our optimizer is to improve designer’s

productivity by not requiring the designers to take into account every single

non-ideality effect to try to come up with a design solution. Designers still need

to rely on their experiences and their expertise to model the circuits in order to

generate rough initial sizes.

• Our optimizer can handle infeasible initial design point by applying constraint

relaxation technique to the initial design problem. The relaxed amount is grad-

ually driven to zero as we approach the final design problem.

• Some circuit behavior such as input-referred-noise of the StrongARM compara-

tor can be very difficult to model. Even though we wrote very accurate design

equations for the input-referred-noise, the resulting initial design still did not

meet the noise specification.

• As the charge-pump design example showed, we can incorporate statistical con-

straints just like any other constraints. The optimization time for these exam-

ples will usually be long as we now need to run many Monte Carlo simulations

for each sample data point.

Chapter 5

Optimizer Analysis

In this chapter, we will analyze various factors that affect the performance of our

optimizer such as the importance of the initial design equations and the scalability

of the data-fitting functions used in our optimizer.

5.1 Importance of Initial Design Equations

Having shown how our intent-based homotopy optimizer works with several design

examples, we would like to also understand why it works. Could it be that the initial

design equations yielded a very good initial point and we could have just solved the

problems using local optimization? Or could it be because of the smooth homotopy

interpolation and we could have just used any arbitrary problems that have same

initial optimal points as the initial problems in applying the homotopy method?

To answer the first question, we compare our intent-based homotopy optimizer

against a local optimizer using the same initial point. We use SCP as our local

optimizer reference comparison which is the same one used in the inner loop of our

intent-based homotopy optimizer. Columns 4 and 5 in Table 5.1 compares the number

of simulations needed in our intent-based homotopy optimizer and the local SCP

optimizer. We can see that though our optimizer performs better in many cases, SCP

optimizer can sometimes perform equally well. However, the key advantage is that

65

CHAPTER 5. OPTIMIZER ANALYSIS 66

Table 5.1: Optimizer performance comparison between intent-based homotopy, SCP,
and fixed-point homotopy. The last three columns on the right show the number of
simulations required by each optimization algorithm.

our optimizer is also more robust. The SCP optimizer cannot solve all problems;

in the StrongARM clocked comparator example, the SCP optimizer got stuck in an

infeasible region.

Figure 5.1 shows the solution paths of our local SCP optimizer starting from two

different points in the StrongARM comparator optimization and the solution path of

our intent-based homotopy optimizer through a Power-Noise-Delay space. The two

different starting points for the local optimizer are the point obtained from solving

the initial design equations and the point obtained from solving the initial relaxed

design equations (using the constraint relaxation techinque described in Section 3.2).

We can see that the local optimizer got stuck in an infeasible region for both cases.

Figure 5.2 and 5.3 show 2D projections of the solution path in Power-Delay and

Power-Noise spaces respectively. We can see from these two figures that the local

optimizer was able to eventually find a design point that meets the clk-q specification

but was unable to reduce the input-referred-noise less than about 90µV.

Having shown the advantages of homotopy over local optimization, we need to

compare our intent-based method to other homotopy approaches. To investigate

this, we compare our intent-based homotopy optimizer against a general fixed-point

homotopy optimizer using the same starting point. These results are shown in the

CHAPTER 5. OPTIMIZER ANALYSIS 67

Figure 5.1: Comparison of the solution paths of the local SCP optimizer and our
intent-based homotopy optimizer through Power-Delay-Noise space for the Stron-
gARM comparator design. The two initial points (1) and (2) for the local optimizers
are from solving the initial design equations and from solving the relaxed initial de-
sign equations respectively. Our intent-based homotopy optimizer starts from initial
point (1).

CHAPTER 5. OPTIMIZER ANALYSIS 68

Figure 5.2: 2D projection of the solution paths of the local SCP optimizer and our
intent-based homotopy optimizer through Power-Delay space.

Figure 5.3: 2D projection of the solution paths of the local SCP optimizer and our
intent-based homotopy optimizer through Power-Noise space.

CHAPTER 5. OPTIMIZER ANALYSIS 69

last column of Table 5.1. The fixed point homotopy only requires an initial point

and not the design equations from the user. We can see that, for our examples, while

the fixed-point homotopy optimizer is as equally robust as our optimizer, it generally

takes longer to optimize the circuits suggesting that the initial design equations do

play a significant role in guiding the optimizer to the final solution.

In summary, while our intent-based homotopy optimizer does not guarantee a glob-

ally optimal point, it can be more robust than using a local optimizer and can guide

the optimizer more efficiently than using a general fixed-point homotopy technique.

5.2 Optimizer Performance Analysis

In this section, we examine various factors that affect the performance of our op-

timizer. We first analyze how various different fitting functions used to form the

approximate convex problems in the local optimization loop affect the overall compu-

tational efficiency of our optimizer. Then we examine how our optimizer would fare

if it had a perfect initial design equation.

5.2.1 Computational Efficiency

As most of our optimization time is spent simulating circuits, the number of samples

required to create the approximate problem at each local optimization step plays

a significant role in the computational efficiency of our optimizer. The standard

formulation of the SCP optimization described in the previous section creates and

solves a quadratic model. In this section, we use three different types of fitting

functions: quadratic, linear and user-assigned to explore this question. The quadratic

and the linear fitting functions obviously scale quadratically and linearly with the

number of parameters respectively.

The available user-assigned fitting functions are limited to functions that are both

convex and scale linearly with the number of parameters. For our experiment, we limit

these to linear, inverse and log functions. The user can select from these functions

CHAPTER 5. OPTIMIZER ANALYSIS 70

Table 5.2: Comparison of the number of simulations taken by the optimizer for dif-
ferent fitting functions.

what they think will best fit their for each objective and constraint functions in their

design problem.

We chose these functions since using linear and user-assigned functions might per-

form better than the original quadratic function because these functions require fewer

simulations to create the model. On the other hand, because the quadratic function

can provide a better fit to a general surface and will therefore usually has larger

trust region, this might result in the optimizer taking less number of iterations and

ultimately use less total simulation per each local optimization run.

Table 5.2 shows the comparison of the number of simulations used by each fitting

function for several design examples. We can see that using the linear and the user-

assigned fitting functions perform better than using the quadratic fitting function.

Hence the benefit of simpler model fitting of the linear and the user-assigned functions

outweighs the cost of having a larger number of iterations per solution. This can also

be seen in Figure 5.4 where we plot the ratio between the number of simulations used

by the quadratic fitting function (Nquad) to the the number of simulations used by the

linear fitting function (Nlinear). We can see that this ratio scales roughly linearly (or

worse) with the number of variables. This data indicates that the quadratic fit does

require fewer iterations but that advantage does not strongly depend on the number

of variables. Thus, even for small number of variables, using linear fitting function is

much more efficient.

CHAPTER 5. OPTIMIZER ANALYSIS 71

Figure 5.4: Ratio between the number of simulations used by the quadratic fitting
function method (Nquad) to the number of simulations used by the linear fitting func-
tion method (Nlinear).

CHAPTER 5. OPTIMIZER ANALYSIS 72

Figure 5.5: Number of samples vs. number of variables categorized by the feasibility
of the initial point. These numbers are for optimization done with quadratic fitting
functions. The constraints in the regulator example presented in Section 4.2 were
also modified to generate an example with feasible initial point.

Regardless of the fitting functions used, the number of simulations needed for each

optimization run should not be affected by the number of constraints as the same set

of samples are reused to fit each constraint function. However, the difficulty of the

constraints does play a significant role. If the constraints are difficult to meet or even

initially infeasible by the initial design point, the number of simulations needed may

be increased as suggested by Figure 5.5 that shows the number of samples vs. the

number of variables categorized by the feasibility of the initial point using quadratic

fitting function.

CHAPTER 5. OPTIMIZER ANALYSIS 73

5.2.2 Perfect Initial Design Equations

In this section, we examine what is the best possible performance of our optimizer:

what would happen if we had a perfect initial problem to use in our intent-based

homotopy for each design problem. Of course we cannot do this directly because the

perfect initial design equations would need to model the simulation space perfectly.

Hence, figuring out the exact analytical form of these equations is impractical.

Instead, we first optimize each problem once (using intent-based homotopy) to

pre-determine the actual solution to the simulation problem and then we reuse this

solution and the same simulation problem as our new initial problem for the intent-

based homotopy. This new initial simulation problem serves as a proxy for our perfect

initial problem. Obviously, solving this artificial perfect initial problem will be slow

as it is a simulation problem but its main purpose is to help us investigate how many

iterations the optimizer would take in the best case scenario.

In this ideal case, the optimizer should take just one step at the outer level (λ = 0 to

λ = 1) and one iteration and the inner level. Hence, the ideal number of simulations

would just be the number of simulations required to fit the data sample once.

Table 5.3 summarizes the number of simulations needed using this methodology

with the quadratic fitting function for several design examples. The “Min Number of

Samples” column tells us the least number of samples the optimizer need in an ideal

case. We can see from the last column (“List of Number of Inner Iterations”) that,

for most cases, our optimizer behaved ideally at the outer homotopy loop, taking just

one homotopy step. The inner loops, however, usually take a few iterations and this

is because the local optimizer needs a few iterations to figure out when it has achieved

convergence.

CHAPTER 5. OPTIMIZER ANALYSIS 74

Table 5.3: Number of simulations taken by the optimizer with perfect initial problems.
The “Min Number of Sample” column indicates the minimum number of samples
required by the optimizer to create one approximate convex problem. The “List of
Number of Inner Iterations” column gives a list of the number of inner iterations.
The size of this list is the number of outer homotopy iterations. For example, the
VCO optimization took only one outer iteration, and in this outer iteration, it took
three inner iterations.

5.2.3 Summary

From the analyses that we have performed in this chapter, we have found that:

• Our optimizer can be more robust than a local optimizer. The StrongARM

comparator design example showed that a local optimizer may get stuck in an

infeasible region when given an initially infeasible point whereas the homotopy

optimizers were able to find a feasible solution.

• Using linear models in the approximate convex problems in the local optimiza-

tion loops can lead to a better optimizer performance than using quadratic

models. This is because the benefit of needing less number of simulations to fit

the linear models outweigh the cost of having a larger number of outer iterations

per solution.

• Design equations can play a significant role in guiding the optimizer to the

final solution. The comparison of our optimizer with a generic fixed-point ho-

motopy showed that we can use design equations to more efficiently guide the

optimizer. Our experiments with perfect initial equations showed that more ac-

curate equations can also help improve the optimizer performance by reducing

the total number of simulations required. These results are encouraging, since

CHAPTER 5. OPTIMIZER ANALYSIS 75

it shows that when the design equations are close, our method requires very few

additional simulations to validate the result. But it also shows that checking

the convergence of the solution is, in general, expensive. This fact will become

important when we look at the hierarchical optimization in the next Chapter.

Chapter 6

Hierarchical Optimization

As the performance of the flat optimization technique described in Chapter 3 scales

with both the number of design variables and the simulation time, it can become

impractical to design circuits with long simulation times or with large numbers of

parameters. An 18-variable PLL design took 519 simulations or roughly 70 hours to

optimize using this flat optimization technique (with linear fitting function). Clearly,

we need a more efficient way to design large circuits if we want to give circuit designers

opportunities to explore different architectures. In this chapter, we show, through a

PLL example, how we can design large circuits much more efficiently using hierarchical

optimization.

6.1 Methodology

As with any general hierarchical optimization schemes, we first divide our top-level

circuit into several sub-blocks and design the top-level circuit using certain properties

of the sub-blocks as the design variables. In our approach, the sub-block design

specifications are the sub-block properties that we use as the top-level variables. Each

sub-block is responsible for determining their own transistor sizes by performing their

own intent-based homotopy optimizations as discussed in the previous chapters.

76

CHAPTER 6. HIERARCHICAL OPTIMIZATION 77

Figure 6.1: 18-variable PLL Specifications and Block Diagram

Consider an 18-variable PLL optimization problem as shown in Figure 6.1(a) where

we want to minimize its power subject to jitter, frequency range, reference spur, and

phase margin constraints. We may divide the PLL into several sub-blocks as shown in

Figure 6.1(b) consisting of phase-frequency detectors (PFD), charge-pump and loop

filter, supply regulator, voltage-control oscillator (VCO), VCO buffer, and frequency

divider. The sizes of the transistors in the PFD and the frequency divider blocks

are fixed in our example so these blocks do not have any design variables. The rest

of the sub-blocks are optimized using intent-based homotopy under their own design

specification constraints. We optimized these sub-blocks (except for the VCO buffer)

in Chapter 4.

6.1.1 Classifying Sub-Block Specifications

To determine which sub-block specifications to use as top-level design variables, we

first classify the sub-block specifications based on their relationship to the top-level

specifications as follows:

CHAPTER 6. HIERARCHICAL OPTIMIZATION 78

• Internal specifications. These are constraints that exist to ensure the func-

tionality of the sub-blocks when used inside a top-level block.

Although changing these sub-block specifications may have some effects on the

top-level specifications, the main job of these constraints are to ensure the

internal functionality of the sub-blocks.

For example, in the supply regulator block, we need to ensure that the supply-

regulator, when used inside a PLL, does not degrade the stability of the PLL

so we need to set its bandwidth constraint to be much higher than the PLL

loop bandwidth. This minimum regulator bandwidth constraint is an internal

specification to the regulator sub-block.

The maximum output current specification of the same supply regulator block

is also an internal specification because this constraint exists to ensure that it

can drive the VCO.

• Pass-through specifications. These are constraints that are passed through

directly from top-level specifications.

As the PLL frequency range is directly controlled by the VCO frequency range,

the top-level frequency range specification is considered a pass-through specifi-

cation which is passed directly down to the VCO sub-block

• Property specifications. These are specifications that are also used as opti-

mization variables at the top-level.

VCO jitter specification is an example of a property specification where it is also

used as a top-level parameter due to its effect on the top-level jitter specification.

Regulator supply sensitivity is also another example where we expect the regu-

lator supply sensitivity to have direct effect on the top-level jitter performance.

Table 6.1 summarizes the different types of specifications for the sub-blocks used

in our PLL example with the property specifications highlighted.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 79

Table 6.1: Specification Types for the PLL sub-blocks

CHAPTER 6. HIERARCHICAL OPTIMIZATION 80

6.1.2 Top-Down Optimization

There are two main ways of performing the optimization at the top level. One

approach would be to solely rely on the top-level equations provided by the designers

(see Section 6.1.4) and optimize the top-level problem in the equation space. The

sub-blocks are then optimized once using the final top-level design variables as their

design specifications. The main benefit of this approach is that we can significantly

reduce the total optimization time as our hierarchical optimization approach now

neither depends on the number of top-level parameters nor the top-level simulation

time. The main drawback is that our accuracy is now dependent on the accuracy of

the top-level equations. Note that with this technique, we only remove the depen-

dencies on the number of parameters and simulation time at the top level but not at

the sub-block level because we still use intent-based homotopy to optimize the sub-

blocks. However, the sub-blocks’ optimization times are usually much faster making

the potential reduction in total optimization time substantial.

An alternative approach would be to rely on homotopy, just like in the flat opti-

mization approach, to help move the solution from the designer’s equation space to

one in simulation space. The main benefit is that we will have simulation-accurate

optimization result, just like in the flat approach. However, the optimization time

will take much longer as we still depend on both the number of top-level parameters

and the top-level simulation time. Each top-level sample point that the optimizer

takes is also now more complex.

While a sample point in a flat optimization is equivalent to a simulation of the

circuit, a sample point in our hierarchical optimization in this alternative approach

consists of a top-level optimization and the sub-block optimizations. Because the per-

formance objective and constraint functions are evaluated at the top-level, a sample

point for our top-level optimization will require a flat top-level simulation.

In our example, this means running a whole PLL simulation to determine the

actual PLL’s power, jitter, reference spurs and phase margin for each sample point.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 81

Each top-level PLL simulation will in turn need the flat optimization variables —

the underlying transistor sizes of various sub-blocks in the PLL — as input to the

simulator. To determine these flat optimization variables, we optimize the sub-blocks

using the current values of the top-level variables as the sub-block specifications.

Hence, each hierarchical simulation consists of a flat top-level simulation and all sub-

block optimizations.

Although we use intent-based homotopy on the first optimization runs of the sub-

blocks, subsequent sub-block optimizations may rely on local optimization technique

because the specifications should change gradually as we move the top-level design

from ideal space to simulation space.

6.1.3 Hierarchical Optimization Algorithm

Let’s briefly summarize the steps of our hierarchical optimization algorithm:

1. Identify sub-block properties based on designer’s top-level circuit model equa-

tions.

2. Reformulate top-level optimization problem using these properties as top-level

optimization variables.

3. Optimize the top-level problem either in the equation space or with intent-based

homotopy as described in the previous section. If intent-based homotopy is used

to drive the top-level optimization, goto Step 4. Otherwise we are done.

4. For each top-level sample required in Step 3, optimize the sub-blocks with either

intent-based homotopy or local optimization using the solution of the top-level

problem as their specifications, and run a top-level simulation.

5. Repeat from Step 3 until done.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 82

6.1.4 PLL Top-Level Model

To help decide which sub-block specifications are property specifications, we need

to know how the sub-block specifications affect the top-level performance functions.

This is done in our approach using the circuit designer’s model equations. This

section describes the top-level equations for the PLL’s performance constraints using

the sub-block specifications as its design parameters.

Our PLL has five constraint functions: power, jitter, reference spurs, frequency

range and phase margin. Since the frequency range is a pass-through specification,

we do not need to write a top-level model for it and just pass this specification down

directly to the VCO sub-block.

The six top-level parameters (the sub-block property specifications highlighted in

Table 6.1) are the supply sensitivity, voltage ripple and the damping factor in the

charge-pump and filter block (cp), the supply sensitivities in regulator (reg) and VCO

buffer block (buf), and the phase noise of the VCO block (measured at 1MHz offset

frequency). We expect the sub-blocks’ supply sensitivities and the VCO phase noise

to primarily affect jitter, the voltage ripple to primarily affect the reference spur, and

the damping factor to primarily affect the phase margin. The model equations for

the four non-pass-through constraint functions below reflect this expectation.

• Power. Power is a sum of the individual sub-block powers which also include

a fixed-component due to the PFD and the divider. For the VCO sub-block,

we know based on Leeson’s model [34] that power is inversely proportional to

phase noise (PN). For the other variable sub-blocks, we model their powers to

be inversely proportional to their supply sensitivities (SS). We use this model to

help reduce the number of top-level parameters. The power expression is thus

given by:

PowerPLL = Powerfixed + Powervco + Powerreg + Powercp + Powerbuf

= Powerfixed +
Kp1

PNV CO

+
Kp2

SScp
+

Kp3

SSreg
+

Kp4

SSbuf
(6.1)

CHAPTER 6. HIERARCHICAL OPTIMIZATION 83

where Kp1−4 are inverse proportionality constants that can be estimated by

fitting the sub-block data.

• Jitter. To determine the contribution to the output jitter from each noise

source, we multiply each noise source power spectral density by its noise transfer

function to the output to get the output noise spectral density due to each noise

source. Then we can use Wiener-Khinchine Theorem [12] to obtain the output

jitter due to each noise source:

Jitter2
srci→out =

∫
Nsrci(f) ·Hsrci→out(f)df (6.2)

where Nsrci(f) is the ith noise source, Hsrci→out(f) is the noise transfer function

from the ith noise source to the output, and Jitter2
srci→out is the square of the

output jitter contribution due to the ith noise source.

Assuming the noise sources are independent, we can sum their contribution to

the total output jitter in a root-sum-square fashion.

Jitter2
out =

∑
Jitter2

srci→out (6.3)

Since we only have access to the top-level parameters and not the noise sources

themselves, we need to write the individual jitter equation (6.2) in terms of the

VCO phase noise and other sub-blocks’ supply sensitivities.

For the VCO sub-block, we want to write its PLL jitter contribution in terms

of its phase noise measured at 1MHz offset frequency. To do this, we assume

that the VCO output phase noise is dominated by white noise sources (such as

device thermal noise or white supply noise) and thus has a 1/f 2 shape in its

power spectrum. We can then write its jitter equation as:

Jitter2
vco→out =

∫
PNvco(f) ·Hvco→out(f)df

= PN1MHz ·
∫ (

1MHz

f

)2

·Hvco→out(f)df (6.4)

CHAPTER 6. HIERARCHICAL OPTIMIZATION 84

where PN1MHz is the VCO phase noise measured at 1MHz offset frequency

and is used as a top-level parameter, Hvco→out(f) is the noise transfer function

from the VCO output to the PLL output. We can simplify this equation fur-

ther by assuming that the integral term is constant with respect to our design

parameters.

For the charge-pump, regulator and buffer sub-blocks, we assume that the main

noise source in each of these blocks is the supply noise and thus write their

PLL jitter contribution in terms of their supply sensitivities. To do this, we

first decompose each of the noise transfer function into a multiplication of two

transfer functions: one from the supply noise to the block output and the other

from the block output to the PLL output. For example, the jitter equation for

the regulator sub-block is given by:

Jitter2
reg→out =

∫
Nvddreg(f) ·Hvddreg→out(f)df

=

∫
Nvddreg(f) · {Hvddreg→reg(f) ·Hreg→out(f)} df (6.5)

where Nvddreg(f) is the supply noise source, Hvddreg→reg(f) is the (square of)

regulator’s supply sensitivity and is a top-level parameter, and Hreg→out is the

noise transfer function from the regulator output to the PLL output. We can

then simplify this equation further by assuming that the supply noise source and

the noise transfer function are constant with respect to our design parameters.

Similar expressions can be derived for the charge-pump and buffer sub-blocks.

We can now use equation (6.3) to combine these individual jitter contribution

to get the total output jitter:

Jitter2
out = Jitter2

fixed + Jitter2
vco→out + Jitter2

reg→out

+Jitter2
cp→out + Jitter2

buf→out

= Jitter2
fixed +Kj1 · PN1MHz +Kj2 · SS2

cp +Kj3 · SS2
reg

+Kj4 · SS2
buf (6.6)

CHAPTER 6. HIERARCHICAL OPTIMIZATION 85

where Kj1−4 are the proportionality constants, PN1MHz is the VCO phase noise

at 1MHz offset, SScp/reg/buf are the supply sensitivities for the charge-pump,

regulator and VCO buffer respectively.

• Reference Spur. The non-idealities in the charge-pump cause periodic ripples

on the control voltage of the VCO which translate into a spur at the reference

frequency offset in the PLL output power spectral density. Assuming a narrow

band FM modulation, the expression for reference spur is given by [49]:

Spurref = 20 · log
(
Kvco ·∆vripple

2 · ωref

)
(6.7)

where Kvco is the VCO gain, ∆vripple is the voltage ripple on the control signal

and is also a top-level design parameter, and ωref = 2πfref (fref = 500MHz).

• Phase Margin. For a second order system, the phase margin is related to the

damping factor by:

PM = arccos

(
1

(2ζ)2

)
(6.8)

where ζ is the damping factor which is also a top-level design parameter.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 86

Table 6.2: Number of top-level simulations and total optimization time comparison
between the flat approach, hierarchical approach with only equations at the top level
and hierarchical approach with homotopy at the top-level. Note that the number of
simulations do not include the sub-blocks data but the optimization times do.

6.2 Results

Table 6.2 compares the PLL optimization times between the flat optimization ap-

proach and the two hierarchical approaches. The flat optimization technique with

linear fitting function took about 70 hours. The hierarchical approach with the top-

level problem relying solely on their equations took less than 2 hours. The hierarchical

approach with homotopy took about 17 hours in the best case (custom fitting func-

tion) and about 55 hours in the worst case (quadratic fitting function). From these

results, we can see that the first hierarchical approach that relies solely on the equa-

tions at the top-level had a significant improvement over the other two approaches:

35x faster than the flat approach and 8.5x faster than the other hierarchical approach.

The question is how much accuracy did we sacrifice from using the faster hierarchi-

cal approach? Table 6.3 summarizes the initial and final design performances of the

homotopy-based approach. The initial performance also represents the performance

of the equation-only approach (at the top level). This initial point was already fea-

sible so the optimizer focused on decreasing the power at the expense of more jitter.

The solution paths for power and jitter can be seen in Figures 6.2 and 6.3. We can

see that using the more accurate approach only provided about 5% improvement.

Clearly, the benefit of the faster approach outweigh the cost in its accuracy, at many

stages in the design. In particular, it allows the designer to “quickly” get a feeling

for the overall optimization leading to faster debug and tuning loops.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 87

Table 6.3: Simulated performance comparison between the initial and the final designs
for the PLL circuit.

Figure 6.2: Power solution path from the initial design point (λ = 0) to the final
design point (λ = 1.0) for the PLL design example.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 88

Figure 6.3: Jitter solution path from the initial design point (λ = 0) to the final
design point (λ = 1.0) for the PLL design example.

The reason why there is very little improvement in the more accurate approach is

because while the optimization algorithm of the faster approach is decoupled from top-

level simulations, it still requires the sub-blocks to be simulated in the sub-blocks’

optimization runs. If the final sub-block design specifications (that are top-level

variables) in the faster approach are not unreasonable, the sub-block optimization

ensures that the PLL is already well-designed. This is in contrast with an equation-

only flat optimization approach where its accuracy will be entirely dependent on the

accuracy of the equations and the initial point you obtain can be very far away from

the final optimized point. This can be seen by looking at the simulated performance

of the initial point in the examples in Chapter 4.

To understand why the more accurate hierarchical approach is slow, Table 6.4

provides the break-down of the number of simulations and optimization times spent

inside each block (using quadratic fitting function at the top-level). The “Initial #

CHAPTER 6. HIERARCHICAL OPTIMIZATION 89

Table 6.4: Breakdown of the number of simulations and optimization time for the
PLL design example using linear fitting function.

of Simulations” column gives the number of simulations spent in initially optimiz-

ing each sub-block using intent-based homotopy. These numbers also represent the

number of simulations used in the faster hierarchical approach where the sub-blocks

were optimized only once. Subsequent calls to sub-block optimizations utilize local

optimization as explained in Section 6.1.2. We can see that 82% of the time is spent

simulating the top-level PLL.

CHAPTER 6. HIERARCHICAL OPTIMIZATION 90

6.3 Benefits and Limitations

Besides the runtime benefit mentioned in the earlier section, performing optimiza-

tion hierarchically is also more intuitive and more in line with how a circuit designer

would tackle a big block like a PLL. In a traditional approach to a PLL design, circuit

designers would first make sure that the individual sub-blocks like the PFD, VCO,

charge-pump, etc. work well according to their specifications first before putting them

together to be used in a more time-consuming set of top-level PLL simulations.

The question that often arises during a traditional PLL design approach is how

to set the design specifications of the sub-blocks. Since we first ask the designers

to categorize the different sub-block specifications, this forces the designer to think

carefully about the relationship between the sub-block performance and the top-level

performance. The sub-block optimizers will spend more time focusing on the objective

and constraints that have direct impact on the top-level performance while ensuring

that the sub-block is functional.

One of the main current limitations of our hierarchical implementation is that

we cannot use a multi-valued variable in our top-level equations because sub-block

specifications can only be single-valued. For example, the top-level jitter contribution

from the VCO in our PLL example is more accurately written in terms of the VCO’s

phase noise spectrum instead of a phase noise value at a certain offset. We had to

make some assumptions about the shape of the phase noise spectrum in order to write

our equations.

Chapter 7

Conclusions

The main contributions that we have made in this work include:

1. Investigating applying homotopy algorithms to circuit optimization problems

while making use of designers’ equations to help guide the optimizer. This

intent-based homotopy approach was faster than a generic homotopy approach

or a local optimization approach and more robust than local optimization. Fur-

thermore, our approach also allow designers to improve their productivity as

they can use rough design equations to come up with initial sizes for the circuits

and not have to worried about all the unimportant non-ideality effects.

2. We explored hierarchical extensions of our flat approach to optimize larger cir-

cuits and found, for our example, that we can rely solely on equations at the

top-level to optimize our circuits while we use the intent-based homotopy ap-

proach to optimize the underlying sub-blocks.

7.1 Future Work

As can be seen in our design examples, the optimization times for our optimizer are

in general still quite slow compared to equation-based approach. This is because the

basis of our research started off from the simulation-based optimization approaches’

point of view and then we asked ourselves how we can improve upon these approaches,

91

CHAPTER 7. CONCLUSIONS 92

i.e., how we can make them faster. And we did find that we can make them faster

but, unfortunately, no where near as fast as equation-based approaches.

The reason why simulation-based optimization approaches cannot be fast is because

there is a factor affecting the optimization time that the optimizer cannot control:

circuit simulation time. If a circuit takes many minutes or hours to simulate, it is

almost impossible to make this approach anywhere near as fast as equation-based

approaches.

This raises an interesting question for future work on whether we could do better by

starting from equation-based optimization approaches’ point of view and then tackle

their weaknesses which are mainly ease of use and accuracy. Researches in symbolic

analysis and generation, as mentioned in Chapter 2, attempt to address these issues

to some extent by trying to automatically generate equations for you. However, their

main drawback is that they are mainly applicable to linear circuits.

One potential interesting way of overcoming this drawback is to first figure out the

linear intent of the circuit and apply the above technique to this linear part of the

circuit. In our design methodology group, we believe that almost all circuits have

a linear intent, but it may be in some other transformed domains rather than the

direct voltage or current domains [30]. For example, the PLL takes in a voltage input

and produces a voltage output, and the relationship between those two voltages are

highly non-linear but that is not the main intent of the PLL. After all, it is a phase

locked loop, so its intent lies primarily in the phase domain. Hence, if you view the

PLL from a phase perspective, then the PLL circuit is linear. If these linear intents

can be leveraged in some ways by the symbolic analysis and generation tools, then

we can make these tools more broadly applicable and useful to a larger community

of circuit designers.

Another interesting future work direction would be to investigate various ways

to speed up the performance of hierarchical optimization. There are two main ap-

proaches to doing this. First, with the top-level homotopy approach, we can have

CHAPTER 7. CONCLUSIONS 93

designers create better top-level models so that the top-level homotopy loop will take

less number of simulations.

Second, instead of relying solely on the top-level equations, we can try to make

the underlying simulation engine faster which can be especially beneficial for design

problems with time-consuming simulations like our PLL example. This can be done

through use of behavioral top-level models. However, this method relies heavily on

the designer’s knowledge of the circuit to ensure that the resulting behavioral models

are reasonably accurate compared to real simulation. This is the approach taken in

[46, 61].

Bibliography

[1] N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon. A trust-region

framework for managing the use of approximation models in optimization. Struc-

tural Optimization, 15:16–23, February 1998.

[2] E. Alon, J. Kim, S. Pamarti, K. Chang, and M. Horowitz. Replica compensated

linear regulators for supply-regulated phase-locked loops. IEEE Journal of Solid-

State Circuits, 41:413–424, February 2006.

[3] J. April, F. Glover, J. P Kelly, and M. Laguna. Practical introduction to simu-

lation optimization. In Proceedings of the 2003 Winter, volume 1, pages 71–78,

December 2003.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University

Press, 2004.

[5] W. Chen and G. Shi. Implementation of a symbolic circuit simulator for topolog-

ical network analysis. In IEEE Asia Pacific Conference on Circuits and Systems,

pages 1368–1372, December 2006.

[6] D. M. Colleran, C. Portmann, A. Hassibi, C. Crusius, S. S. Mohan, S. Boyd,

T. H. Lee, and M. Hershenson. Optimization of phase-locked loop circuits via

geometric programming. In IEEE Custom Integrated Circuits Conference, pages

377– 380, September 2003.

[7] J. L. Dawson, S. P. Boyd, M. Hershenson, and T. H. Lee. Optimal allocation

of local feedback in multistage amplifiers via geometric programming. IEEE

94

BIBLIOGRAPHY 95

Transactions on Circuits and Systems I: Fundamental Theory and Applications,

48(1):1–11, January 2001.

[8] M. DeGrauwe and W. Sansen. A synthesis program for operation amplifiers.

IEEE International Solid-State Circuits Conference, XXVII:18–19, February

1984.

[9] F. El-Turky and E. E Perry. BLADES: an artificial intelligence approach to ana-

log circuit design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6):680–692, June 1989.

[10] F.V. Fernandez, A. Rodriguez-Vazquez, and J.L. Huertas. Interactive AC mod-

eling and characterization of analog circuits via symbolic analysis. Analog Inte-

grated Circuits and Signal Processing, 1(3), November 1991.

[11] C. Fleury. Sequential convex programming for structural optimization problems.

In Optimization of Large Structural Systems, pages 531–553, 1993.

[12] William A. Gardner. Introduction To Random Processes. Mcgraw-Hill (Tx), 2

sub edition, January 1990.

[13] G. Gielen, G. Debyser, K. Lampaert, F. Leyn, K. Swings, G. Der Van Plas,

W. Sansen, D. Leenaerts, P. Veselinovic, and W. van Bokhoven. An analogue

module generator for mixed analogue/digital asic design. International Journal

of Circuit Theory and Applications, 23(4):269–283, July 1995.

[14] G. G. E. Gielen and R. A. Rutenbar. Computer-aided design of analog and

mixed-signal integrated circuits. Proceedings of the IEEE, 88(12):1825–1854,

December 2000.

[15] G. G. E. Gielen, H. C. C. Walscharts, and W. M. C. Sansen. ISAAC: a symbolic

simulator for analog integrated circuits. IEEE Journal of Solid-State Circuits,

24(6):1587–1597, December 1989.

BIBLIOGRAPHY 96

[16] G. G. E. Gielen, H. C. C. Walscharts, and W. M. C. Sansen. Analog circuit

design optimization based on symbolic simulation and simulated annealing. IEEE

Journal of Solid-State Circuits, 25(3):707–713, June 1990.

[17] R. Haaglund. An optimization-based approach to efficient design of analog cir-

cuits. PhD thesis, Linkping Studies in Science and Technology, 2006.

[18] R. Harjani, R. A. Rutenbar, and L. R. Carley. OASYS: a framework for analog

circuit synthesis. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(12):1247–1266, December 1989.

[19] J. P. Harvey, M. I. Elmasry, and B. Leung. STAIC: an interactive framework

for synthesizing CMOS and BiCMOS analog circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 11(11):1402–1417,

November 1992.

[20] M. Hershenson. Design of pipeline analog-to-digital converters via geometric

programming. In IEEE International Conference on Computer Aided Design,

pages 317–324, November 2002.

[21] M. Hershenson. CMOS analog circuit design via geometric programming. In

Proceedings of the American Control Conference, volume 4, pages 3266–3271,

July 2004.

[22] M. Hershenson, S. P. Boyd, and T. H. Lee. GPCAD: a tool for CMOS op-amp

synthesis. In IEEE international conference on Computer-aided design, pages

296–303, 1998.

[23] M. Hershenson, S. P. Boyd, and T. H. Lee. Optimal design of a CMOS op-amp

via geometric programming. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 20(1):1–21, January 2001.

[24] M. Hershenson, A. Hajimiri, S. S. Mohan, S. P. Boyd, and T. H. Lee. Design and

optimization of LC oscillators. In IEEE International Conference on Computer-

Aided Design, pages 65–69, 1999.

BIBLIOGRAPHY 97

[25] M. Hershenson, S. S. Mohan, S. P. Boyd, and T. H. Lee. Optimization of induc-

tor circuits via geometric programming. In Proceedings of 36th Annual Design

Automation Conference, pages 994–998, 1999.

[26] N. C. Horta and J. E. Franca. Automatic synthesis of data conversion systems

using symbolic techniques. In Proceedings of the 38th Midwest Symposium on

Circuits and Systems, volume 2, pages 877–880 vol.2, August 1995.

[27] J. H. Huijsing, R. J. van de Plassche, and W. M. C. Sansen. Analog circuit design:

operational amplifiers, analog to digital convertors, analog computer aided design.

Springer, 1993.

[28] Cadence Design Systems Inc. Virtuoso neocircuit: Circuit sizing and optimiza-

tion, May 2009.

[29] M. Jeeradit, J. Kim, and M. Horowitz. Intent-leveraged optimization of analog

circuits via homotopy. In Design, Automation & Test in Europe Conference &

Exhibition, pages 1614–1619, March 2010.

[30] J. Kim, M. Jeeradit, B. Lim, and M. Horowitz. Leveraging designer’s intent:

A path toward simpler analog CAD tools. In IEEE Custom Integrated Circuits

Conference, pages 613–620, September 2009.

[31] H. Y. Koh, C. H. Sequin, and P. R. Gray. OPASYN: a compiler for CMOS oper-

ational amplifiers. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 9(2):113–125, February 1990.

[32] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley. MAELSTROM:

efficient simulation-based synthesis for custom analog cells. In Proceedings of the

36th annual IEEE Design Automation Conference, pages 945–950, 1999.

[33] H. Lamure and D. Michelucci. Solving geometric constraints by homotopy. IEEE

Transactions on Visualization and Computer Graphics, 2(1):28–34, March 1996.

[34] D. B. Leeson. A simple model of feedback oscillator noise spectrum. Proceedings

of the IEEE, 54(2):329–330, February 1966.

BIBLIOGRAPHY 98

[35] T. Y. Li and X. Wang. Solving real polynomial systems with real homotopies.

Mathematics of Computation, 60(202):669–680, April 1993.

[36] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang, J. Lu, and F. V. Fernandez.

Analog circuit optimization system based on hybrid evolutionary algorithms.

VLSI Journal Integration, 42(2):137–148, February 2009.

[37] D. Ma, G. Shi, and A. Lee. A design platform for analog device size sensitivity

analysis and visualization. In IEEE Asia Pacific Conference on Circuits and

Systems, pages 48–51, December 2010.

[38] T. McConaghy and G. Gielen. Globally reliable Variation-Aware sizing of ana-

log integrated circuits via response surfaces and structural homotopy. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

28(11):1627–1640, November 2009.

[39] F. Medeiro, F. V Fernandez, R. Dominguez-Castro, and A. Rodriguez-Vazquez.

A statistical optimization-based approach for automated sizing of analog cells. In

IEEE international conference on Computer-aided design, pages 594–597, 1994.

[40] R. C. Melville, L. Trajkovic, S. -C. Fang, and L. T. Watson. Artificial parameter

homotopy methods for the DC operating point problem. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 12(6):861–877, June

1993.

[41] P. Nuzzo, F. De Bernardinis, P. Terreni, and G. Van der Plas. Noise analysis of

regenerative comparators for reconfigurable ADC architectures. IEEE Transac-

tions on Circuits and Systems I: Regular Papers, 55(6):1441–1454, July 2008.

[42] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. Synthesis of high-performance

analog circuits in ASTRX/OBLX. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 15(3):273–294, March 1996.

[43] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers. Matching proper-

ties of MOS transistors. IEEE Journal of Solid-State Circuits, 24(5):1433–1439,

October 1989.

BIBLIOGRAPHY 99

[44] V. M. Perez, J. E. Renaud, and L. T. Watson. Homotopy curve tracking in ap-

proximate interior point optimization. Optimization and Engineering, 10(1):91–

108, March 2008.

[45] R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, and J. R. Hellums.

ANACONDA: robust synthesis of analog circuits via stochastic pattern search.

Proceedings of the IEEE Custom Integrated Circuits, pages 567–570, 1999.

[46] R. A. Rutenbar, G. G. E. Gielen, and J. Roychowdhury. Hierarchical modeling,

optimization, and synthesis for System-Level analog and RF designs. Proceedings

of the IEEE, 95(3):640–669, March 2007.

[47] S. J. Seda, M. G. R. Degrauwe, and W. Fichtner. A symbolic analysis tool for ana-

log circuit design automation. In IEEE International Conference on Computer-

Aided Design, pages 488–491, November 1988.

[48] G. Shi and X. Meng. Variational analog integrated circuit design via symbolic

sensitivity analysis. In IEEE International Symposium on Circuits and Systems,

pages 3002–3005, May 2009.

[49] K. Shu and E. Sanchez-Sinencio. CMOS PLL synthesizers: analysis and design.

Springer, 2005.

[50] K. Swings and W. Sansen. DONALD: a workbench for interactive design space

exploration and sizing of analog circuits. In Proceedings of the conference on

European design automation, pages 475–479, 1991.

[51] C. Toumazou and C. A. Makris. Analog IC design automation: part i. automated

circuit generation: new concepts and methods. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 14(2):218–238, February 1995.

[52] J. C. Vital and J. E. Franca. Synthesis of high-speed A/D converter architectures

with flexible functional simulation capabilities. In IEEE International Sympo-

sium on Circuits and Systems, volume 5, pages 2156–2159, May 1992.

BIBLIOGRAPHY 100

[53] P. Wambacq, F. V. Fernandez, G. Gielen, and W. Sansen. Efficient symbolic com-

putation of approximated small-signal characteristics. IEEE Journal of Solid-

State Circuits, pages 461–464, May 1994.

[54] L. T. Watson. Computational experience with the ChowYorke algorithm. Math-

ematical Programming, 19(1):92–101, December 1980.

[55] L. T. Watson. Theory of globally convergent Probability-One homotopies for

nonlinear programming. SIAM Journal on Optimization, 11(3):761, 2001.

[56] L. T. Watson, S. C. Billups, and A. P. Morgan. ALGORITHM 652: HOMPACK:

a suite of codes for globally convergent homotopy algorithms. ACM Transactions

on Mathematical Software, 13(3):281–310, September 1987.

[57] H. Xu, G. Shi, and X. Li. Hierarchical exact symbolic analysis of large analog

integrated circuits by symbolic stamps. In 16th Asia and South Pacific Design

Automation Conference, pages 19–24, January 2011.

[58] G. Yu and P. Li. Yield-aware analog integrated circuit optimization using geo-

statistics motivated performance modeling. IEEE International Conference on

Computer-Aided Design, pages 464–469, November 2007.

[59] Q. Yu and C. Sechen. A unified approach to the approximate symbolic analysis

of large analog integrated circuits. IEEE Transactions on Circuits and Systems

I: Fundamental Theory and Applications, 43(8):656–669, August 1996.

[60] W. Zangwill. Pathways to solutions, fixed points, and equilibria. Prentice-Hall,

1981.

[61] J. Zou, D. Mueller, H. Graeb, and U. Schlichtmann. A CPPLL hierarchical

optimization methodology considering jitter, power and locking time. Proceedings

of the 43rd annual Design Automation Conference, pages 19–24, June 2006.

