
AN OPEN-SOURCE FRAMEWORK FOR FPGA EMULATION OF

ANALOG/MIXED-SIGNAL INTEGRATED CIRCUIT DESIGNS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Steven Herbst

June 2021



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by-nc/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/gj828vr5382

 

© 2021 by Steven G Herbst. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/gj828vr5382


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Amin Arbabian

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

FPGA emulation is widely used to speed up simulations of digital chip designs, but the technique is

di�cult to extend to analog/mixed-signal (AMS) designs because they contain blocks that cannot be

directly mapped to an FPGA’s programmable logic. This necessitates the creation of synthesizable

models for AMS blocks, a process that is time-consuming, error-prone, and expensive, as it requires

a rare combination of expertise: analog modeling and FPGA implementation. Furthermore, fast

AMS simulation techniques do not always work well on an FPGA, and can limit the speedup that

is possible through emulation.

This thesis is about my e↵orts to unlock the potential of FPGA emulation for AMS designs by

developing new high-performance AMS emulation techniques, along with an open-source framework

that makes it easy to apply those techniques. The underlying premise is that AMS emulators

should take large, but precise, timesteps corresponding to digital events, leveraging compile-time

precomputation to make the FPGA implementation more e�cient. “Analog-only” timesteps should

be avoided, since their e↵ect on emulator performance is more severe than in a CPU-based simulation.

The open-source emulation framework has been applied to six commercial designs, as well as

one academic design. I focus on three of those applications in this thesis: an ADC-based high-

speed link design, a firmware-controlled flyback converter, and an NFC-powered chip. Across those

applications, speedups as compared to existing CPU-based simulations ranged from 2-3 orders of

magnitude, creating new opportunities for pre-silicon firmware development and RTL-level verifica-

tion of slow feedback loops. My hope is that this freely available, high-performance framework will

help to break through the verification bottleneck in modern AMS design.

iv



Acknowledgments

First o↵, I’d like the thank the organizations whose funding made this research possible: the Hertz

Foundation, the Standard Graduate Fellowship (SGF), Stanford SystemX, and DARPA POSH. The

freedom provided by Hertz and SGF was amazing, empowering me to explore “side quests” far

outside the scope of this thesis. In addition, I am grateful to have been able to count on the support

of the Hertz community, both in providing feedback on ideas and, near the end of the journey, in

brainstorming ideas about what to do next. On a similar note, I am glad to have had the chance to

be part of the open source community around the DARPA IDEA/POSH programs.

Of course, I wouldn’t be at this point if it weren’t for my advisor, Prof. Mark Horowitz, who

invited me to come to Stanford in 2016 to work on open-source tools. I particularly appreciate how

supportive he was in my experiments to bring software methods into our analog design flows, even

when it was not smooth sailing at first.

I would like to thank the entire VLSI Research Group for being a fun, thoughtful group, and for

teaching me all sorts of new things about software and hardware design. More specifically, thanks to

the circuits subgroup for being such a great team through the ButterPHY and DragonPHY tapeouts.

I think we ultimately figured out a really e↵ective workflow, so thank you for putting in the e↵ort

to make that happen.

I’d also like Dr. Byong Chan Lim, who was a researcher in Mark’s group near the beginning of

my time at Stanford. Byong helped me get started on the analog/mixed-signal emulation path, and

provided really insightful feedback on my early work.

More broadly in the EE Department, thank you to John DeSilva and Joe Little for helping to

set up and maintain servers for regression testing on physical FPGA boards. This was a unique ca-

pability that proved useful for several open-source projects. Although no one could have anticipated

it when those servers were set up, they proved invaluable for FPGA testing during the COVID-19

pandemic, when we didn’t have physical access to research facilities.

Outside of Stanford, I’d like to thank Gabriel Rutsch at Infineon for being a great collaborator

throughout the development of the emulator framework. He not only led the development of one

of the framework’s tools, but championed the project within Infineon, finding many interesting use

cases. I would particularly like to thank him for setting up a three-month visit for me to work on the

v



framework at Infineon’s global headquarters in Munich in 2019, which was an amazing experience.

On a personal note, I would like to thank my parents, Pat and Barbara, for being so warmly

supportive during the Ph.D. program, and long before, laying the groundwork that made it possible

to complete such an endeavor. Thanks as well to my sister Wendy and her husband Nick for being

great compatriots through the grad student experience, as they worked on Ph.D. programs at UCLA.

Finally, I would like to thank my girlfriend, Mahati. We ended up taking a serial, not parallel,

approach to grad school: she completed a Ph.D. program at Berkeley around the time that I started

at Stanford. That wasn’t the plan from the beginning, but she was nonetheless supportive of my

decision to leave industry to start a Ph.D. program. Having recently been in my shoes, she has had

a bunch of great advice. But above all, I have appreciated her joyful outlook on life, which buoyed

me through the tough parts of the Ph.D. journey.

vi



Contents

Abstract iv

Acknowledgments v

1 Introduction 1

2 Related Work 4

2.1 Hardware-in-the-Loop Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Oversampling with Xilinx System Generator . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Oversampling with Simscape Electrical . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Emulation of Discrete-Time Analog Circuits . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Automated Floating- to Fixed-Point Conversion . . . . . . . . . . . . . . . . . . . . . 7

2.6 Library of Oversampled Analog Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Oversampling at the Component Level . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Running Oversampled Analog Models on a Processor . . . . . . . . . . . . . . . . . . 9

2.9 Gate-Level Timing Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Trouble with Oversampling 11

3.1 Simulation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Emulation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Analog Timestep Vanishes 16

4.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Static Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 State Space Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 State update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.4 Output update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Impulse Response Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



4.3.1 Piecewise-Constant Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 High-Speed Link Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.2 Spline Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Dial E for Emulation 34

5.1 svreal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Fixed-Point Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 Real-Number Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.5 Operations Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.6 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 msdsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Input Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 anasymod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Variable timestep management . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Emulator clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.4 Generated clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.5 Interactive tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 The Paradigm Cases 83

6.1 Firmware-Controlled Flyback Converter . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 NFC-Powered Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Taking bigger timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 DragonPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Channel modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Low-level emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.3 High-level emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 Architecture comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion 98

viii



A Integral of a Matrix Exponential Times a Polynomial 100

B Generating a Step Response from S-Parameters 102

B.1 Computing 2-port S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Computing the transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3 Computing the impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

ix



List of Tables

4.1 High-Speed Link Resource Utilization (Spline Approach, ZC706) . . . . . . . . . . . 29

4.2 Design Space Exploration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Common svreal operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 DragonPHY Throughput Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 DragonPHY Emulator Latency Comparison . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 DragonPHY Emulator Resource Utilization (ZC706) . . . . . . . . . . . . . . . . . . 95

6.4 Low-Level Emulator: Resource Utilization by Model (ZC706) . . . . . . . . . . . . . 95

x



List of Figures

3.1 Basic RC filter with an input x (t) and output y (t) . . . . . . . . . . . . . . . . . . . 11

3.2 E↵ective number of bits (ENOB) in a piecewise-constant representation of a sine wave,

as a function of the number of timesteps per period of the sine wave. . . . . . . . . . 13

3.3 Generic model of a mixed-signal chip design used for performance analysis. . . . . . 14

4.1 Comparison of the traditional and proposed approaches to synthesizable analog mod-

eling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Two possibilities for an analog “feature vector.” . . . . . . . . . . . . . . . . . . . . . 17

4.3 In the interpolation approach, the shape of an analog waveform u (t) is projected out

by an amount of time �tMAX , using n sample points and an implicit interpolation

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Notation used for a piecewise-constant signal: the i-th constant segment has a value

ui, held from time ti to ti+1. All times are relative to the first spline point. . . . . . 25

4.5 Notation used for the general case of impulse response modeling, where the input and

output are both splines. The shape of the input waveform is described by a history

of spline point vectors, with the vector ~ui describing the input shape from ti to ti+1.

All times are relative to the first output spline point. . . . . . . . . . . . . . . . . . . 26

4.6 Test case for studying the spline points concept: the main analog signal path of a

high-speed link, consisting of a lossy channel, followed by three CTLE stages. Each

stage has a saturating nonlinearity equivalent to 1 dB loss at 1V input. . . . . . . . 28

4.7 Comparison of the waveforms from the emulator and simulator, taken at the output of

the final CTLE stage. Orange dots represent timesteps taken by the emulator, while

the green waveform represents the implicit waveform between those points. The blue

waveform, barely visible due to overlapping, is the simulation baseline. . . . . . . . . 31

4.8 Resource utilization of three spline-based emulator designs: one using two spline

points, another using four spline points, and a third using seven spline points. . . . . 33

xi



5.1 Overview of the AMS emulation framework. Analog models are described in Python

and compiled into synthesizable SystemVerilog using msdsl, leveraging svreal to

implement real-number operations. anasymod then wraps emulator control infras-

tructure around the DUT and automates EDA tools to produce an FPGA bitstream. 35

5.2 msdsl approximates a function f (t) with a piecewise-polynomial representation de-

fined over the domain [tmin, tmax], using 2n-element lookup tables for the coe�cients. 53

5.3 Computing the inverse CDF of the Gaussian distribution (truncated to ±6�) . . . . 59

5.4 Gaussian noise generation in msdsl. A PRNG produces an n-bit signed integer, the

absolute value of which is run through a pseudo-logarithmic compression, followed by

an appropriately distorted version of the inverse CDF. The sign of the original integer

sets the sign of the output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 RC filter model including Johnson-Nyquist noise. . . . . . . . . . . . . . . . . . . . . 60

5.6 Example of a circuit with distinct operating modes, each of which behaves according

to linear dynamics. When k is asserted, the resistance of the RC filter is R1; otherwise

it is R0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Modeling example in which two independent switches can alter the dynamics of the

RC filter, resulting in four distinct linear operating modes. . . . . . . . . . . . . . . . 64

5.8 Example of a switched system that can be partitioned into subcircuits, each with a

smaller number of switch conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9 Buck converter circuit used as an example of modeling transistors and diodes with

msdsl’s netlist interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Modeling loading in msdsl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 SaturationModel models a unity-gain bu↵er with a hyperbolic tangent-shaped com-

pression. The amount of compression is controlled by the parameter vsat. . . . . . . 72

5.12 anasymod operates on a folder containing HDL sources, configured by various YAML

files (all optional except prj.yaml). It can run a computer-based simulation of the

design or an FPGA-based emulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.13 anasymod automatically generates infrastructure for timestep management, which

gathers timestep requests, takes the minimum, and passes that information back to

AMS models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.14 Simple oscillator model, operating at a frequency f , that illustrates the timestep

request interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.15 anasymod generates clock infrastructure that produces an emulator clock signal,

along with “true” clock signals that appear in the DUT. The input clock, emu clk 2x,

runs at twice the frequency of the emulator clock. . . . . . . . . . . . . . . . . . . . . 78

xii



5.16 Illustration of the hold-time hazard in an AMS emulator with generated clocks. The

RC filter output changes on emu clk, but the clock that samples the result, clk adc,

is delayed with respect to clk adc and therefore may arrive too late. . . . . . . . . . 79

6.1 Basic firmware-controlled flyback architecture: auxiliary windings (several, but one

shown here) feed back signals to a processor, which generates the gate drive waveform. 84

6.2 Basic NFC architecture; the TX uses amplitude modulation to communicate, while

the RX uses load modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 The DragonPHY architecture consists of 16 ADCs, organized into four banks, each

of which contains a phase interpolator. A digital core processes the ADC samples to

recover the transmitted data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Low-level DragonPHY emulator, in which synthesizable AMS models are used within

the existing hierarchy of the analog core. . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 High-level DragonPHY emulator, in which the analog core is replaced by a single

macromodel, and the behaviors of all 16 ADCs are modeled in parallel. . . . . . . . 91

6.6 Comparison of BER predicted by the DragonPHY simulation baseline and both em-

ulator architectures. The lower curve represents the e↵ect of jitter alone, while the

upper curve includes a fixed level of voltage noise. . . . . . . . . . . . . . . . . . . . 94

6.7 Composition of AMS modeling and infrastructure code for several high-speed link

emulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 S-parameter representations of a lossy channel. . . . . . . . . . . . . . . . . . . . . . 103

xiii



Chapter 1

Introduction

We are in what has been called a “new golden age” for innovation in chip design [27], driven by the

convergence of several factors. On one hand, increasingly complex machine learning applications are

being deployed in mobile devices and on the cloud, but they are constrained by power consumption,

out of both battery life and cost considerations. At the same time, with Dennard scaling having

faded some time ago, we cannot rely on silicon process innovations to deliver the performance needed

for these new applications.

These e↵ects, among others, have started moving the spotlight back to innovation in chip design

in recent years. Partially motivated by that trend, and partially reinforcing it, there has been a

resurgence of interest in open-source tools for chip designs. In fact, I would count myself as part of

that trend: back in 2016, having spent five years working as both a vendor and customer of chip

designs, and having observed how slow, expensive, and risky the process can be, I decided to take a

break from industry to help make chip design more accessible through open-source tools.

Over the past five years, there has been an explosion in both the quantity and quality of open-

source tools for building chips, culminating in the 2020 release of a completely open-source flow,

called OpenLANE [62], that provided an RTL-to-GDS flow for a real silicon process, SKY130 [20].

This is an incredible accomplishment for the open-source community, and represents the tireless

e↵orts of dozens of organizations over many years.

As these tools advance, they will drive down the time and cost of constructing chip designs. How-

ever, manufacturing the designs themselves remains exceptionally expensive and time-consuming,

and as a result, verifying chip designs prior to tapeout remains as important as ever.

Computer simulation is the workhorse for verifying blocks within chip designs, but it tends to

run out of gas at the system level, where the entire chip design must be tested in conjunction with

firmware that runs on it and software that interacts with it. For example, an IBM study [6] showed

that it would take several years to simulate Linux booting on one of their new processor designs.

As a result, hardware emulation is often used instead of computer simulation for the highest-level

1



CHAPTER 1. INTRODUCTION 2

verification tasks. This entails mapping the chip design to a programmable digital platform, such

as an o↵-the-shelf FPGA board or a commercial emulator (e.g., Cadence Palladium [13], Synopsys

ZeBu [65], and Mentor Veloce [23]). There even now an open-source tool, FireSim [35], for emulating

processors in the cloud on Amazon F1 instances.

On all of those platforms, emulation of digital systems can result in an orders-of-magnitude

speedup as compared to computer simulation. In fact, the speedup is often so significant that the

emulator can be used for pre-silicon firmware and software development, shaving months o↵ project

schedules. Hence, emulation is a powerful tool with broad applicability: it can be used not only for

traditional pre-silicon verification, but also for bringup preparation, test vector development, and

by customers as an early evaluation and development platform.

The problem is that many chip designs contain analog/mixed-signal (AMS) blocks that have no

direct mapping to a digital emulator. Such blocks often provide the interface between the physical

world o↵-chip and the digital world on-chip, serving in key roles such as power management and

high-speed I/O [5]. These blocks cannot typically be ignored in system-level verification, because

they often interact with digital blocks through complex feedback loops. Hence, building an emulator

for many chip designs requires AMS blocks to be replaced by synthesizable digital approximations.

The key challenge in making that approximation is that analog signals vary continuously in time,

with continuous values, whereas digital logic operates in discrete time, with discrete values. Con-

tinuous values can be represented using either fixed-point or floating-point formats, but neither is a

clear-cut winner for emulation: floating-point is slow and resource-intensive, while fixed-point su↵ers

from range and resolution issues. For time discretization, a common approach, called oversampling,

is to assign a fixed timestep to each “tick” of an emulator clock. Unfortunately, that approach

introduces a direct tradeo↵ between time resolution and emulator throughput, which can decimate

the performance of emulators containing AMS blocks requiring fine time resolution.

Consequently, it is tricky to architect high-performance AMS emulation models, a problem that

is compounded by the fact that there is no complete, publicly-available tool for implementing and

running such models within the context of a full-chip emulation. Instead, AMS emulation is often

done in an ad-hoc fashion, using tools designed for other purposes. The result is that building

synthesizable AMS models is typically a time-consuming, error-prone process, requiring an unusual

combination of expertise: analog modeling and FPGA design. That barrier to entry, along with

the di�culty of achieving good performance, means that the full potential of emulation is not often

realized for mixed-signal chips.

This thesis is about my e↵orts to change that. It starts with a review of related work (Chapter 2),

which demonstrates that there is no complete, publicly-available framework for constructing full-chip

AMS emulators. In addition, I show that the traditional approach to discretization for synthesizable

analog modeling is a method called “oversampling.” Chapter 3 dives deeper into oversampling,

highlighting a performance bottleneck that I uncovered: namely, that a single analog block requiring



CHAPTER 1. INTRODUCTION 3

fine time resolution can decimate the performance of a full-chip emulator. The following chapter

describes my solution, which is to decouple the emulator speed and its analog accuracy by using

variable timesteps, with analog waveforms represented using “feature vectors” of spline points.

Chapter 5 changes gears to describe the first complete, publicly-available framework for mixed-

signal emulation, which I developed in collaboration with Infineon. The framework consists of

three open-source tools: (1) a Python-based synthesizable model generator for mixed-signal blocks

(msdsl), (2) a fixed- and floating-point synthesizable SystemVerilog library for representing real

numbers (svreal), and (3) a Python-based tool that generates emulator control infrastructure and

automates the FPGA build process (anasymod). The framework includes features for e�ciently

modeling analog dynamics, nonlinearity, and noise, often making use of compile-time precomputation

to reduce the required computational resources of the FPGA.

Finally, Chapter 6 illustrates the generality of the framework through three real-world applica-

tions: (1) a firmware-controlled flyback converter, (2) an NFC-powered chip, and (3) an open-source

high-speed link receiver, DragonPHY. In all cases, the framework provided a speedup of 2-3 orders

of magnitude as compared to existing computer simulations.



Chapter 2

Related Work

This chapter provides an overview of previous work that has been done in the AMS emulation

space. The takeaway will be that, while there have been tools and techniques proposed to solve

specific problems in AMS emulation, there isn’t a framework that ties those ideas together, making

it straightforward to run AMS emulation at the full-chip scale. It will also become clear that when

it comes to analog modeling techniques for emulation, oversampling (i.e., fixed-timestep, piecewise-

constant waveforms) is almost always the approach used. That is important because, as I will show

in the next chapter, oversampling is limited by a fundamental tradeo↵ between time resolution and

emulator throughput; that limitation was what motivated me to develop the spline-based methods

described in this thesis.

2.1 Hardware-in-the-Loop Emulation

Analog emulation spans a range of virtualization levels, from hardware-in-the-loop (HIL) to fully

virtual. HIL emulators implement digital parts of a design on an FPGA, but analog blocks are imple-

mented as physical components on a PCB, with analog-to-digital converters (ADCs) and digital-to-

analog converters (DACs) serving as interfaces between the two domains. Fully virtual emulators,

on the other hand, implement the entire system on an FPGA, including analog parts as well as

digital parts.

An example of HIL emulation is work by R. Sanchez et al. in LASCAS 2016 [61], which described

a HIL emulator for a high-speed link transceiver. In that case, the authors had a design for a time-

interleaved ADC (TI-ADC) that they wanted to incorporate into the chip design for a complete

transceiver. Since they had taped out the TI-ADC by itself, they built a HIL emulator around it,

using a physical communication channel, driven by a high-speed DAC. The rest of the transceiver

design, which was all digital, was implemented on an FPGA. The result was a 1 Gb/s high-speed

emulator that could be used to study TI-ADC calibration algorithms.

4



CHAPTER 2. RELATED WORK 5

When physical analog components are available that closely match the behavior of analog blocks

in a chip design, the HIL approach can provide a very fast and realistic emulator. However, that will

not generally be the case, as new analog circuits are typically designed alongside the digital circuits

that will interface with them. In addition, there is a limit to the speed and density of analog signals

that can be implemented at the PCB level, which may not be su�cient to match the IC design being

emulated.

Hence, this thesis focuses on fully virtual AMS emulation, where the entire chip design is modeled

within an FPGA. This is in some ways a more general case, because it makes it possible to model

the behavior of custom analog blocks, which are not available as PCB-level components, as well as

analog blocks that are too fast or too highly integrated for PCB-level implementation. A side benefit

is that a fully virtual emulator is not constrained to run in real-time, which may be important if

digital parts of the design run faster than is possible on an FPGA.

2.2 Oversampling with Xilinx System Generator

An example of the fully virtual approach is the DC-DC buck converter emulator developed by R.

Bhattacharya et al. [9]. The authors’ motivation was to create a virtual DUT that could be used

in an automated test equipment (ATE) setup to verify its connectivity prior to the availability of

silicon, and to do pre-silicon test vector development. Since the DUT was fully virtual, the buck

topology (i.e., passive analog components and switches) needed a synthesizable model. The authors

used an oversampling approach to construct that model, first selecting a fixed timestep (50 ns),

and then using that timestep to hand-derive discrete-time approximations of the buck converter’s

dynamics. The resulting discrete-time equations were implemented in a synthesizable fashion using

Xilinx System Generator [76], which provides a GUI for block diagram entry. The accuracy of the

emulator compared to SPICE simulations was pretty good: just a few percent relative RMS error.

There are a few interesting takeaways from Bhattacharya’s study. First, it provides a data point

on how much oversampling is necessary to get reasonably accurate results: since the buck converter

switching frequency was 200 kHz and the emulator timestep was 50 ns, they needed on the order of

100 timesteps per switching period. This is quite well aligned with the analysis of oversampling in

the next chapter.

The second interesting point about Bhattacharya’s work is that it was intended for real-time

emulation, meaning that the emulator clock frequency had to be the inverse of the timestep repre-

sented by each emulator cycle. As the authors point out in their paper, this means that emulators

of larger systems, which must run at lower frequencies due to longer logic propagation delays, will

end up having a lower oversampling ratio. That in turn reduces emulator accuracy, meaning that a

real-time oversampled emulator has a direct tradeo↵ between DUT scale and emulator accuracy.

The last observation about Bhattacharya’s paper has to with a di↵erent aspect of scalability:



CHAPTER 2. RELATED WORK 6

the time taken to create synthesizable models. The modeling flow involved a hand-discretization of

analog dynamics, which was implemented in Xilinx System Generator, with fixed-point formats of

model I/Os manually set according to signal ranges observed in Verilog-A or Simulink simulations.

In other words, the process was fairly involved both in terms of the number of tools required and

the amount of manual e↵ort. For the buck converter design considered in the paper, this was not

a problem, since only a few synthesizable models were needed. But it could present an issue for

emulating larger systems.

2.3 Oversampling with Simscape Electrical

Another approach to analog emulation was described by B. K. Mishra et al. at ICWET 2011 [49],

which suggested using Simulink HDL Coder [45] to construct synthesizable models. HDL Coder by

itself is similar to Xilinx System Generator, in that it provides a GUI for drawing block diagrams

of discrete-time systems. However, Mishra points out that there is a package available for HDL

Coder called “Simscape Electrical” that can generate synthesizable models of analog circuits that

are drawn in Simulink.

Mishra’s paper only considers modeling a small circuit (a CMOS inverter, i.e. two transistors),

and it does not appear that the authors attempted to run the model on an FPGA, so it is unclear

from the paper whether Simscape Electrical is suitable for full-scale emulation. As a result, I assessed

the tool’s capabilities directly from its user guide [46]. It turns out that although Simscape Electrical

has many advanced features for computer-based simulation, its HDL generation capabilities are more

limited. For example, it supports linear and “switched linear” (i.e., passive components, and switch

models of transistors and diodes), but not nonlinear devices. In addition, it is limited to fixed-

timestep operation; it appears to solve analog dynamics at compile time using the Backward Euler

method, according to a user-provided fixed timestep. Finally, Simscape Electrical does not support

HDL generation for events, delays, and time-varying components.

2.4 Emulation of Discrete-Time Analog Circuits

Another application of fully virtual AMS emulation is the emulator built by G. Wang and Y. Chiu

to study calibration algorithms for a SAR ADC [71]. In that case, the analog blocks that needed

synthesizable models were the capacitor DAC and comparator that are fundamental to any SAR

ADC design, along with an auxiliary capacitor DAC used in a dither-based calibration scheme. It

appears that the authors manually constructed fixed-point models for these analog blocks, along with

the infrastructure to move data into and out of the emulator. They were able to run the emulator at

50 MHz, which corresponded to a 3,000x speedup as compared to their existing MATLAB simulation.

The interesting thing about this example is that SAR ADCs naturally operate in discrete time,



CHAPTER 2. RELATED WORK 7

with one cycle for each step of their binary search. As a result, oversampling is not necessary to

model the basic operation of a SAR ADC. This study therefore suggests that AMS emulation can

achieve a speedup of 3-4 orders of magnitude if oversampling is eliminated. Of course, that is only

straightforward for a discrete-time system such as a SAR ADC, but as we’ll see later, I achieved

similar speedups by using techniques to reduce the need for oversampling in continuous-time systems.

2.5 Automated Floating- to Fixed-Point Conversion

In some ways, the closest thing to a general tool for analog emulation is a paper by F. Nothaft et

al. in ICCAD 2014 [50], which was about the emulation of an entire cellular modem IC. This likely

represents the largest design considered in this chapter, because behavioral models for analog models

alone spanned 72,000 lines of code. Since the analog functionality was so substantial, and had already

been modeled for computer simulation, the authors set out to convert the existing analog models to

a synthesizable format for emulation. They did this by creating a library of compile-time pragmas

to convert floating-point types in the existing analog models to fixed-point, given user-annotated

range and resolution information.

Since the pragma library was designed to perform a one-to-one mapping of behavioral models

from a non-synthesizable simulation format to a synthesizable emulation format, its focus is arith-

metic operations: addition, subtraction, multiplication, and “limited exponentiation” (presumably

powers of two). As a result, the tool leaves the time discretization process up to the user, although

it appears that intent was to use oversampling, based on an example in the paper about using the

trapezoid rule [31] to discretize an RC filter.

After applying the pragma library, the result was a synthesizable model of the chip, which

the authors mapped to Cadence Palladium, a commercial emulation platform. The result was an

emulator that ran at 1 MHz, providing a speedup of 120x as compared to existing RTL simulations.

Considering the size and complexity of the chip design, this is an impressive feat. Presumably due

to the fact that the pragma library was developed within a chip design company, the tool was not

publicly released.

2.6 Library of Oversampled Analog Blocks

Another tool for mixed-signal emulation, which was also not publicly released, was described by P.

Tertel and L. Hedrich [68]. Their work focused on real-time emulation of analog behaviors on an

FPGA, for use in a HIL emulator. In other words, they were designing a partially virtual AMS

emulator, with some analog behaviors modeled on an FPGA, and some behaviors implemented by

physical components on a PCB, with the two domains interfacing through ADCs and DACs. As

with the other work described so far, they used an oversampling approach, with the oversampling



CHAPTER 2. RELATED WORK 8

rate set to a relatively low frequency, 88.2 kHz, so that they could use precision audio ADCs (16-bit)

and DACs (24-bit).

Tertel and Hedrich took a higher-level approach in their framework, providing a small library

of synthesizable analog functions: RC filters, addition and gain stages, rectifiers, and a sample-

and-hold. In a manner somewhat like Simscape Electrical, users create block diagrams of those

library components, albeit using a SPICE netlist, not a GUI. The framework then converts the

user’s SPICE netlist into VHDL, using a fixed-point datatype to represent analog waveforms. The

fixed-point type was not auto-formatted or user-defined; it was globally defined to have ±32 V

range and a few microvolts of resolution. This was su�cient for the types of systems that Tertel

and Hedrich were modeling, where all real-number signals corresponded to physical voltages, rather

than a more general composition including signals such as times and capacitances (which can be

very small) and frequencies and resistances (which can be very large).

2.7 Oversampling at the Component Level

Another intriguing framework for partially virtual AMS emulation is a tool called WaveACE, pre-

sented by W. Wu et al. at ISCAS 2016 [73] (the tool was not publicly released). The authors took

an oversampling approach to emulation, but their goal was to perform discretization at the level of

individual components: resistors, capacitors, inductors, etc. Although they could have simply used

an explicit integration method such as forward Euler, it would have required exceptionally small

timesteps.

Wu instead sought to use the trapezoid rule for discretization, which is an implicit method. In

general, implicit methods require the simultaneous solution of all signals, which is hard to parallelize

on an FPGA. However, Wu points out that by treating analog components as transmission lines with

specially-chosen port impedances, the trapezoid rule becomes an explicit integration method, and

therefore a better candidate for FPGA emulation. (This approach to discretization is called a “wave

digital filter,” or WDF.)

WDFs are a clever technique for local simulation of analog circuits at component-level, but there

are a couple of drawbacks. The first is that it is not particularly fast: the resulting emulator could

only process oversampled timesteps at 512 kHz, which is 1-2 orders of magnitude slower than many

of the other approaches described. The reason seems to be that there is a lot of computational

overhead required in connecting together WDFs, since each connection point requires an impedance

adapter. For example, a seven-transistor di↵erential amplifier requires 38 adaptors.

The second drawback is that WDFs seem to have some di�culty handling nonlinearities. Wu

points out that some extensions for nonlinearities have been proposed for use in computer simulation,

but they don’t map well to an FPGA. As a result, WaveACE can only handle small-signal models of

nonlinear devices, such as transistors, using lookup tables for small-signal resistances, capacitances,



CHAPTER 2. RELATED WORK 9

etc. In theory, those lookup tables could be addressed according to circuit operating points, although

WaveACE did not have that capability. Instead, the lookup tables were addressed in an o↵-line

manner, essentially setting bias points for a small-signal transient analysis.

2.8 Running Oversampled Analog Models on a Processor

An intriguing alternative to synthesizable analog models was presented by A. Fernandez-Alvarez et

al. at DCIS 2016 [17]: emulating digital parts of a design directly on an FPGA’s programmable

logic (PL), but simulating analog parts of the design with its processor system (PS). This takes

advantage of the fact that most modern FPGAs contain one or more “hard” processors that can run

bare metal code at a few hundred MHz.

Fernandez-Alvarez used an oversampling approach to analog modeling, as in the other projects

discussed, but with a twist: the sampling frequency of the analog models could be any multiple or

submultiple of the sampling frequency of digital models in PL. Hence, if the sampling frequency of

the analog models is faster than that of the digital models, then analog models will run autonomously

for several cycles before “syncing” with the digital models prior to their next cycle.

Although implementing analog models in the PS provides flexibility, it unfortunately comes at

the expense of emulator speed. For example, the buck converter implemented by Fernandez-Alvarez

operated at a speed of 12.6 switching cycles per second, which is more than four orders of magnitude

slower than Bhattacharya’s fully synthesizable buck model.

2.9 Gate-Level Timing Emulation

There is one published example of an AMS emulation flow that did not use traditional oversampling:

Henkel and Ossoinig’s presentation at CDNLive 2013 [26].1 They were concerned with accurate

timing modeling of digital edges in analog circuits, such as delay lines, a PLL, and a time-to-digital

converter (TDC).

The solution they came up with was essentially a hybrid of oversampling and an event-driven

scheduler: they had emulation time tick forward in fixed increments of 1.6 ns, but attached a 14-bit

time o↵set to timing-critical digital signals, indicating when their transitions occurred with respect

to the last emulator tick. With that scheme, logic propagation delays are easily implemented as

additions to the timing o↵set.

Henkel and Ossoinig applied their concept to a 100-million transistor chip used in ATE products.

Since the design was large, and modeled at gate level in some places, they built the emulator

with Cadence Palladium, ultimately achieving a speedup of 50x as compared to their fastest RTL

simulation. Overall, they demonstrate that it is possible to run an AMS emulator with fine time

1The slides are no longer available on Cadence’s website, but a summary of the talk can be found in a blog post
from Steve Carlson [14].



CHAPTER 2. RELATED WORK 10

resolution without sacrificing much performance; their speedup is on the same order as what was

reported by Nothaft for a di↵erent commercial design. That said, the approach is limited to modeling

the timing of digital transitions in analog circuits; it does not address how analog dynamics interact

with the time-o↵set edges.



Chapter 3

The Trouble with Oversampling

As became clear in the previous chapter, the state-of-the-art in constructing synthesizable analog

models is essentially still an old technique called “oversampling.” Unfortunately, it turns out that in

some cases, oversampling can introduce a direct tradeo↵ between speed and accuracy that decimates

emulator performance. This chapter delves deeper into oversampling to describe precisely what it

is, and why it can be problematic.

To illustrate how oversampling works, suppose that we wish to emulate a chip design that includes

a resistor-capacitor (RC) filter (Fig. 3.1). An FPGA does not include resistor or capacitor primitives,

so we will need to approximate the RC filter with the blocks that are available on the FPGA: look-

up tables (LUTs), flip-flops (FFs), block RAM (BRAM), and DSP slices, which contain integer

multipliers.

To do that, we start with the continuous-time dynamics of the filter:

dy

dt
=

x� y

RC
(3.1)

where the filter’s input is x (t), its output is y (t), its resistance is R, and its capacitance is C. We will

discretize the dynamics according to a fixed timestep, �t, that is short compared to the bandwidth

C

Rx(t) y(t)

Figure 3.1: Basic RC filter with an input x (t) and output y (t)

11



CHAPTER 3. THE TROUBLE WITH OVERSAMPLING 12

of the filter’s input and output. Although the bandwidth of the output is bounded by the filter’s

cuto↵ frequency, the bandwidth of the input could be anything. As a result, it is not necessarily

su�cient to simply set �t to a small fraction of RC.

Once the timestep has been selected, there are many approaches for discretization, such as the

Runge-Kutta methods (which include the Euler methods) [31]. However, one of the most commonly

used approaches is called Zero-Order Hold (ZOH) [21], because it provides an exact solution when

the system’s input is a piecewise-constant waveform. The ZOH approach entails solving for the

response of a system to a constant input, evaluating it at a fixed timestep �t, and expressing the

result as a discrete-time equation. As an example, the RC filter’s response to a constant input x0 is:

y (t) = y (0) · e�t/(RC) + x0 ·
⇣
1� e

�t/(RC)
⌘

(3.2)

If we set t = �t, this equation tells us how to compute the next output value of the filter, y [k + 1],

given its previous output, y [k], and the input voltage over the timestep, x [k]:

y [k + 1] := ↵ · y [k] + � · x [k] (3.3)

where ↵ = exp (��t/ (RC)) and � = 1�exp (��t/ (RC)). Since the coe�cients ↵ and � are known

at compile-time, this is a good fit for the resources available on an FPGA: the two multiplications

each map to a DSP slice, the addition maps to LUTs (which often contain carry-chain logic), and

the filter’s previous output, y [k] is mapped to FFs. Of course, this presumes that x and y are

represented as fixed- or floating-point numbers (that implementation detail that will be discussed

later, in Chapter 5).

The big problem with oversampling is that we often need to make the timestep fairly small in

order to achieve reasonable accuracy. There are at least two reasons why that is the case: analog

waveforms are not well-described as piecewise-constant (PWC) waveforms, and the di�culty of

representing events with fine time resolution.

On the first point, consider the error of approximating a sine wave as PWC. The e↵ective number

of bits (ENOB) of fidelity of the approximation1 is shown in Figure 3.2 as a function of the number

of timesteps per period of the sine wave, revealing that many timesteps are needed even to achieve a

relatively coarse level of accuracy. In addition, the accuracy improves very slowly with the number

of samples; we must double the number of timesteps to gain one bit of fidelity.

On the second point, some digital events, such as clock jitter, need to be modeled with very fine

time resolution even from a behavioral modeling perspective. As an example, consider the high-

speed link receiver blocks described by S. Kim in VLSI 2020: a 20 GS/s time-interleaved converter

1ENOB was calculated as log2

h
peak-to-peak signal range/

⇣
RMS error ·

p
12

⌘i
, according to an application note

from Maxim Integrated Products [48]. The RMS error, in turn, was calculated as
q

1
2⇡

R 2⇡
0 (sin (✓)� PWCn (✓))2 d✓,

where PWCn is the n-segment PWC approximation of sin (✓).



CHAPTER 3. THE TROUBLE WITH OVERSAMPLING 13

Figure 3.2: E↵ective number of bits (ENOB) in a piecewise-constant representation of a sine wave,
as a function of the number of timesteps per period of the sine wave.

whose sampling points are adjusted by phase interpolators (PIs) with 0.7 ps resolution. Modeling

the behavior of the system down to single-bit changes in the PI codes would necessitate oversampling

with a 0.7 ps timestep, which in turn would lead to about 70 timesteps per ADC sample.

Using a smaller timestep necessitates taking more timesteps to simulate or emulate a given

amount of time. Interestingly, however, small timesteps have a more direct and severe impact on

the performance of hardware emulation as compared to computer simulation. We explore that e↵ect

in the next two sections.

3.1 Simulation Performance

We first consider the impact of oversampling on the performance of computer-based simulation, as

a comparison point for the emulation case. As the basis for this analysis, consider the generic RTL

model for a mixed-signal chip design shown in Figure 3.3, which consists of digital circuits updated

at a clock rate fclk, as well as an oversampled model of analog circuits, which are updated at a rate

fos. We are interested in the simulation performance of such a design in terms of the amount of

oversampling.

Imagine that it takes the simulator a time Tsim,dig to update the digital circuits after each digital

clock event, and a time Tsim,ana to update the analog circuits after each oversampling timestep. Since

there is bidirectional communication between the digital and analog circuits, the two must stay in



CHAPTER 3. THE TROUBLE WITH OVERSAMPLING 14

digital circuits

D2As A2Ds

analog model
(oversampled)

digital inputs

analog inputs

digital outputs

analog outputs

fclk

fos

Figure 3.3: Generic model of a mixed-signal chip design used for performance analysis.

sync during simulation. Hence, the total time to simulate one clock cycle is:

Tsim,clk = Tsim,dig + nos · Tsim,ana (3.4)

where the nos = fos/fclk is the number of oversampling timesteps per digital clock period.

A large chip design may consist of hundreds of thousands of lines of RTL [72], while a simple

analog circuit, such as the RC filter just described, can be modeled with just a few lines of Verilog.

As a result, Tsim,dig may be orders of magnitude larger than Tsim,ana, meaning that the impact

of oversampling in a “big D-little A” design can be insignificant, even if analog models are quite

oversampled. In other words, it is often the case that Tsim,clk ⇡ Tsim,dig.

3.2 Emulation Performance

The situation looks quite di↵erent for an FPGA emulator. In that case, the time to emulate one

digital clock cycle is related to the critical paths through the digital circuits and synthesizable analog

models:

Temu,clk = max (Tcrit,dig, nos · Tcrit,ana) (3.5)

where Tcrit,dig is the critical path through the digital circuits and Tcrit,ana is the critical path through

the analog models. In both cases, critical path refers to the longest propagation delay through the

FPGA implementation for emulation, not the ASIC implementation for manufacturing.

Since ASIC designs are often quite parallel, the critical path through digital circuits is not

necessarily much longer than the critical path through analog models. This is because the path

length is dependent on the depth of logical operations (i.e., number in series), rather than the total

number of logical operations. As a result, analog models can easily become the dominant factor in

emulator performance, i.e. Temu,clk ⇡ nos · Tcrit,ana.



CHAPTER 3. THE TROUBLE WITH OVERSAMPLING 15

When this is the case, there is a direct tradeo↵ between the emulation speed and emulation

accuracy: increasing time resolution (nos) by a certain factor will slow down the emulator by that

same factor. This is particularly problematic because it has little to do with the relative size of

the digital circuits being emulated as compared to that of the synthesizable analog models. That is

the fundamental problem with oversampling: even when emulating a large digital system, emulator

performance can end up being dictated by the time resolution required by a single analog model.



Chapter 4

The Analog Timestep Vanishes

The root cause of the performance bottleneck in oversampling is that it does not provide a particu-

larly descriptive way of representing analog signals. The analog inputs and outputs of synthesizable

models are represented by a single value for the full duration of a timestep, as illustrated in Fig-

ure 4.1a. This piecewise-constant representation does not line up very well with the true shape of

most analog waveforms, which tend to vary smoothly. As a result, oversampled models often need

to use small timesteps in order to achieve reasonable accuracy.

To make matters worse, the use of a fixed timestep makes it di�cult to achieve reasonable

accuracy for analog e↵ects such as clock jitter, since there is a direct tradeo↵ between the time

resolution with which those e↵ects can be represented and the speed of the emulator.

Having observed those issues in my early experiments with analog emulation, I set out to develop

a more expressive way of representing the shape of analog waveforms that would enable emulators

to take larger timesteps without losing much accuracy. In addition, I realized that accurately

representing event timing would require an emulator to take variable timesteps, which in turn would

mean that analog models would need to accept the timestep size as an additional input.

This led me to strive towards the general model architecture illustrated in Figure 4.1b: rather

than using single numbers as the analog I/O format, represent the shape of analog waveforms

in between timesteps with vectors of several numbers. In addition, rather than assuming a fixed

timestep at compile-time, allow the timestep to be variable and connect it to each analog model as

an input.

In formulating an analog “feature vector” for emulation, I drew inspiration from two related

research e↵orts in the simulation space (i.e., CPU-based, not FPGA-based). The first approach, by

S. Liao et al. [40], used a feature vector consisting of two numbers: an o↵set and a slope, used to

approximate an analog waveform as piecewise-linear. The second approach, by J. Jang et al. [33],

used a feature vector consisting of coe�cients of exponential basis functions. Both approaches

demonstrated impressive performance in CPU-based simulation.

16



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 17

synthesizable 
analog model

Δt: fixed

single 
number 

in

single 
number 

out

(a) Traditional oversampling approach: the emu-

lation timestep is fixed at compile-time, and ana-

log I/O is represented as single numbers.

synthesizable 
analog model

Δt: variable

feature 
vector 

in

feature 
vector 

out

(b) Proposed feature vector approach: Represent

analog waveforms in emulation using vectors of

several numbers, with the timestep allowed to

vary from one emulation cycle to the next.

Figure 4.1: Comparison of the traditional and proposed approaches to synthesizable analog modeling.

(a) Extrapolation: the feature vector consists of

the coe�cients of a polynomial waveform that ex-

trapolates the shape of an analog waveform from

the beginning of a timestep.

(b) Interpolation: the feature vector consists of

points along a spline with an implicit interpola-

tion method.

Figure 4.2: Two possibilities for an analog “feature vector.”

However, the unique constraints of FPGA emulation meant that I could not directly translate

either approach to a synthesizable implementation and call it a day. The PWL approach still would

have required a fair number of intermediate timesteps for analog blocks, which, as I illustrated in the

previous chapter, are detrimental to the performance of an FPGA emulator. The exponential basis

function approach, on the other hand, can represent waveforms over longer durations, but carries a

high computational cost that would limit the performance achievable on an FPGA.

As a result, I considered two more emulation-friendly ways of representing analog shapes: poly-

nomial extrapolation (Figure 4.2a) and polynomial interpolation (Figure 4.2b). For extrapolation,

the feature vector would consist of coe�cients of a polynomial that projects the shape of analog

waveform out from a starting point in time. For the interpolation approach, the feature vector would

consist of several points along a spline, with an implicit interpolation method that describes how to

connect the dots.

I explored both approaches, but found two key advantages for the interpolation approach: (1) it



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 18

u0

u1 u2
un-2

un-1

ΔtMAX

Δt

u(t)
Δth

Figure 4.3: In the interpolation approach, the shape of an analog waveform u (t) is projected out by
an amount of time �tMAX , using n sample points and an implicit interpolation method.

allows for a simpler and more resource-e�cient implementation of nonlinearities, and (2) it is less

susceptible to numerical stability problems at large timesteps. The reason for the second issue is

that increasing the timestep size for extrapolation requires increasing the polynomial order, whereas

in the interpolation approach, additional spline points can be used, without increasing the order of

the interpolating polynomial.

As a result, I decided to move forward with the interpolation approach. The rest of this chapter

provides a more detailed description of the interpolation approach, along with descriptions of how

three general types of analog blocks can be modeled with interpolation: (1) a static nonlinearity,

(2) a state-space system, and (3) a system defined by an impulse response. I conclude the chapter

with the experimental results of applying these modeling techniques to the analog frontend of a

representative high-speed link design.

4.1 Interpolation

The proposed interpolation approach, illustrated in Figure 4.3, represents an analog waveform using

n spline points, connected by an implicit interpolation method. The waveform’s shape is projected

out by an amount of time �tMAX ; the emulator may take any timestep, as long as it is less than

that amount.

Although it is not a fundamental requirement of this approach, I found it convenient to define

the spline points with equal spacing �th = �tMAX/ (n� 1). The “h” subscript refers to the fact

that the spline points are in a sense “hidden” timesteps. However, unlike traditional oversampling,

the hidden timesteps are computed in parallel over one emulator cycle. Hence, the interpolation

approach is a tradeo↵ of resource utilization and performance: it spends extra FPGA resources



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 19

to parallelize analog timesteps, with the aim of being able to project analog waveforms over the

gaps between digital events, without taking extra timesteps. For a “big D, little A” chip design,

it is likely worth spending the extra FPGA resources to prevent analog models from dominating

emulator performance.

The interpolation between spline points is implicit in the sense that the emulator does not fill in

the curve between spline points; the feature vector used for analog I/O consists solely of the spline

points themselves. However, the interpolation must be defined for two reasons: (1) to allow the

evaluation of a waveform at a specific point in time (e.g., for modeling the sampling behavior of

an ADC), and (2) for modeling analog blocks with dynamics, whose internal state depends on the

shape of the entire waveform, not just its value at specific points.

Many interpolation methods are possible, but I chose polynomial interpolation because it lends

itself well to a resource-e�cient, fast implementation with DSP slices on an FPGA. If we assume all

spline points are connected by m-order polynomials, the analog waveform represented is defined by:

u (t) :=
mX

k=0

Ujk ·
✓
t� j�th

�th

◆k

for j�th < t < (j + 1) ·�th (4.1)

In other words, the analog waveform is represented by n� 1 polynomial segments that run between

the spline points, which are separated by an amount �th, where the coe�cients of each polynomial

segment are specified in the matrix U . To avoid numerical scaling issues, the argument to each

polynomial segment is normalized to the interval [0, 1].

The matrix U is computed by solving a system of equations. However, since there are (m+ 1) ·
(n� 1) unknowns in U , simply requiring continuity at spline points, which introduces 2 · (n� 1)

equations, does not su�ciently constraint the polynomial coe�cients when m > 1 (i.e., when the

interpolation order is quadratic or higher). Perhaps the best-known solution to this problem is to

constrain derivative continuity up to the (m� 1)-th order, but this has the drawback of making

the interpolation non-local. In other words, every spline point a↵ects the interpolation at any point

along the curve.

Why might this be problematic? The issue has to do with calculating output spline points

of analog models with internal state. Every output spline point must depend on all input spline

points that precede it, but if the implicit interpolation method is non-local, then it also depends

on the values of all spline points that come afterward. Hence, non-locality in the interpolation

method means that the input-to-output spline points computation is full-connected, which is more

resource-intensive than fundamentally necessary by causality.

To solve that problem, I created a simple interpolation method that I termed “overlapping

interpolation,” in which each polynomial segment is constrained to hit m + 1 neighboring spline

points. For example, for cubic interpolation, spline segment j is constrained to hit spline points

uj�1, uj , uj+1, and uj+2. More generally, we can define each row of U as the solution to a system



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 20

of linear equations:

2

666666664

...

(�1)0 (�1)1 (�1)2 . . .

(0)0 (0)1 (0)2 . . .

(1)0 (1)1 (1)2 . . .

...

3

777777775

·

2

666664

Uj0

Uj1

Uj2

...

3

777775
=

2

666666664

...

uj�1

uj

uj+1

...

3

777777775

(4.2)

Hence, once we solve the systems of equations, each entry in U is a linear combination of the

input spline points:

Ujk =
n�1X

i=0

Wjkiui (4.3)

Where Wjki maps the i-th spline point to the k-th coe�cient of the j-th polynomial segment.

The tensorW is computed at compile time, and e↵ectively defines the interpolation method, since

it dictates how spline points shape polynomial segments. But its use is by no means limited to the

overlapping interpolation method I just described. W could just as well describe other interpolation

methods such as the natural spline or not-a-knot [10].

On that note, after developing the overlapping interpolation method, I learned about classic local

methods such as cubic Hermite [10], cubic Bessel [10], and parabolic blending [54]. If preferred, any

of those approaches can be used simply by changing the definition of W , and the open-source

framework described later in this thesis has been designed to make that change straightforward.

4.2 Modeling approaches

Having described how spline points can be used as a descriptor for analog waveforms, I continue on

to describe how various common types of analog models can be implemented such that they consume

spline points as input and produce spline points as output. This enables spline points to be used as

a sort of “universal language” between analog models, allowing them to be snapped together in any

combination.

The three cases I consider are (1) static nonlinearity, (2) a system described by state-space

equations, and (3) a system best described by an impulse response, such as a lossy channel. These

use cases are inspired by the blocks needed to model the analog front-end of a high-speed link, but

are quite general and can describe a wide range of analog behaviors.

4.2.1 Static Nonlinearity

Interestingly, modeling of static nonlinearities is the simplest of the three cases. Suppose we have a

static nonlinearity y = f (x). If the input spline points are ~x = {x0, x1, . . .}, then the output spline



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 21

points are simply ~y = {f (x0) , f (y1) , . . .}.
Of course, there are limitations to this approach, since we are saying that distorting the inter-

polation between the spline points ~x is approximately the same as interpolating between distorted

spline points. The approximation holds well as long as the bandwidth of the analog input x (t) is

not too fast compared to the spacing between spline points, �th, and as long as the nonlinearity is

not too hard.

The first requirement, that the spacing between spline points cannot be too large, is true across

all of the spline-based modeling approaches, and is related to the Nyquist-Shannon sampling the-

orem [63], which implies that the maximum spacing between spline points for an analog signal of

bandwidth fbw is �th = 1/ (2fbw). However, since this presumes perfect interpolation over an in-

finite sequence of points, in practice the spacing between spline points will need to be smaller. In

addition, most analog signals do not cut o↵ abruptly at a specific bandwidth, so this bound on �th

serves only as an approximate guide.

The second requirement can be interpreted in two ways. One way of thinking about it is that

harder nonlinearities generate more high-frequency content, which requires closer spacing between

interpolation points. Another way of looking at it is that very hard nonlinearities, such as clipping,

cannot be represented accurately by a polynomial segment of any reasonable order, and therefore

we should not attempt to project such behavior using spline interpolation. In that case, it would

be better to start a new timestep at the nonlinear breakpoint, as suggested for CPU simulation by

Jang et al. [32].

Nonetheless, for a large number of analog systems, their bandwidth is reasonable compared to

the rate of digital processing, and nonlinearities are fairly soft, as they represent nonidealities, rather

than fundamental behaviors. This means that we can often get away with a fairly small number

of spline points to project analog behavior between digital events, without requiring many, if any,

analog-only timesteps.

4.2.2 State Space Modeling

The next type of system that we consider is one that is described by state-space equations. This will

allow us to model linear circuits, as well as transfer functions, which can be realized as an equivalent

state-space description, such as the controllable canonical form or the observable canonical form [34].

For the purpose of the discussion here, we consider a single-input, single-output (SISO) system,

since it is so commonly encountered in signal processing chains. However, the techniques discussed

here can be applied to multi-input, multi-output (MIMO) systems without fundamental changes.

With that in mind, the standard form of the state-space equations for a SISO system is given by [58]:

ẋ (t) = A · x (t) + b · u (t) (4.4)

y = c · x (t) + d · u (t) (4.5)



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 22

where the input signal is u (t) and the output signal is y (t). The vector x represents the internal

state of the system; its length, s, is the number of state variables in the system. Since the system is

SISO, A is s⇥ s, b is s⇥ 1, c is 1⇥ s, and d is a scalar.

Our goal in the analysis that follows is to transform the standard state-space equations into a

form that takes a vector of spline points ~u = {u (0) , u (�th) , u (2�th) , . . .} as input and produces a

vector of spline points ~y = {y (0) , y (�th) , y (2�th) , . . .} as output. In doing that, we also need to

provide a way to update the internal state of the system after each timestep. The end result will be

a set of update equations that looks similar to the standard form:

x (�t) = Ã · x (0) + B̃ · ~u (4.6)

~y = C̃ · x (0) + D̃ · ~u (4.7)

where the first equation represents the state update, and the second equation represents the output

update. Derivations for these equations follow in the next two subsections.

4.2.3 State update

To derive the state update formula given an input of spline points, we start with the solution to the

state-space equations in standard form [58]:

x (t) = e
tA
x (0) +

Z t

0
e
(t�⌧)A

bu (⌧) d⌧ (4.8)

In other words, this equation represents the update to the internal state of the system after a

timestep of size t, given an arbitrary input waveform u (⌧).

To transform this equation into its spline points form, observe that the input waveform is defined

by the input spline points u as described in a previous section:

u (⌧) =
n�2X

j=0

mX

k=0

n�1X

i=0

Wjkiui

✓
⌧ � j�th

�th

◆k

(H (⌧ � j�th)�H (⌧ � (j + 1)�th)) (4.9)

where H is the Heaviside step function. In other words, the input u is made up of n� 1 polynomial

segments of order m, whose coe�cients are generated by the spline points ui through the tensor W .

The Heaviside function may look complex, but is simply defining the windows over which each

polynomial segment is valid. To make the subsequent equations easier to read, let us introduce the

function H̃j (⌧) as the window over which the j-th polynomial segment is valid:

H̃j (⌧) := H (⌧ � j�th)�H (⌧ � (j + 1)�th) (4.10)

When we plug the expression for the input in terms of spline points into the standard state-space



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 23

update equation, we arrive at the following:

x (t) = e
tA
x (0) +

n�1X

i=0

ui

n�2X

j=0

mX

k=0

Wjki

Z t

0
e
(t�⌧)A

b

✓
⌧ � j�th

�th

◆k

H̃j (⌧) d⌧ (4.11)

= Ã (t)x (0) +
n�1X

i=0

b̃i (t)ui (4.12)

where:

Ã (t) := e
tA (4.13)

b̃i (t) :=
n�2X

j=0

mX

k=0

Wjki

Z t

0
e
(t�⌧)A

b

✓
⌧ � j�th

�th

◆k

H̃j (⌧) d⌧ (4.14)

Since Ã and b̃i are strictly functions of the timestep (which is allowed to vary), they can be

sampled at compile-time over the range of possible timesteps, which is [0,�tMAX ]. The open-

source emulation framework discussed later in this thesis provides a straightforward way of building

synthesizable functions this way.

Observe that the tensor W comes into play in the computation of b̃i: this is one of the ways that

the interpolation method, while implicit, influences model behavior. The W tensor will appear in a

similar fashion in the output update formula, where it influences the computation of output spline

points.

As a final note, while the expression for b̃i involves an integral, direct numerical integration is not

the fastest or most accurate way of computing its value. Instead, it is better to use a direct formula

for the integral of a matrix exponential times a polynomial, which is derived in Appendix A. (The

open-source emulation framework discussed later in this thesis uses that approach.)

4.2.4 Output update

The output spline points are samples of the output waveform taken at times 0, �th, 2�th, etc. In

the analysis that follows, we consider the calculation of a general spline point yp, which is the sample

taken at time p�th.

To proceed, plug the expression for x (t) from the previous section (Equation 4.12) into the

definition of the system’s output, y = du+ cx, setting t = p�th:

yp = dup + cÃ (p�th)x (0) +
n�1X

i=0

cb̃i (p�th)ui (4.15)

= c̃px (0) +
n�1X

i=0

d̃piui (4.16)



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 24

where:

c̃p = cÃ (p�th) (4.17)

d̃pi = d�pi + cb̃i (p�th) (4.18)

Unlike the state update, these coe�cients do not depend on the timestep size, and can therefore

be computed directly at compile time.

Observe that there is a mapping from every input spline point to every output spline point

through the coe�cients dpi, requiring n
2 multiplications. It turns out that this is not problematic

for three reasons. First, n is typically small, because the shape of analog waveforms between digital

events is not generally complex. Second, a large FPGA may have thousands of hardware multipliers,

so these multiplications can often be performed in parallel.

The last reason has to do with the choice of interpolation method. With local interpolation, the

value of a given output spline point will not depend on the values of much later input spline points.

This gives rise to a roughly triangular matrix mapping input spline points to output spline points,

approximately cutting the number of multiplications in half. However, since it takes m + 1 spline

points to define a polynomial of order m, that matrix is fully connected when m + 1 spline points

are used. Hence, the computational advantage of local interpolation only starts to become apparent

when a larger number of spline points is used.

4.3 Impulse Response Modeling

We now consider how to model a system whose behavior is described by an impulse response.

While it is possible to approximate such behavior with state-space equations, it is not necessarily

e�cient. To understand why, consider a system such as a transmission line, where reflections and

distributed attenuation lead to behavior that is not well-described by a small number of states. In

such cases, I have found it e↵ective to build models directly from impulse responses. This not only

leads to a more resource-e�cient implementation, but can also be more convenient from a modeler’s

perspective, since they can work directly with measured data, such as a step response or S-parameter

measurements, rather than having to go through an additional step to approximate the system by

state-space equations.

With that in mind, suppose that we want to model a system whose impulse response is f (⌧).

The well-known response of such a system to a continuous-time input u (t) is [53]:

y (t) = f (t) ⇤ u (t) =
Z 1

�1
f (t� ⌧) · u (⌧) d⌧ (4.19)

We’ll first consider how to implement the behavior of this system for the specific, but important,

case of piecewise-constant input, before moving on to the general case of spline input. In both cases,



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 25

u1

t1

u2
u3

u4

t2 t3 t4 t5

Figure 4.4: Notation used for a piecewise-constant signal: the i-th constant segment has a value ui,
held from time ti to ti+1. All times are relative to the first spline point.

the mathematical derivations simply show how to compute the output at each spline point in an

FPGA-friendly manner.

4.3.1 Piecewise-Constant Input

One of the most important applications of impulse response modeling is modeling the lossy channel

in a high-speed link. In that case, the channel input is typically piecewise-constant (PWC), as

it represents digital data being transmitted. Even though high-speed transmitters often employ

feedforward equalization, the result is still a discrete-valued, and therefore PWC, channel input.

Hence, suppose that a system’s input is approximately PWC, with the i-th segment holding the

value ui from ti to ti+1 (Fig. 4.4). For notational convenience, time is defined such that the first

output spline point occurs at t = 0, with subsequent spline points at �th, 2�th, etc.

Applying Eqn. 4.19, the p-th output spline point is given by the following expression:

yp = y (p�th) =
X

i

ui

Z ti+1

ti

f (p�th � ⌧) d⌧ (4.20)

=
X

i

ui ·
⇣
f̃p (ti)� f̃p (ti+1)

⌘
(4.21)

where f̃p (t) is a flipped and shifted version of the step response:

f̃p (t) =

Z p�th�t

0
f (⌧) d⌧ (4.22)

Hence, Eqn. 4.21 states that each spline point is computed as a weighted sum of pulse responses,

each computed as the di↵erence of two step responses.

In practice, the summation in Eqn. 4.21 must be limited to a finite number of terms, h, which

represents the length of the input history maintained by the emulator. In other words, h is the



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 26

t1 t2 t3 t4 t5

u1

u2

u3 u4

Figure 4.5: Notation used for the general case of impulse response modeling, where the input and
output are both splines. The shape of the input waveform is described by a history of spline point
vectors, with the vector ~ui describing the input shape from ti to ti+1. All times are relative to the
first output spline point.

number of PWC segments that the emulator can “remember”; older segments are considered to

have a negligible e↵ect.

The resource utilization of this modeling scheme is related to both h and the number of spline

points, n. It might appear that the number of step response evaluations required would be 2nh, since

there are two function evaluations in each term in Equation 4.21. However, each distinct function

evaluation appears in two successive terms. For example, f̃0 (t1) appears in the summation when

i = 0 (where it is being subtracted) and when i = 1 (when it is being added). Hence, the number of

function evaluations required is only nh.

4.3.2 General Case

For completeness, I now describe the general case of impulse response modeling: spline input, spline

output. The result is resource-intensive, so it must be applied selectively. For example, one might

use the spline-in, spline-out model for the most recent bits sent through a lossy channel, before

switching to a simpler model for bits that occurred longer ago.

For this analysis, suppose that the input waveform is described by a history of spline point vectors,

~u
(0)

, ~u
(1)

, . . ., with the input shape between ti and ti+1 described by the vector ~u
(i) (illustrated in

Fig. 4.5).

We can then compute the p-th output spline point by convolving the impulse response with each

input spline, and summing up the results:



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 27

yp =
X

i

n�1X

l=0

u
(i)
l

n�2X

j=0

mX

k=0

Wjkl

Z ti+1

ti

f (p�th � ⌧) ·
✓
⌧ � j�th � ti

�th

◆k

· H̃j (⌧ � ti) d⌧ (4.23)

=
X

i

n�1X

l=0

u
(i)
l · f̃pl (ti, ti+1) (4.24)

where the functions f̃pl are defined as:

f̃pl (ti, ti+1) =
n�2X

j=0

mX

k=0

Wjkl

Z ti+1

ti

f (p�th � ⌧) ·
✓
⌧ � j�th � ti

�th

◆k

· H̃j (⌧ � ti) d⌧ (4.25)

Equation 4.24 maps every spline point in every input feature vector to every output spline

point. As a result, the number of distinct function evaluations required is n
2
h, rather than nh as

in the piecewise-constant case. This could quickly become expensive from a resource perspective,

particularly because the functions to be evaluated are functions of two variables.

Fortunately, I have not seen a scenario where it is necessary to go to this level of modeling.

One might think that the general spline-in, spline-out approach would be needed when an impulse

response follows another impulse response or a state-space system, because those blocks produce

spline points as their output. However, because impulse responses and state-space systems are

linear, they can be composed to form a single e↵ective impulse response. As long as the input

of that impulse response is discrete-valued, the special case from Section 4.3.1 can be used. For

example, in my research for ICCAD 2018 [30], I computed a number of e↵ective channel + CTLE

impulse responses for various CTLE settings in a high-speed link. The general spline-in, spline-out

approach is needed only if the system being modeled includes a nonlinearity in the signal chain that

precedes the impulse response.

4.4 High-Speed Link Experiment

In order to test the three spline-based modeling techniques just described, I applied them to the

emulation of a high-speed link design (Figure 4.6), consisting of a lossy channel and three stages of

continuous linear equalization (CTLE). Each CTLE was followed by a weak saturation nonlinearity

to represent nonidealities in the transistor-level implementation.

4.4.1 Modeling

The lossy channel was represented using the impulse response-based technique just described, with an

impulse response computed from an S-parameter dataset. The channel represented by that dataset



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 28

TX

lossy 
channel CTLE 1

ADC

CTLE 2 CTLE 3
peters_01_0605_

B1_thru.s4p
fz, fp1, fp2:

0.8, 1.6, 20 GHz
fz, fp1, fp2:

3.5, 7, 20 GHz
fz, fp1, fp2:

5, 10, 20 GHz

Figure 4.6: Test case for studying the spline points concept: the main analog signal path of a high-
speed link, consisting of a lossy channel, followed by three CTLE stages. Each stage has a saturating
nonlinearity equivalent to 1 dB loss at 1V input.

(peters 01 0605 B1 thru.s4p [56]) is the most challenging case across the six publicly available S-

parameter datasets I know of, not only because its dynamics are fast, but also because it has a

complex impulse response with multiple reflections.

Each CTLE was modeled as a transfer function with one zero and two poles:

H (s) =
1 + s/!z

(1 + s/!p1) · (1 + s/!p2)
(4.26)

The CTLE stages have their zeros and poles positioned to compensate for the attenuation caused

by the channel in di↵erent frequency bands. As a result, the eye diagram for the system goes from

fully closed to quite open from the beginning of the signal chain to its end.

Each saturation nonlinearity was modeled as a hyperbolic tangent function characterized by a

saturation voltage vs:

y = vs · tanhx/vs (4.27)

All saturation nonlinearities were set to 1 dB, meaning that vs was selected to provide 1 dB of

compression at a test voltage of 1V (the TX output range was ±1V).

On the transmitter side, the unit interval (UI), or spacing between bits, was set to 62.5 ps (16

Gb/s). To exercise the variable-timestep capability of the proposed modeling approach, uniform

jitter was added to the TX bit clock, causing it to vary from 90-100% of its nominal value.

4.4.2 Spline Points

In designing the emulator, two key decisions were: (1) how many spline points to use, and (2) what

value to choose for the maximum timestep. Initially, I explored using a maximum timestep of 1 UI,

which would allow for analog timesteps to be completely eliminated. Since bit transitions have an

approximate “S” shape, I used four spline points with cubic interpolation. What I found is that,



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 29

Table 4.1: High-Speed Link Resource Utilization (Spline Approach, ZC706)

Resource Number Avail. % Util.

LUT 36,077 218,600 16.5%
FF 12,649 437,200 2.9%

BRAM 215 545 39.4%
DSP 561 900 62.3%

while this coarse application of spline modeling could roughly approximate the system’s behavior,

an accuracy improvement of more than 10x could be achieved by shrinking the maximum timestep

to 1/2 UI.

In theory, this reduces emulator throughput by 2x. However, in a full system, the e↵ect would

be less pronounced, because there are often multiple digital events during a single unit interval,

such as the rising and falling edges of TX and RX clocks. As a result, the spacing between digital

events should rarely exceed 1/2 UI, and hence there is little practical downside to dropping the max

timestep to a half-UI.

4.4.3 Results

Using the open-source framework that will be described later in this thesis, I implemented the high-

speed link analog signal chain on a Xilinx ZC706 FPGA board. This section discusses the resource

utilization, accuracy, and performance achieved in that experiment.

Resource Utilization

The emulator build completed in 41 minutes using Vivado 2020.1, and the resulting resource utiliza-

tion is shown in Table 4.1. The design fit comfortably on the FPGA, with low utilization of LUT

and FF resources, which are the main resources that need to be reserved for emulating digital parts

of a design. Block RAM (BRAM) utilization was higher at 39.4%, and DSP slices, which contain

integer multipliers, were most utilized (62.3%).

For BRAM, 44% of the utilization was due to waveform memory in an Integrated Logic Ana-

lyzer (ILA) used for debugging purposes. If necessary, much of that BRAM could be freed up by

multiplexing signals sent to the ILA, or by shortening its memory length.

Of the remaining BRAM slices, the vast majority (85 slices) can be attributed to the lossy

channel model, where they were used to store lookup tables of the channel’s step response. The

calculation for each of the channel’s four output spline points involved a memory of 38 piecewise-

constant segments, meaning that 152 individual step response evaluations were needed. That works

out to 0.56 BRAM slices per step response evaluation, which is close to the minimum allocation size

(0.5 BRAM) in the Zynq-7000 series.



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 30

In terms of DSP utilization, 62% went to the channel model, 31% went to the three CTLE

models, and most of the remaining DSP slices went to the saturation models. For the channel

model, the utilization works out to 2.3 DSP slices per step response evaluation, which is close to

what is expected, because one multiplication is needed for linear interpolation in calculating the

step response, and another multiplication is needed to scale the step response by one of the PWC

segments from the channel memory.

Accuracy

I characterized the accuracy of the emulator by capturing spline points generated by the emula-

tor and comparing them to waveforms generated by a baseline simulation implemented with very

fine oversampling (0.1 ps timestep). Since the emulator generates spline points and not a continu-

ous waveform, I used the implicit interpolation method to “connect the dots” over each emulator

timestep.

Although I looked at all analog waveforms in the signal chain, the most challenging waveform to

model was the final output of the system (i.e., the output of the saturation nonlinearity of CTLE #3).

This is because bit transition edges become faster as the analog signal propagates through the CTLE

stages, since they exhibit high-pass behavior. However, that is not the only factor at play, since

errors accumulate as each successive analog model is applied. Since there are seven distinct blocks

in the signal chain, the last block has the most accumulated error.

With that in mind, Figure 4.7 shows a small piece of the emulator waveform from the final CTLE

stage, which demonstrates that even at the most challenging point in the system, the di↵erence

between the emulator waveform and the baseline waveform is barely noticeable. To quantify the

accuracy, I calculated the root mean square (RMS) error between the two waveforms, finding it to

be 4.8 mVrms, or 0.24% of the full-scale signal swing. That works out to an e↵ective number of

bits, or ENOB [2], of 6.9, which is likely higher than the ENOB of the ADC that would sample the

CTLE’s output (e.g., S. Kim 2020 [37]).

Performance

The underlying emulator clock frequency (i.e., the rate at which emulator timesteps advanced) was

10 MHz, leading to an emulator throughput of 5 Mb/s (because of the 0.5 UI max timestep). Since

the slack on the 10 MHz clock path was 9.57 ns, the emulator throughput could perhaps have been

pushed as high as 5.5 Mb/s, but that is not much higher than the real performance achieved.

To put the emulator performance in perspective, RTL-level simulations of high-speed links typ-

ically top out around 10 kb/s (e.g., B. Lim 2016 [41]), so this represents a speedup of 500x over

state-of-the-art CPU-based approaches. In fact, we would expect a speedup of that order, based on

an early concept study I conducted in 2018 [30] that also achieved a 5 Mb/s emulation rate, albeit

on a simpler system that did not include nonlinearity or the composition of multiple analog models.



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 31

Figure 4.7: Comparison of the waveforms from the emulator and simulator, taken at the output
of the final CTLE stage. Orange dots represent timesteps taken by the emulator, while the green
waveform represents the implicit waveform between those points. The blue waveform, barely visible
due to overlapping, is the simulation baseline.

Another way of looking at the emulator performance is to examine the speedup made possible

by spline modeling, rather than the traditional oversampling approach. To do that, I determined

the maximum oversampling timestep that could be taken while achieving the same level of accuracy

as the spline-based model. Through computer simulation, I determined this max timestep to be

0.3 ps, meaning that the spline approach requires 104x fewer timesteps. In fact, this might be an

underestimate of the advantage, because the oversampling baseline still used a pulse-response-based

approach to calculating channel dynamics (CTLEs were simply oversampled, though).

Design Space Exploration

With four spline points spread over 1/2 UI, the spacing between successive spline points in this

emulator was 1/6 UI. By varying the number of spline points, keeping the spacing the same, the

max timestep could be changed without significantly a↵ecting accuracy (as long as the interpolation

method was also kept the same). This, in turn, enabled a tradeo↵ between throughput and resource

utilization: increasing the number of spline points could improve throughput but would increase

resource utilization.

To explore that tradeo↵, I looked at two variants of the original emulator design: one using seven

spline points over 1 UI and another using two spline points over 1/6 UI. The seven-point version

used cubic interpolation, as with the original design, but only linear interpolation could be used for

the two-point version.



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 32

Table 4.2: Design Space Exploration Summary

Spline
Points

Maximum
Timestep

Interpolation
Method

Throughput
(Mb/s)

Error
(mVrms)

Build Time
(min)

2 1/6 UI Linear 1.67 30.4 21
4 1/2 UI Cubic 5.00 4.8 41
7 1 UI Cubic 10.00 5.3 46

Table 4.2 summarizes the results of this design space exploration: the seven-point version ran

twice as fast as the four-point version, with comparable accuracy, while the two-point version ran

several times slower, with noticeably worse accuracy. The accuracy degradation was likely caused by

the fact that linear, rather than cubic, interpolation had to be used, since two points do not provide

enough degrees of freedom to specify a higher-order polynomial. The one upside of the two-point

version was that, as a much simpler design, it compiled in half the time taken by the other designs.

While all three designs fit on the ZC706 board, resource utilization was a strong function of the

number of spline points. Fig. 4.8 shows a breakdown of how each FPGA resource was used by each

design. For the two- and four-point versions, plenty of resources were left over for emulating other

blocks, but the seven-point version completely exhausted all DSP slices on the FPGA. In fact, it

needed so many multipliers that some ended up being built from LUTs, which partly explains the

sharp jump in LUT utilization from four to seven spline points.

Since the seven-point version has twice the throughput as the four-point version, it might make

sense to use that more resource-intensive model on a larger FPGA board. However, as pointed out

earlier, digital events are not generally spaced farther apart than 1/2 UI, so the performance impact

would probably be smaller in practice. Considering the poor accuracy of the two-point version,

it appears that the “sweet spot” for emulating high-speed links is four spline points spaced over

1/2 UI.



CHAPTER 4. THE ANALOG TIMESTEP VANISHES 33

Figure 4.8: Resource utilization of three spline-based emulator designs: one using two spline points,
another using four spline points, and a third using seven spline points.



Chapter 5

Dial E for Emulation

Through several years of working on AMS emulation, I have found that it is not yet used broadly

in “deep” way (i.e., incorporating detailed models of analog behavior). One of the key reasons for

this is that AMS emulation requires an unusual combination of skills, namely experience in analog

modeling and experience in FPGA design. In many chip companies, analog modeling experts work

within simulation-based verification teams, while FPGA design experts reside in application or test

teams. Hence, the two skillsets are typically separated in the company hierarchy.

That said, knowing about analog modeling and FPGA design is only necessary, but not su�cient,

for building AMS emulators e↵ectively. This is because the emulation process is typically ad-hoc,

relying on hand-built synthesizable analog models and emulator infrastructure. The result is that,

even with the right background, building AMS emulators is a time-consuming, error-prone process.

That fact, in combination with the expertise barrier, means that many companies do not realize the

full potential of AMS emulation.

Having made that observation, I set out to develop a complete flow for building AMS emulators

that would speed up the process and reduce barriers to entry. This framework is the complement

of my research about e�cient AMS emulation, in that it provides a practical way of realizing those

techniques.

Figure 5.1 depicts the framework, which consists of three tools: msdsl [28], svreal [29], and

anasymod [60]. All three tools will be described in detail in the subsequent sections, but here is

a brief description of how the entire flow works: users write models for analog blocks in Python,

using msdsl, which are compiled in synthesizable Verilog models, leveraging the svreal for real-

number operations. Once these synthesizable models are swapped into the DUT, the result is a fully

synthesizable model of the DUT (since its digital blocks are already synthesizable). At that point,

anasymod wraps control infrastructure around the DUT, generates a bitstream, and programs an

FPGA board.

In dividing the framework up into three tools, my intent was to provide a degree of modularity,

34



CHAPTER 5. DIAL E FOR EMULATION 35

digital
block

analog
block

analog
block

digital
block

analog
model

analog
model

DUTtimestep 
manager

firmware-defined I/O

clock 
generation

FPGA

create synthesizable 
models for AMS blocks

msdsl + svreal anasymod

generate emulator control 
infrastructure

implement emulator 
design on an FPGA

Figure 5.1: Overview of the AMS emulation framework. Analog models are described in Python
and compiled into synthesizable SystemVerilog using msdsl, leveraging svreal to implement real-
number operations. anasymod then wraps emulator control infrastructure around the DUT and
automates EDA tools to produce an FPGA bitstream.

so that users could leverage each tool in a standalone fashion. For example, svreal can be used by

itself as a library for synthesizable fixed- and floating-point operations. In addition, the synthesizable

models produced by msdsl could be used in a commercial emulator, rather than targeting an FPGA

board through anasymod. Finally, anasymod can be used for emulating completely digital designs,

since it provides abstractions for FPGA tools. Judging from GitHub feedback, it appears that some

members of the public have in fact been using one tool, svreal, in a standalone fashion.

On that note, all three tools are freely available as open source, and can be installed either from

GitHub or by using the Python package manager (pip). I chose to go the open-source route for

several reasons. First and foremost, it makes the research more accessible to the public, since there

are no cost or licensing barriers. That was particularly important to me, because innovation in the

chip design industry has historically been hampered by those limitations. But there are additional

benefits to the project being open-source, such as getting feedback from a broader user base, and

unlimited regression testing resources from GitHub.

I was fortunate to count Infineon as a collaborator throughout the development of the framework.

Infineon sent visiting researchers to Stanford in mid-2018, just as I was starting to think about tools

for improving the productivity of AMS emulation. That goal resonated with Gabriel Rutsch, one

of the visiting researchers, and he invited me to Munich for three months at the beginning of 2019

to work on the framework in the context of Infineon’s commercial applications. At that point, we

split the framework into three tools, with Gabriel leading anasymod and me leading msdsl and

svreal. The three sections that follow provide a detailed description of those tools.



CHAPTER 5. DIAL E FOR EMULATION 36

Listing 5.1: Basic svreal example.

1 �include "svreal.sv"

2 �MAKE_REAL(a, 5.0);

3 �MAKE_GENERIC_REAL(b, 10.0);

4 �ADD_REAL(a, b, c);

5 initial begin

6 �FORCE_REAL(1.23, a);

7 �FORCE_REAL(4.56, b);

8 #(1ns);

9 �PRINT_REAL(c);

10 end

5.1 svreal

svreal is at the lowest level of the emulation framework, providing a synthesizable Verilog library

for real-number number operations that is used by msdsl’s Verilog code generator. The main focus

of the svreal library is fixed-point support, but all operations have synthesizable floating-point

implementations, too.

Like the fixed-point system in Chisel [7, 43], svreal uses an interval-based approach to auto-

mated fixed-point formatting and provides a method to switch between fixed- and floating-point

representations. However, since the purpose of svreal is to facilitate the integration of AMS models

into existing RTL, rather than being used to generate entire chip designs, it di↵ers in two ways.

First, its fixed-point formats are parameterized in SystemVerilog, which simplifies the process of

passing real-valued signals between various models. Second, it aims to be both human-readable and

human-writable at the SystemVerilog level, which aids in model debugging and makes it easier to

construct the glue logic that is often needed for emulation.

5.1.1 Basic Usage

Listing 5.1 shows a basic example of how the svreal library is used. Briefly, this code snippet creates

fixed-point signals a and b, adds them, and stores the result in c. In the initial block (which is

not synthesizable), the values of a and b are set to “1.23” and “4.56,” respectively. Following that,

the value of c is printed. Hence, the value printed will be “5.79.”

Looking at the code at a more detailed level, svreal is included as a header file on line 1. That

header file contains the full svreal implementation as a means to simplify integration; there are no

additional sources that have to be specified.

On the next line, a macro is used to declare a real-number variable a whose range is ±5; the

range information is used in determining fixed-point formats, as will be described shortly. In a

similar fashion, the real number b is declared with range ±10 on line 3.



CHAPTER 5. DIAL E FOR EMULATION 37

On line 4, “a” and “b” are added and stored in a new variable called “c.” Since the ranges of

“a” and “b” are specified, svreal automatically calculates the range of “c” to be ±15. Under the

hood, svreal keeps track of range information using parameters that are declared and accessed when

macros such as MAKE and ADD are invoked.

One may notice that throughout this entire code example, no fixed-point formatting details were

explicitly specified. In fact, svreal is not limited to fixed-point operation; if the user specifies a

compile-time option called HARD FLOAT, all real-valued signals will switch to floating-point, with

operations implemented by the synthesizable Berkeley HardFloat library [25]. In a similar fashion,

defining FLOAT REAL will cause the SystemVerilog real type to be used.

This is one of the key benefits of implementing svreal as a macro library, because it provides

significant flexibility when changing the underlying real-number format. Since macros can be fragile,

however, I did an extensive exploration of whether modern SystemVerilog features, such as parame-

terized interfaces, could be used to achieve a similar e↵ect. Unfortunately, due to limitations in the

SystemVerilog standard itself, as well as bugs in simulation and synthesis tools, I found macros to

be the more reliable approach.

5.1.2 Fixed-Point Format

When svreal is used in fixed-point mode (the default), it represents a real number, r, as a twos-

complement signed integer s of width w, with an implicit exponent p:

r ⇡ s · 2p (5.1)

For example, the real number represented by the 8-bit signal 0xC8 and implicit exponent �7 is

r = �56 · 2�7 = �0.4375.

svreal can automatically specify most widths and exponents at compile-time, which is why the

previous code example did not contain that information. As with the range information, widths and

exponents are stored in parameters that are created under the hood by svreal macros.

In determining fixed-point widths, svreal picks a default based on the type of signal: it sets

multiplicative constants to a width of SHORT WIDTH REAL and all other signals LONG WIDTH REAL.

The reason for this distinction has to do with the architecture of DSP multipliers on FPGAs, whose

inputs are generally of unequal length. For example, in the Xilinx Zynq 7000 series, the DSP

multiplier has one input that is 18 bits wide, while the other is 25 bits wide [74].

Mapping multiplicative constants to the shorter multiplier input, while using the longer input

for real number variables, means that a multiplication-by-constant operation will consume exactly

one DSP slice. The extra bits of the longer input are given to the variable since it may benefit from

extra dynamic range. Representing constants with the shorter input does not significantly degrade

constant accuracy, since even the 18-bit short input in the Zynq-7000 architecture allows constants



CHAPTER 5. DIAL E FOR EMULATION 38

to be represented with better than 10 ppm accuracy.

This optimization for constant multiplication is important for two reasons: first, DSP multi-

pliers are a relatively limited resource on FPGAs (typically no more than a few thousand), and

second, multiplication by a constant is a very common operation in modeling analog blocks. The

reason is that many analog behaviors can be characterized by linear dynamics, which, as shown in

Section 4.2.2, can be accurately discretized without cross-terms between variables.

Once svreal has determined the fixed-point width, w, it moves on to the calculation of the

implicit exponent, p. Its goal is to maximize precision while avoiding overflow. More specifically,

the real-number range that can be represented is a function of w and p:

� 2w�1 · 2p  r 
�
2w�1 � 1

�
· 2p (5.2)

svreal aims to make p as small as possible (i.e., highest resolution), while still covering a range at

least as large as the range of r (i.e., avoiding overflow). If we denote the range of r as ±R, then the

optimal value of p is given by:

p =

⇠
log2

R

2w�1 � 1

⇡
(5.3)

As an example, consider the variable a from Listing 5.1. Since the width of a is not specified

by the user, and it is not a multiplicative constant, it defaults to LONG WIDTH REAL (25). The range

of a is set to ±5, so the exponent is calculated to be p =
l
log2

5
225�1�1

m
= �21. Hence, the format

for a is a bit oversized, since it could hold values up to about ±8, even though its range is only ±5.

However, if we were to have picked the next smallest exponent, p = �22, the range of a would have

only been about ±4, which would be too small.

Since the maximum range of a signal is determined by its width and exponent, one might wonder

why it is beneficial to separately keep track of the signal’s true range, which can be up to the

maximum range. To see why, suppose that the formatting of c were determined by inferring the

range of a and b and from their widths (both 25) and exponents (-21 and -20, respectively), rather

than keeping track of their ranges separately. We would then infer the range of a to be ±8 and the

range of b to be ±16, meaning that the range of c is ±24. From Equation 5.3, that would cause c

to be assigned an exponent of -19, when in reality -20 could be used without overflow, because the

true range of c is ±15. In other words, we can double the precision of c with no change in its width,

simply by keeping track of ranges more carefully at compile time.

The problem would become even more accentuated through repeated computations, because with

an exponent of -19, the range c would be inferred to be ±32 by subsequent calculations, which is more

than twice its true range. Hence, range inaccuracies can build quickly if the range of real-number

signals is not tracked separately from their widths and exponents.

Viewed broadly, svreal’s fixed-point auto-formatting strategy means that the range of a signal

directly controls its resolution; a signal occupying a small range will use a finer resolution than a



CHAPTER 5. DIAL E FOR EMULATION 39

signal covering a large range. Our simple analysis has an obvious drawback: signal ranges may

grow unrealistically through repeated arithmetic operations, reducing resolution more than truly

necessary. This is the reason that other systems do more sophisticated analyses to better estimate

variable range (e.g., running floating-point simulations of an algorithm to estimate signal ranges [38]).

However, we have found that this is rarely an issue for two reasons. First, the default fixed-point

width (i.e., LONG WIDTH REAL) is large enough that range overestimates of even 100x do not generally

have much impact on emulating system-level behaviors. Second, chains of arithmetic operations tend

to be fairly short in AMS models, so there is not much opportunity for overestimates to build up.

5.1.3 Real-Number Constants

Constants, such as those on lines 6 and 7 of Listing 5.1, are automatically converted to the underlying

real-number format. For example, when a fixed-point format is used, the real-number value r of a

constant is converted to a fixed-point representation with exponent p with the following equation:

s = round
�
r · 2�p

�
(5.4)

where p is computed by evaluating (5.3) with R = |r|.
Similarly, when HARD FLOAT is defined, the real-number constant is automatically converted to

the Berkeley HardFloat “recoded” format, and when FLOAT REAL is defined, real-number constants

are used directly.

5.1.4 Debugging

Debugging accuracy problems in a fixed-point model can be hard, because it is not always clear

whether a problem is caused by a numerical issue, such as insu�cient precision, or another issue,

such as delay alignment in a pipeline. To narrow the search, users can define the FLOAT REAL flag,

which switches the svreal real-number type to the native SystemVerilog real type. (In almost all

cases, no additional changes to the user’s SystemVerilog code are needed to apply that flag.)

If the problem goes away after applying the FLOAT REAL flag, then the problem is likely a fixed-

point numerical issue. The remaining question at that point is whether the bug is due to overflow or

a precision issue. To check for overflow, a user can specify both FLOAT REAL and RANGE ASSERTIONS,

which attaches checkers to all real-number values to ensure they stay within their specified ranges.

If there is an overflow, svreal throws an error that can be traced back to the problematic signal.

If there are no overflow errors, then there is likely a fixed-point precision issue. Users can test that

theory by removing the FLOAT REAL flag (i.e., going back to fixed-point mode) and then increasing

LONG WIDTH REAL and/or SHORT WIDTH REAL. If increasing SHORT WIDTH REAL helps, then one or more

multiplicative constants need to be higher-resolution. Otherwise, one or more fixed-point signals or

additive constants need more resolution.



CHAPTER 5. DIAL E FOR EMULATION 40

Declaration
and Memory

Assignment
and Unary

Arithmetic
Conditional

and Comparison
Type Conversion

MAKE REAL ASSIGN REAL MIN REAL ITE REAL REAL TO INT
MAKE CONST REAL ASSIGN CONST REAL MAX REAL LT REAL INT TO REAL

DFF REAL ABS REAL ADD REAL LE REAL
NEGATE REAL SUB REAL GT REAL
COMPRESS UINT MUL REAL GE REAL

ADD CONST REAL EQ REAL
MUL CONST REAL NE REAL

Table 5.1: Common svreal operations.

It is worth briefly explaining why FLOAT REAL should be used in conjunction with RANGE ASSERTIONS.

Going back to Listing 5.1, suppose that we try to assign the value “12.34” to a, which is far outside

its specified range of ±5. Since the exponent of a is -21, the fixed-point representation of 12.34

should be 25,878,856. However, this overflows the 25-bit signed integer format and will be inter-

preted as -7,675,576. That, in turn, leads to a real-number interpretation of -3.66, which has not

only the wrong value, but also the wrong sign.

Unfortunately, an automated range checker cannot know that an overflow has occurred, because

the value of a is in fact within its specified range (±5). In other words, overflows cannot be reliably

detected when svreal is in fixed-point mode, so RANGE ASSERTIONS should always be used with the

FLOAT REAL flag. While the HARD FLOAT flag could be used for a similar purpose, FLOAT REAL is

generally better for debugging because it simulates faster than HARD FLOAT (at least 10x faster).

5.1.5 Operations Supported

We next take a deeper look at some of the operations supported by svreal. The library supports

over 20 distinct operations, summarized in Table 5.1.

Declaring signals

The basic macro for declaring a real-number signal is MAKE REAL(name, range). In fixed-point

mode, the signal width will default to LONG WIDTH REAL, and the implicit exponent will be computed

as described previously. Under the hood, svreal stores the width, exponent, and range as parameters

for use by subsequent operations. Several variants of MAKE REAL exist, such as MAKE CONST REAL for

declaring real-number constants, and MAKE GENERIC REAL for declaring real-number signals with a

non-default width.

Assigning signals

The basic macro for moving around real-number data is ASSIGN REAL(from, to). In general, this

macro must be used instead of the built-in Verilog assign command, because from and to may have



CHAPTER 5. DIAL E FOR EMULATION 41

di↵erent formats (i.e., di↵erent width and/or exponent). svreal automatically performs realignment

as necessary. In particular, if ASSIGN REAL(a, b) is invoked, with a and b having exponents pa and

pb, respectively, then b is assigned with an arithmetic right shift:

b := a o (pb � pa) (5.5)

In that equation (and others that follow in this section), an arithmetic right shift by a negative

amount is interpreted as a left shift. For example, if pb < pa (i.e., b has a higher resolution than a),

then a is left-shifted prior to assignment to b.

Addition

The basic addition operation is ADD REAL(a, b, c), which assigns the sum of a and b to a new

auto-formatted signal, c. In fixed-point mode, the strategy used by svreal is to re-align a and b to

the implicit exponent of c prior to addition:

c := (a o (pc � pa)) + (b o (pc � pb)) (5.6)

Another option would be to re-align a and b to the more precise exponent, add them, and then

re-align the result to c. This would produce a slightly more accurate result, but at the expense of

higher resource utilization. Since most real-number signals have excess resolution (25 bits) to begin

with, this optimization does not seem to be worthwhile in practice.

Multiplication

In a similar fashion, the macro for svreal multiplication is MUL REAL(a, b, c). As with addition,

the inputs a, b, and c will generally have di↵erent formats, so realignment is necessary. The formula

used by svreal is:

c := (a ⇤ b) o (pc � pa � pb) (5.7)

Comparison

svreal has various operations for comparing two real numbers, a and b, and storing the Boolean

result in a 1-bit signal, c. For example, one can check if a is less than b with the macro LT REAL(a,

b, c). Since a and b can have arbitrary formats, alignment is again an important issue. In this

case, unlike with addition, I found it worthwhile to spend the extra hardware to align a and b to

the more precise exponent, i.e.

(a ⌧ (pa �min (pa, pb))) compared to (b ⌧ (pb �min (pa, pb))) (5.8)

This ensures reasonable behavior when two values are close. If we instead re-aligned a and b



CHAPTER 5. DIAL E FOR EMULATION 42

to the less precise exponent, the two values may become equal, even if they are simply close, but

unequal. That, in turn, can make it di�cult to implement transition points in behavioral models.

Type conversion

Sometimes it is necessary to convert a signed integer into an svreal type or vice versa. Within

an AMS modeling context, for example, these types of conversions are needed in A/D and D/A

interfaces.

To convert a signed integer to an svreal type, use the macro INT TO REAL(in, width, out).

The second argument is the width of the signed integer being converted; I explored extracting its

width using the SystemVerilog functions $size and $bits, but found that those functions were

unfortunately not implemented consistently across simulation and synthesis tools. As a result, it is

left up to the user to manually provide the width.

In a similar fashion, the macro REAL TO INT(in, width, out) converts the real-number input

in to a signed integer out of width width.

Pseudo-logarithmic compression

svreal contains a special macro, COMPRESS UINT(x) that computes a “pseudo-logarithm” of an

unsigned integer x:

plog2 (x) = blog2 xc+ x/2blog2 xc (5.9)

⇡ (log2 x) + 1 (5.10)

This is very useful for implementing highly nonlinear functions such as division or inverse cumulative

distribution functions (CDFs), as described later.

In fixed-point mode, svreal implements the pseudo-logarithm by first measuring the “width” of

x (i.e., the minimum number of bits needed to represent it). For example, the width of 0b0110 is 3,

the width of 0b0001 is 1, and the width of 0b0000 is 0. This measurement is equal to 1 + blog2 xc
(and zero when x is zero), but can be implemented e�ciently in hardware as a priority encoder. The

width, which we denote m, is then added to the value of x, with its top bit clipped and interpreted

as a fractional number (an operation that can be implemented with a single left shift). The result

is an implementation of the desired pseudo-logarithm function:

plog2 (x) = m+
⇣

x

2m�1
� 1
⌘

(5.11)

= (1 + blog2 xc) +
⇣

x

2blog2xc
� 1
⌘

(5.12)

= blog2 xc+ x/2blog2 xc (5.13)



CHAPTER 5. DIAL E FOR EMULATION 43

Listing 5.2: Using the INTO form of an svreal macro to assign a result to an existing signal.

1 �MAKE_REAL(a, 10.0); // i.e., +/- 10

2 �MAKE_REAL(b, 21.0); // i.e., +/- 21

3 �MAKE_REAL(c, 32.0); // i.e., +/- 32

4 �ADD_INTO_REAL(a, b, c);

In synthesizable floating-point mode (HARD FLOAT), the pseudo-logarithm is simply the sum of

the exponent and fractional part of the floating-point representation. More precisely, a floating-point

number is represented as x = 2e · (1 + f), where e is the exponent and f is the fractional part, which

is in the interval [0, 1).1 As a result, we have:

blog2 xc = e (5.14)

x/2blog2 xc = 1 + f (5.15)

and therefore plog2x = e+ f + 1.

The takeaway from this analysis is that the pseudo-logarithm provides a hardware-e�cient way

of compressing numbers that works well for both fixed- and float-point formats. It turns out that

it is also invertible, which is a very convenient feature for implementing functions using the pseudo-

logarithm. The inverse of the pseudo-logarithm is:

plog�1
2 (x) =

⇣
2bxc�1

⌘
· (1 + x� bxc) (5.16)

We’ll see how that inverse can be applied in the msdsl section, where the pseudo-logarithm is used

to accurately implement the inverse CDF of the Gaussian distribution.

Assigning to existing signals

Most svreal operations have an alternate form that allows the user to assign the result of an

operation to an existing real-number signal. This is indicated by the word INTO in the macro name.

For example, suppose that we have defined three signals, a, b, and c, and want to assign the sum of

a and b into c, without having svreal declare and auto-format the signal c.

We can do this using a special form of the addition operation, ADD INTO REAL, as illustrated in

Listing 5.2. This special form of the ADD operation will not declare a new signal c, but instead

will assign the result of the addition to the existing signal called c (performing alignment shifts as

necessary, as before).

In this case, there is a risk that c may have been declared with insu�cient range to hold the

result. As mentioned before, this can be debugged using the FLOAT REAL and RANGE ASSERTIONS

1The exponent is typically biased, but that detail does not substantially a↵ect the deriviation that follows.



CHAPTER 5. DIAL E FOR EMULATION 44

Listing 5.3: Using the GENERIC form of an svreal macro to specify the resolution of an arithmetic
operation.

1 �MAKE_REAL(a, 10.0); // i.e., +/- 10

2 �MAKE_REAL(b, 21.0); // i.e., +/- 21

3 �MUL_REAL_GENERIC(a, b, c, 40);

flags, but given the risk of overflow, why use the INTO form at all? The most common reason is to

assign a signal that appears in the I/O list of the module. Alternatively, one may want to fine-tune

the range or resolution of a signal. However, a better way to accomplish that is to use the GENERIC

form of operations, as described next.

Specifying resolution

Most operations have an alternate form ending with GENERIC that allows the user to specify the

width of an arithmetic result. Since the range of the operation is determined automatically, the

specified width e↵ectively controls the resolution of the result. As an example, suppose we want to

multiply two signals, but represent the output with more precision than the default. That can be

done with a variant of MUL REAL called MUL GENERIC REAL, as illustrated in Listing 5.3.

In that code example, the width of the result, c, is given the custom value “40,” rather than de-

faulting to LONG WIDTH REAL. The range of c is still determined automatically, meaning that if more

precision is required, the user can simply increase the width, rather than having to simultaneously

adjust the width and exponent.

5.1.6 Hierarchy

Since Verilog parameters are used to store fixed-point formatting information, some care must be

taken when passing svreal signals through a hierarchy to ensure that information is not lost. This

is not strictly necessary when using HARD FLOAT or FLOAT REAL, but is still good practice because it

makes it easier to switch to fixed-point.

Consider the example in Listing 5.4, where an outer block instantiates a module that multiplies

two signals to produce an output. First, notice that the parameters and I/O list of the inner module,

which has fixed-point I/O, has to be declared in a certain way. Every fixed-point number in the I/O

list (regardless of whether it is an input or an output) needs to have a corresponding DECL REAL

statement in the parameter list for the module. This declares all of the parameters needed for that

fixed-point signal: its width, exponent, and range. Then, in the I/O list for the module, fixed-point

inputs and outputs should be declared using INPUT REAL and OUTPUT REAL, respectively.

Going up one level to the outer block, observe that a special macro PASS REAL is needed to pass

parameter information for the fixed-point signals a, b, and c into the inner module. The syntax



CHAPTER 5. DIAL E FOR EMULATION 45

Listing 5.4: Instantiating a module with svreal I/O.

1 �include "svreal.sv"

2 module inner #(

3 �DECL_REAL(in0),

4 �DECL_REAL(in1),

5 �DECL_REAL(out)

6 ) (

7 �INPUT_REAL(in0),

8 �INPUT_REAL(in1),

9 �OUTPUT_REAL(out)

10 );

11 �MUL_INTO_REAL(in0, in1, out);

12 endmodule

13 module outer;

14 �MAKE_REAL(a, 10.0); // i.e., +/- 10

15 �MAKE_REAL(b, 21.0); // i.e., +/- 21

16 �MAKE_REAL(c, 32.0); // i.e., +/- 32

17
18 inner #(

19 �PASS_REAL(in0, a),

20 �PASS_REAL(in1, b),

21 �PASS_REAL(out, c)

22 ) inner_i (

23 .in0(a),

24 .in1(b),

25 .out(c)

26 );

27 endmodule

of PASS REAL is meant to mimic using dot-notation to connect signals to a module instance; that

is, the name of the port on the inner module comes first, followed by the name of the local signal.

Finally, note that fixed-point signals are wired up in the I/O list using standard dot notation.

Of course, it would be more convenient if the range and formatting information could be au-

tomatically bundled along with signals, rather than having to use PASS REAL separately. As an

experimental feature, svreal does o↵er a method for doing that through the use of a parameterized

interface, but I have found that this particular SystemVerilog feature is unreliably handled by FPGA

synthesis tools.

5.2 msdsl

msdsl is a tool for describing the behaviors of AMS blocks in Python, leveraging the svreal library

to produce synthesizable HDL as its output. In comparison to more general-purpose HDL generators



CHAPTER 5. DIAL E FOR EMULATION 46

such as Xilinx System Generator [76], Xilinx High-Level Synthesis [75], and Simulink HDL Coder [45],

it provides high-level abstractions that are geared towards AMS modeling. In addition, since msdsl

is implemented in Python, it makes it straightforward for users to leverage open-source libraries such

as SciPy [70] and NumPy [51], and to reuse modeling code through object-oriented programming.

This section starts with a description of the basic flow through msdsl, using one of the simplest

analog circuits as an example: an RC filter. In general, the examples in this section are made as

minimal as possible to illustrate the tool’s capabilities. More advanced, complete applications are

covered later in this thesis (Chapter 6).

msdsl has two key parts: low-level “building blocks” for constructing models (e.g., arithmetic

operations, arbitrary functions, and pseudorandom noise) and higher-level “input formats” for de-

scribing analog circuits, which include a SPICE-style netlist and a system of continuous-time di↵er-

ential equations. Following the preliminary RC filter example, I provide an in-depth discussion of

those capabilities.

5.2.1 Basic Flow

Suppose that we wish to create a fixed-timestep, manually-discretized model of an RC filter. We

would start by writing down the continuous-time dynamics of the circuit:

C · dy
dt

=
x� y

R
(5.17)

where the input voltage is x, the output voltage is y, the resistance is R, and the capacitance is C.

The well-known solution to that equation over an interval [t, t+�t] in which x is constant is given

by the following expression:

y (t+�t) = ↵ · y (t) + (1� ↵) · x (t) (5.18)

where ↵ = e
��t/(RC).

This manually-derived result can be used in an msdsl model as shown in Listing 5.5. The code

starts by creating a MixedSignalModel instance, followed by a declaration of the analog input x and

output y. These variables are Signal objects that can be manipulated with arithmetic operators, as

a result of operating overloading within msdsl. That capability is highlighted in the implementation

of Equation 5.18 on line 8.

Also on line 8, the value of y on the next emulation cycle is defined, meaning that y is a state

variable. As such, it must have an associated reset signal, to set its initial value, and a clock signal,

to control when it is updated. When not specified, those signals default to the macros RST MSDSL

and CLK MSDSL. Users can define those macros to point to global clock and reset signals for all

analog models, or, if they prefer, can specify the clock and reset signals via optional arguments to

set next cycle. The initial value of analog state variables defaults to “0,” but can be specified



CHAPTER 5. DIAL E FOR EMULATION 47

Listing 5.5: Fixed-timestep modeling in msdsl.

1 from msdsl import MixedSignalModel , VerilogGenerator
2 from math import exp
3 r, c, dt = 1e3 , 1e-9, 0.1e-6
4 m = MixedSignalModel(’rc’)
5 x = m.add_analog_input(’x’)
6 y = m.add_analog_output(’y’)
7 a = exp(-dt/(r*c))

8 m.set next cycle(y, a*y + (1-a)*x)

9 m.compile_and_print(VerilogGenerator ())

when the signal is defined. In this case, since y is a model output, its initial value would be specified

in the add analog output declaration.

The final line generates and prints a synthesizable Verilog implementation, using a VerilogGenerator

instance. Internally, msdsl uses a representation of mixed-signal models that aims to be agnostic

to the final implementation language. The compile and print command accepts any object that

implements the CodeGenerator interface to convert that internal model representation to concrete

HDL. At the moment, however, only the VerilogGenerator implementation is provided in msdsl.

In the future, it might be interesting to provide code generators for HLS C/C++, or even hardware

generators such as magma [24].

The HDL generated by msdsl is shown in Listing 5.6. As can be seen, it leverages svreal for

real-number operations. Briefly, x and y are scaled by constants, producing internal signals tmp0

and tmp1, which are summed to produce tmp2. Finally, tmp2 is written to the output y with one

cycle of delay; the clock and reset signals for that delay are CLK MSDSL and RST MSDSL.

One of the key details of this code sample is that msdsl uses the MUL CONST REAL operation to

perform multiplication by a constant, rather than the generic MUL REAL operation. This is important,

because MUL CONST REAL is designed to consume only one DSP slice through careful selection of the

widths of the multiplicands. msdsl uses a number of other optimizations along those lines to reduce

resource utilization and improve code readability, such as compile-time simplification of arithmetic

expressions, and generation of ROM files for large lookup tables.

5.2.2 Building Blocks

Having shown the basic flow through msdsl, I now provide an in-depth look into the tool’s low-level

“building blocks”: declaring analog and digital signals, assigning values to signals, manipulating

signals, and converting between analog and digital data types. I also describe two advanced building

blocks: arbitrary functions and pseudorandom noise. Taken together, these building blocks provide

the basis for the higher-level modeling abstractions described later. They are also useful in their



CHAPTER 5. DIAL E FOR EMULATION 48

Listing 5.6: HDL generated by msdsl for the fixed-timestep RC filter model, leveraging the svreal

library.

1 // Model generated on 2021 -04 -08 15:30:42.761154

2
3 �timescale 1ns/1ps

4
5 �include "svreal.sv"

6 �include "msdsl.sv"

7
8 �default_nettype none

9
10 module rc #(

11 �DECL_REAL(x),

12 �DECL_REAL(y)

13 ) (

14 �INPUT_REAL(x),

15 �OUTPUT_REAL(y)

16 );

17 // Assign signal: y

18 �MUL_CONST_REAL(0.9048374180359596, y, tmp0);

19 �MUL_CONST_REAL(0.09516258196404037, x, tmp1);

20 �ADD_REAL(tmp0, tmp1, tmp2);

21 �DFF_INTO_REAL(tmp2, y, �RST_MSDSL, �CLK_MSDSL, 1'b1, 0);

22 endmodule

23
24 �default_nettype wire

own right as a platform for experimenting with AMS emulation techniques.

Signals

The RC filter example only used analog signals for external I/O, but msdsl signals can be declared

as analog or digital, and internal or external. Digital signals default to 1-bit, unsigned, but their

width and signedness can be specified. Analog signals are real values with a specified range that

is used to compute fixed-point formats, as described in the svreal section. It is generally only

necessary to specify ranges for model I/O and state variables, since svreal can automatically figure

out the rest.

Several examples for signal declarations are shown in Listing 5.7. Note the optional init argu-

ment for state variables; although not shown in the code sample, that argument is also available for

digital signals.



CHAPTER 5. DIAL E FOR EMULATION 49

Listing 5.7: Signal declarations in msdsl.

1 from msdsl import MixedSignalModel
2 m = MixedSignalModel(’model ’)
3 a = m.add_analog_input(’a’)
4 b = m.add_digital_output(’b’, signed=True , width=8)
5 c = m.add_analog_state(’c’, init=1.23, range_=4.56)
6 d = m.add_digital_signal(’d’, width=4)

Listing 5.8: Signal assignments in msdsl.

1 from msdsl import MixedSignalModel
2 m = MixedSignalModel(’model ’)
3 a = m.add_analog_input(’a’)
4 b = m.add_analog_output(’b’)
5 c = m.add_analog_state(’c’, init=1.23, range_=4.56)
6 m.set_next_cycle(c, 0.9*c + 0.1*a)
7 d = m.set_this_cycle(’d’, 6.78*c + 7.89*a)
8 m.set_this_cycle(b, 0.88*d)

Assignments

The two basic types of assignments inmsdsl are set this cycle and set next cycle. set this cycle

acts like a Verilog assign statement, while set next cycle acts like a synchronous assignment in

a Verilog always block. Examples of both are shown in Listing 5.8.

A same-cycle assignment can either create a new signal with a given name, as on line 7, or

be made to an already-declared signal, as on line 8. In the former case, the new signal created is

automatically given a numeric format that can hold the range of values produced by the expression

being assigned to it. However, next-cycle assignments can only be made to existing signals.

The reason is that next-cycle assignments can contain feedback loops, which means that it is

not in general possible to automatically determine the range of the signal being assigned. As an

example, consider the integrator y [n+ 1] = y [n] + x [n]: for any non-zero range of x, there is no

self-consistent range of values for y. This limitation is not often a problem, because state variables

in AMS models often correspond to physical signals, such as voltage and current, which have ranges

that are well-defined by the safe operating area (SOA) of devices in the circuit. That said, msdsl

does have a feature for estimating the range of state variables, which will be discussed later, in the

context of spline-based modeling.

Operators

Many Python operators for arithmetic, comparison, and bitwise operations are overloaded in msdsl,

allowing users to write down expressions conveniently. Currently supported operators include +, -,



CHAPTER 5. DIAL E FOR EMULATION 50

Listing 5.9: Type conversions in msdsl.

1 from msdsl import *
2 m = MixedSignalModel(’model ’)
3 vref = 1.2
4 # DAC

5 d_in = m.add_digital_input(’d_in’, width=8)
6 a_out = m.add_analog_output(’a_out ’)

7 m.set this cycle(a out, vref*(d in/256))

8 # ADC

9 a_in = m.add_analog_input(’a_in’)
10 d_out = m.add_digital_output(’d_out ’, width=9, signed=True)

11 m.set this cycle(d out, to sint((a in/vref)*256, width=9))

12 m.compile_and_print(VerilogGenerator ())

*, ~, &, |, ^, <<, >>, <, >, <=, >=, ==, and !=. The true division operator, /, is only partially

supported: dividing by constants works, but dividing by variables does not.

msdsl also provides some operators that cannot be directly overloaded from Python, such as

min op and max op for finding the minimum or maximum value among several signals. In both cases,

the computation is automatically arranged into a tree fashion to minimize the critical path length

in the generated logic. The same strategy is automatically applied for basic arithmetic operations

such as addition and multiplication.

Another special operator provided by msdsl is the ternary operator, if (condition, then,

else), which returns then if the condition (1-bit signal) holds, and otherwise returns else. The

if operator is in fact a special case of the more generic operator array(elements, index), which

returns a value from a list of signals (elements) that is indicated by the signal index.

Type Conversion

Although we have mainly looked at the representation of analog signals, there are three basic numeric

types in msdsl: unsigned integers, signed integers, and real numbers (represented using svreal).

All three types can be mixed freely in arithmetic expressions; msdsl will automatically promote

unsigned integers to signed integers, and signed integers to real numbers. Demotion, on the other

hand, must be invoked as an explicit cast, because it can result in the loss of information. msdsl

provides the functions to uint and to sint for that purpose.

Listing 5.9 shows how type conversions can be used to build simple models of a DAC and an

ADC. In general, modeling DACs is simpler because it involves a type promotion (integer to real),

which is done automatically, as opposed to an ADC, which requires an explicit type demotion.

The Verilog generated by this code example is shown in Listing 5.10, revealing that msdsl

promotes the unsigned integer d in to signed, prior to converting it to a real number. The reason



CHAPTER 5. DIAL E FOR EMULATION 51

Listing 5.10: HDL generated by msdsl for the DAC and ADC example.

1 module model #(

2 �DECL_REAL(a_out),

3 �DECL_REAL(a_in)

4 ) (

5 input wire logic [7:0] d_in,

6 �OUTPUT_REAL(a_out),

7 �INPUT_REAL(a_in),

8 output wire logic signed [8:0] d_out

9 );

10 // Assign signal: a_out

11 logic signed [8:0] tmp1;

12 assign tmp1 = {1'b0, d_in}; // UInt -> SInt

13 �INT_TO_REAL(tmp1, 9, tmp0);

14 �MUL_CONST_REAL(0.0046875, tmp0, tmp2);

15 �ASSIGN_REAL(tmp2, a_out);

16 // Assign signal: d_out

17 �MUL_CONST_REAL(213.33333333333334, a_in, tmp4);

18 �REAL_TO_INT(tmp4, 9, tmp3);

19 assign d_out = tmp3;

20 endmodule

is that the svreal macros INT TO REAL and REAL TO INT operate only on signed integers, but this

implementation detail is abstracted from msdsl users.

msdsl also automatically performs compile-time arithmetic simplifications, so even though the

expressions for a out and d out each involve a division, followed by a multiplication, the generated

HDL is only a single multiplication by a constant (Listing 5.10, lines 14 and 17). msdsl provides

this optimization so that users are free to write arithmetic expressions in Python as they see fit,

without having to worry about how term grouping will impact the hardware implementation.

Arbitrary Functions

msdsl provides a utility for transforming arbitrary Python functions into synthesizable implemen-

tations for FPGA emulation. This feature can be used to model static nonlinearities and discretize

analog dynamics subject to variable timesteps, as described in Chapter 4.

As an example, consider modeling an RC filter with variable timesteps. Since the previously-

derived solution for the RC filter dynamics (Equation 5.18) is valid for any timestep over which the

input is constant, the variable-timestep update equation for the RC filter is:

y [k + 1] = ↵ (�tk) · y [k] + (1� ↵ (�tk)) · x [k] (5.19)

where �tk = tk+1 � tk and ↵ (�t) = e
��t/(RC). Note the implicit assumption that x (t) holds the



CHAPTER 5. DIAL E FOR EMULATION 52

Listing 5.11: Variable-timestep modeling in msdsl.

1 import numpy as np
2 from msdsl import *
3 r, c = 1e3 , 1e-9
4 m = MixedSignalModel(’rc’)
5 x = m.add_analog_input(’x’)
6 dt = m.add_analog_input(’dt’)
7 y = m.add_analog_output(’y’)
8 func = lambda dt: np.exp(-dt/(r*c))

9 f = m.make function(func, domain=[0, 10*r*c], numel=512, order=1)

10 a = m.set from sync func(’a’, f, dt)

11 x_prev = m.cycle_delay(x, 1)
12 y_prev = m.cycle_delay(y, 1)
13 m.set_this_cycle(y, a*y_prev + (1-a)*x_prev)
14 m.compile_and_print(VerilogGenerator ())

value x [k] from tk to tk+1.

The big problem with this update equation is that it involves a nonlinear function of the time,

↵ (�t), which cannot be mapped to the basic arithmetic operations described so far. We use msdsl’s

method for converting ordinary Python functions into synthesizable approximations to address that

problem.

Building functions in msdsl is a two-step process: a user first constructs a piecewise-polynomial

approximation of a function using make function, and then applies the function one or more times

using set from sync func or set from async func.

Listing 5.11 shows an example of how that process works in the context of the variable-timestep

RC filter model. In that case, the function that needs to be implemented is ↵ (�t), which is

defined as an ordinary Python function on line 8. Then, on the next line, make function creates

a piecewise-polynomial approximation of that function over ten RC time constants (via the domain

argument), which captures almost all of the settling behavior of the step response. The order of the

approximation is set to 1, meaning “piecewise-linear” (PWL), and the number of PWL segments

used, numel, is 512.

Finally, on line 10, set from sync func generates an instance of the hardware shown in Fig. 5.2,

which converts an input value to a real-number address between 0 and numel-1. The integer part

of that address is used to read out the coe�cients of a piecewise-polynomial segment, which are

multiplied by the fractional part of the address raised to the zeroth, first, second power, etc.; the

resulting products are summed to produce the output value.

ROM implementation Although not shown in Fig. 5.2, the ROMs that store the coe�cients

of the piecewise-polynomial approximation can be either synchronous (i.e., one clock-cycle delay



CHAPTER 5. DIAL E FOR EMULATION 53

Σ x
ROM[0]

addr

data

Σ

(2n-1)/(tmax-tmin)

tmin

t
ROM[1]

addr

data
frac

floor

f(t)

x

+

-

Figure 5.2: msdsl approximates a function f (t) with a piecewise-polynomial representation defined
over the domain [tmin, tmax], using 2n-element lookup tables for the coe�cients.

from input to output) or asynchronous (i.e., computation completes in the same clock cycle);

set from sync func specifies the synchronous implementation while set from async func speci-

fies the asynchronous implementation.

In general, it easier to work with the asynchronous version, because one does not have to take

into account the clock cycle of delay in implementing the surrounding logic. However, synchronous

ROMs are more resource-e�cient on an FPGA, because they are mapped to BRAM.

As an example of that di↵erence in e�ciency, consider the ROMs that will be instantiated by

set from sync func on line 10 of Listing 5.11. Since the function being constructed is piecewise-

linear, there will be two lookup tables: one for the o↵set of each segment, and one for the slopes. By

default, each coe�cient is an auto-formatted 18-bit fixed-point number, and there are 512 piecewise-

linear segments, so the total ROM size needed is 512x36. That is exactly the size of a half-BRAM

slice in the Zynq-7000 series, which is the minimum amount of BRAM that can be allocated. Taking

the Z-7045 FPGA as an example, 0.5 BRAM represents 0.0917% of the total BRAM on-chip.

Now let’s consider the resource utilization for set from async func. Since BRAM is synchronous,

it cannot be used to implement an asynchronous ROM, so LUTs have to be used instead. In the

Zynq-7000 series, LUTs are 6-input, meaning that 8 LUTs are needed to produce each bit of each

piecewise-polynomial coe�cient. The total number of coe�cient bits is 2 · 18 = 36, so a total of 288

LUTs would be needed to implement the ROM in the asynchronous case. On a Z-7045 FPGA, that

represents 0.132% of the available LUTs.



CHAPTER 5. DIAL E FOR EMULATION 54

Hence, asynchronous functions can be almost 50% more resource-hungry than synchronous func-

tions. But perhaps more importantly, asynchronous functions consume LUTs, while synchronous

functions consume BRAMs. Since emulating digital parts of a chip design is often more reliant on

LUT resources than BRAM, synchronous functions may be able to better “stay out of the way” of

the resources needed for digital emulation.

Runtime-updatable functions One of the other advantages of using BRAM to implement func-

tions is that its contents can be updated at runtime. This is very useful when the function being

implemented represents an analog behavior, such as a step response, that users might want to vary.

Since asynchronous functions are LUT-based, they can only be changed by rebuilding the bitstream,

which is time-consuming and inconvenient. For synchronous functions, on the other hand, msdsl

allows users to alter functions at runtime via additional signals passed to set from sync func (such

as write address, write data, etc.).

That said, it is not possible to completely redefine functions at runtime, at least when msdsl is

generating fixed-point models, because the ranges of coe�cients in the ROMs need to be known at

compile-time in order for svreal’s fixed-point auto-formatting to work. This means that functions

can only be altered to the extent that their coe�cients stay within ranges that are declared at

compile-time.

To make it easier to construct runtime-updatable functions with su�cient flexibility, msdsl pro-

vides a special type of function declaration called a PlaceholderFunction, which takes the place of

the make function invocation on line 9 of Listing 5.11. When instantiating a PlaceholderFunction,

a user need only specify the ranges of coe�cients at compile-time, not their values.

It might seem di�cult to estimate those ranges ahead of time, but since all polynomial terms are

computed from the fractional part of an address (Fig. 5.2), which runs from 0 to 1, the range of a

coe�cient corresponds directly to the largest contribution it can make to the function evaluation.2

Hence the range of the zeroth coe�cient should be the range of function values that can be produced,

and the range of other coe�cients should be set to the biggest jump in function value that can occur

from the start of one function value to the next. (To be safe, those ranges should be padded a bit.)

Of course, if more is known about the family of functions to be represented, the coe�cient

ranges can be constrained more precisely, which in turn increases their resolution, due to the direct

connection between range and resolution in svreal. In practice, however, I have not found it

necessary to use such advanced knowledge when constructing runtime-updatable functions.

Address calculation At this point, one might wonder why msdsl builds functions using a fixed

spacing between polynomial segments, since variable spacing would permit a more e�cient repre-

sentation, in terms of the number of segments required. The answer can be seen by examining

2To see why, observe that |ctn|  |c| when t 2 [0, 1], so long as n � 0.



CHAPTER 5. DIAL E FOR EMULATION 55

Listing 5.12: Single-input, multiple output functions in msdsl.

1 import numpy as np
2 from msdsl import *
3 m = MixedSignalModel(’model ’)
4 x = m.add_analog_input(’x’)
5 y1 = m.add_analog_output(’y1’)
6 y2 = m.add_analog_output(’y2’)
7 func1 = lambda t: np.sin(t)
8 func2 = lambda t: np.cos(t)

9 f = m.make function(

10 [func1, func2], domain=[-np.pi, np.pi], numel=512, order=1)

11 m.set from sync func([y1, y2], f, x)

12 m.compile_and_print(VerilogGenerator ())

the function implementation illustrated in Fig. 5.2: fixed-spacing lends itself to e�cient address

calculation hardware.

One can imagine a strategy that strikes a balance between truly arbitrary spacing and constant

spacing, by breaking apart the function domain into several sections, each with its own fixed spacing.

A function such as a step response would benefit from such an approach, since it varies rapidly only

over a small part of the function domain. However, since BRAM is relatively abundant on modern

FPGAs, I found that using a fixed spacing, even for such functions, did not require an unreasonable

resource utilization to achieve good accuracy.

One area that did benefit from optimization, however, was the sharing of address calculation

hardware for single-input, multiple-output functions. I discovered this issue when implementing

variable-timestep models, which often need to evaluate several functions that depend on the timestep

(described in more detail in Chapter 4). The problem is that a naive implementation, built from

single-input, single-output functions, will re-implement the calculation of the ROM address from

the function input many times. That, in turn, causes unnecessary DSP slice utilization, since a

multiplier is used in the address calculation.

To solve that problem, msdsl allows users to declare and apply lists of functions, in addition to

single functions. Listing 5.12 shows an example of how that works, for a simple model that simul-

taneously computes sin (x) and cos (x). Using that feature enabled me to cut the DSP utilization of

the high-speed link example described in Chapter 4 by about 35%.

Pseudorandom Noise

msdsl includes a facility for generating pseudorandom noise. This is important not only for mod-

eling voltage-domain noise, but also time-domain noise such as random jitter. msdsl generates

uniform noise by scaling the output of a pseudorandom number generator (PRNG), but can also



CHAPTER 5. DIAL E FOR EMULATION 56

Listing 5.13: Uniform noise generation in msdsl.

1 from msdsl import *
2 m = MixedSignalModel(’model ’)
3 y = m.add_analog_output(’y’)

4 m.set_this_cycle(y, m.uniform signal() )

5 m.compile_and_print(VerilogGenerator ())

produce arbitrarily-distributed noise, and includes a special mode for Gaussian noise generation that

provides high-accuracy modeling of the tails of that distribution. This section describes the usage

and implementation of those three modes, concluding with an example showing how the Gaussian

noise feature can be used to model Johnson-Nyquist noise in an RC filter.

Uniform Noise To generate uniform noise distributed between 0 and 1, a user can simply invoke

the uniform signal() method of a MixedSignalModel. This returns a Signal object that can be

assigned to a model output or an internal signal, as illustrated in Listing 5.13. The range of the

pseudorandom variable can easily be adjusted to something other than [0, 1] by providing optional

arguments min val and max val to uniform signal.

Under the hood, msdsl generates uniform noise by scaling the integer output of a PRNG. More

precisely, it scales the n-bit output of the generator, x, to produce a real number, y, according to:

y := min val+
max val� min val

2n � 1
· x (5.20)

Three di↵erent PRNG implementations are provided: a linear feedback shift register (LFSR), a

linear congruential generator (LCG), and a Mersenne Twister implementation (MT19937). LFSR

is the default, since it is simple and resource-e�cient, although it does not produce very “random”

results.

The output of an LFSR is periodic; its period can be up to 2n � 1, where n is the number of

registers in the LFSR. In general, the LFSR period should be made as long as possible to flatten the

power spectral density (PSD) of the generated noise. Achieving the maximum LFSR period requires

careful selection of the bits used in the LFSR feedback equation, and the optimum equation depends

on the length of the LFSR. That said, msdsl users don’t have to worry about this, because they

can simply specify the LFSR length, and msdsl will look up the optimum equation from a reference

document published by Xilinx [4]. LFSR lengths from 3 to 168 are supported.

Although the output of an LFSR is periodic, it can start at any point, and hence approximately

independent pseudorandom variables can be constructed by initializing n-bit LFSRs with di↵erent

values. Since that is likely what users want, the default behavior of msdsl is to generate a random

initialization for each LFSR at compile-time. However, users can manually specify LFSR initial



CHAPTER 5. DIAL E FOR EMULATION 57

values via an optional argument, lfsr init, if needed. In fact, the same argument controls the

initialization of LCG and MT19937 PRNGs.

On that note, the PRNG can be changed to an LCG implementation by setting an optional

argument, gen type to ’lcg’. The LCG PRNG is primarily included to make it easier to match

emulation results to Verilog simulators, which tend to generate random numbers according to the

following 32-bit LCG in the Verilog-2001 specification [1]:

x [k + 1] := (1 + 69069 · x [k]) mod 232 (5.21)

Even though that explicit LCG definition is not present in more recent specifications of the Verilog

language, the output of $urandom on several simulators suggests that the original Verilog-2001 LCG

is often still used today. Hence, msdsl provides the option of using that LCG PRNG.

The LCG and LFSR generators have the advantage of having a low resource footprint, but they

are not very “random,” in the sense that the sequence of integers they produce can have noticeable

patterns, called “runs.” This is most significant for an LFSR, which when initialized to “1,” will

see its magnitude approximately double on each update cycle, until that “1” reaches the end of the

shift register. To make matters worse, that behavior is guaranteed to occur at some point during

the operation of an LFSR, since changing the initialization only shifts the output sequence in time.

To produce a better approximation of randomness, msdsl lets users switch to MT19937 for

generating pseudorandom integers, using a synthesizable implementation from Alex Forencich [18].

MT19937 has an extremely long period, 219937 � 1, and performs much better than LCG and LFSR

in tests of randomness, such as Diehard [44]. Despite its improved performance, MT19937 is more

resource-intensive, consuming hundreds of LUTs and FFs, as well as a few BRAM slices. In addition,

it takes tens of thousands of cycles to start up, which can significantly increase the time required to

simulate an emulator design, a common activity during the development process.

At this point, one might wonder if high-fidelity random number generation is really necessary

for mixed-signal emulation, which tends to be geared towards functional verification and FW/SW

development. The answer ultimately depends on the type of system being emulated: consider a

high-speed link design, for example. In such systems, analog circuits, digital circuits, firmware, and

software all interact to achieve a very low bit error rate (BER), such as 1e-12 for PCIe [55]. At that

level, if we hope to estimate the BER even to within an order of magnitude, we must have accurate

pseudorandom variable modeling far into the tails of probability distributions (e.g., 7-8 standard

deviations for a Gaussian distribution), and avoid unrealistic “runs,” even if they only occur rarely.

Hence, it is useful to provide users with the option for high-fidelity random number generation, even

though it is more resource-intensive, because it is needed for at least some types of mixed-signal

designs.



CHAPTER 5. DIAL E FOR EMULATION 58

Listing 5.14: Arbitrary noise generation in msdsl.

1 from msdsl import *
2 from scipy.stats import truncnorm
3 m = MixedSignalModel(’model ’)
4 y = m.add_analog_output(’y’)
5 inv_cdf = lambda x: truncnorm.ppf(x, -8, +8)
6 inv_cdf_func = m.make_function(inv_cdf , domain=[0.0, 1.0])

7 m.set_this_cycle(y, m.arbitrary noise(inv cdf func) )

8 m.compile_and_print(VerilogGenerator ())

Arbitrary Noise Up until this point, we have only considered the generation of uniform noise,

but noise in real systems is often distributed in a more complex fashion. It is well-known that any

noise distribution can be modeled by applying its inverse CDF to uniform noise distributed between

0 and 1.

msdsl makes this process straightforward, as illustrated in Listing 5.14: the inverse CDF

is defined as a regular Python function (line 5), which is approximated as piecewise-polynomial

(make function, line 6), and then passed to a function called arbitrary noise (line 7), which

generates a uniformly-distributed random variable and applies the inverse CDF to it.

The arbitrary noise modeling feature is useful for working with lab measurements, because a CDF

can easily be constructed from a sequence of observations.3 Since CDFs are always monotonic [8],

they can be inverted simply by swapping their x- and y-axes. For distributions that are described

analytically, the inverse CDF is often directly available through software packages. SciPy [70], as an

example, provides it as a method called ppf for dozens of distributions.

Gaussian Noise In theory, we could generate Gaussian noise using the arbitrary noise feature

just described, using the inverse CDF of the Gaussian distribution, ��1. However, that would not

result in a high-fidelity model. The problem has to do with approximating the inverse CDF with

equal-length polynomial segments: as others have pointed out, using equally-spaced lookup tables

for the inverse Gaussian CDF can severely distort its tails [42, 11].

To see why this happens, suppose that we are trying to model the inverse Gaussian CDF as PWL

with 512 segments. We will immediately run into a problem, because ��1 is infinite at the edges of

its domain. This problem, at least, can be solved by instead using the inverse CDF of a truncated

normal distribution [36], whose values are distributed over a finite range.

However, that will not fix the fundamental issue that the edges of the inverse Gaussian CDF

are extremely sharp, as illustrated in Fig. 5.3a. Suppose that we were to approximate the Gaussian

distribution as truncated between -6 and +6 (i.e. six standard deviations), and let the inverse CDF

of that distribution be �̃�1. Since we’re using 512 PWL segments from 0 to 1, the spacing between

3Given n observations: sort them, place them on the x-axis, then plot with y-values 1/n, 2/n, . . ., 1.



CHAPTER 5. DIAL E FOR EMULATION 59

(a) The inverse CDF of the Gaussian, �
�1

(x),
is extremely sharp near the edges of its domain,

x ⇡ 0 and x ⇡ 1. (Only the left side of the

domain is illustrated here.)

(b) By applying a pseudo-logarithmic compres-

sion to the input of the inverse CDF, the function

becomes much smoother, and therefore easier to

represent with polynomial segments.

Figure 5.3: Computing the inverse CDF of the Gaussian distribution (truncated to ±6�)

x

Φ-1(plog-1(x)/2n)plog(x)n-bit
PRNG

sign

abs

out

implemented with 
make_function

pseudo-logarithmic
compression

Figure 5.4: Gaussian noise generation in msdsl. A PRNG produces an n-bit signed integer, the ab-
solute value of which is run through a pseudo-logarithmic compression, followed by an appropriately
distorted version of the inverse CDF. The sign of the original integer sets the sign of the output.

sampling points of �̃�1 is 1/512. Hence, if we evaluate �̃�1 (1/1024) on the emulator, we will get

the average of �̃�1 (0) and �̃�1 (1/512): namely, -4.4. However, the true value is only -3.1, which

is a huge error, considering that the maximum error of the very next segment is only 0.017, almost

two orders of magnitude smaller.

The impact of this error is to make unlikely values appear more frequently. In this case, a value

of -4.4 or smaller will appear with probability 1/1024, whereas in reality such a value should only

appear with probability 5.4e-6, or 180 times less frequently.

To solve this problem, msdsl implements Gaussian noise by distorting the output of a PRNG

with svreal’s pseudo-logarithmic function, plog, prior to applying an appropriately distorted version

of the inverse Gaussian CDF, as illustrated in Fig. 5.4. As a result, the function that needs to be

implemented by msdsl is ��1
�
plog�1 (x) /2n

�
, a function that is much flatter than ��1 (Fig. 5.3b).



CHAPTER 5. DIAL E FOR EMULATION 60

C

Rx(t) y(t)= +

n(t)

Figure 5.5: RC filter model including Johnson-Nyquist noise.

One of the advantages of this technique, as opposed to a Gaussian-specific approach such as Box-

Muller [12], is that it could be applied without modification to any symmetric unimodal distribution.

Asymmetric unimodal distributions (e.g., skew normal) could be handled with a slight modification

to the architecture in Fig. 5.4, by having the sign of the input select the (distorted) inverse CDF

to be applied. It might even be possible to extend the technique to a multimodal distribution by

partitioning its domain into single-tail regimes, each with its own inverse CDF.

Example: Noisy RC filter I will close out this section by showing how msdsl’s noise modeling

features can be used to implement Johnson-Nyquist noise in an RC filter. Such noise is e↵ectively

a voltage source, n (t), that appears in series with the input voltage, as illustrated in Fig. 5.5.

The power spectral density (PSD) of the noise is flat over frequency and equal to 4kBTR, and its

amplitude distribution is approximately Gaussian [39]. The question is: how much noise should be

added in a discrete-time model to approximate this continuous-time noise source?

We can answer that question by matching the autocorrelation of the continuous-time noise (i.e.,

the inverse Fourier transform of its PSD), to the autocorrelation of the discretized noise. As shown

in an application note from Cadence [66], that approach ends up calling for the standard deviation

of discretized noise to be set to �n =
p
2kBTR/�t.

This result is used in the full implementation of a noisy RC filter shown in Listing 5.15. The main

action happens on line 9, which creates a zero-mean Gaussian-distributed signal n with a standard

deviation �n. The rest of the model is adapted from the noiseless fixed-timestep RC filter model

(Listing 5.5), with noise added to the input on Line 11.

5.2.3 Input Formats

So far, we have considered msdsl’s low-level building blocks: operator overloading, synthesizable

functions, and pseudo-random noise. These features are useful for experimenting with modeling

techniques, but are not necessarily the most convenient way to implement a model. For example, it

is possible to model an RC filter by hand-discretizing a di↵erential equation, using msdsl’s operator



CHAPTER 5. DIAL E FOR EMULATION 61

Listing 5.15: Modeling a noisy RC filter in msdsl.

1 from msdsl import *
2 from math import exp , sqrt
3 r, c, dt = 1e3 , 1e-9, 0.1e-6
4 k, T = 1.38e-23 , 300
5 m = MixedSignalModel(’rc’)
6 x = m.add_analog_input(’x’)
7 y = m.add_analog_output(’y’)
8 rms = sqrt(2*k*T*r/dt)

9 n = m.set gaussian noise(’n’, std=rms)

10 a = exp(-dt/(r*c))
11 m.set_next_cycle(y, a*y + (1-a)*(x+n))
12 m.compile_and_print(VerilogGenerator ())

Listing 5.16: Di↵erential equation modeling in msdsl.

1 from msdsl import *
2 r, c = 1e3 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 x = m.add_analog_input(’x’)
5 y = m.add_analog_output(’y’)

6 m.add eqn sys([c*Deriv(y) == (x-y)/r])

7 m.compile_and_print(VerilogGenerator ())

overloading, but not necessarily convenient.

To solve that problem, msdsl provides a number of higher-level “input formats” constructed

from the low-level building blocks. These include: symbolic systems of linear di↵erential equations,

including systems with conditional expressions (switched systems), a SPICE-like netlist format, ra-

tional transfer functions, and tools for implementing the spline-based modeling technique introduced

in Chapter 4.

Symbolic Di↵erential Equations

Let’s start by looking at msdsl’s support of symbolic linear di↵erential equations. Listing 5.16 shows

how an RC filter can be modeled using this feature: the model and I/O declaration are similar to

the hand-discretized RC filter (Listing 5.5), but the original di↵erential equation, rather than its

solution, is provided to the model generator (Line 6). Operator overloading, along with a special

Deriv operator, allows users to write down such equations succinctly.

Although the RC filter’s dynamics are quite simple, msdsl can handle systems of di↵erential

equations with any number of inputs, outputs, and state variables. Internally, msdsl rearranges all



CHAPTER 5. DIAL E FOR EMULATION 62

user-provided equations into the standard form of a linear dynamical system (LDS):

ẋ = Ax+Bu (5.22)

y = Cx+Du (5.23)

where u is a vector of inputs, x is a vector of state variables, and y is a vector of outputs. msdsl then

solves the state update equation over an interval [t, t+�t], resulting in the well-known solution [58]:

x (t+�t) = Ã · x (t) + B̃ · u (t) (5.24)

where, assuming A is invertible:

Ã = e
�t·A (5.25)

B̃ = A
�1 ·

⇣
Ã� I

⌘
·B (5.26)

This illustrates one of the key strategies employed by msdsl: running expensive computations,

such as matrix exponentiation, at compile-time to produce expressions that can be implemented

e�ciently on an FPGA. For di↵erential equations, the result of that pre-computation is a summation

of multiplications by constants, which can be mapped e�ciently to DSP slices and adder logic on

an FPGA.

Switched Systems

msdsl supports a generalization of linear dynamics, in which a system’s state can evolve according

to di↵erent linear dynamics at each timestep. This capability is particularly important for modeling

a switching power converter, which can be approximated as an LDS whose dynamics are selected by

the ON/OFF state of its transistors and diodes.

The strategy employed by msdsl to model such systems is to solve each linear operating mode,

as described in the previous section, resulting in a set of equations that describes the time evolution

of the system in each operating mode k:

x (t+�t) = Ãk · x (t) + B̃k · u (t) (5.27)

At each time step, one of the operating modes is selected, and the system evolves over a time

interval�t according to the dynamics of that mode, starting from the state computed in the previous

timestep. From an FPGA implementation perspective, that is not much less e�cient than the

implementation of a single-mode LDS described previously, since constants are replaced by lookup

tables, without impacting the utilization of DSP slices or adder logic.

An example of such a switched system is shown in Fig. 5.6, which is an RC filter whose resistance



CHAPTER 5. DIAL E FOR EMULATION 63

u

C
R1

x

k
R0

Figure 5.6: Example of a circuit with distinct operating modes, each of which behaves according to
linear dynamics. When k is asserted, the resistance of the RC filter is R1; otherwise it is R0.

Listing 5.17: Switched system modeling in msdsl.

1 from msdsl import *
2 r0 , r1 , c = 1234 , 2345 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 u = m.add_analog_input(’u’)
5 k = m.add_digital_input(’k’)
6 x = m.add_analog_output(’x’)

7 g = eqn case([1/r0, 1/r1], [k])

8 m.add eqn sys([c*Deriv(x) == (u-x)*g])

9 m.compile_and_print(VerilogGenerator ())

can be switched between R0 and R1, depending on the switch control signal, k. Listing 5.17 shows

how that system can be modeled in msdsl by using eqn case, which indicates a mode-dependent

expression in a system of equations.

More precisely, lines 7 and 8 of that code sample specify the di↵erential equation:

C · dx
dt

=
u� x

R1
if k else

u� x

R0
(5.28)

Hence, with reference to Equation 5.27, the coe�cients of the switched LDS solution are:

Ãk = e
��t/(RkC) (5.29)

B̃k = 1� e
��t/(RkC) (5.30)

Although in this example, the switch condition is a single bit, in general it can consist of multiple

bits. As an example, suppose the switch position is specified by two bits, k0 and k1, capable of

selecting one of four resistances for the RC filter. Other than adding those model inputs, the only



CHAPTER 5. DIAL E FOR EMULATION 64

u

C
R01

x

s0 R00

R11

s1 R10

v

Figure 5.7: Modeling example in which two independent switches can alter the dynamics of the RC
filter, resulting in four distinct linear operating modes.

other change required would be to specify more equation cases and more switch condition bits:

g = eqn_case([1/r0 , 1/r1 , 1/r2, 1/r3], [k0, k1])

In fact, if there are multiple eqn case statements, msdsl will enumerate all unique combinations

of switch conditions and solve the system of di↵erential equations for each combination. To demon-

strate that capability, consider the circuit illustrated in Figure 5.7, where two independent switches

control the resistance of an RC filter, resulting in four distinct linear operating modes.

Listing 5.18 demonstrates how such a circuit can be modeled in msdsl. The two switchable

resistances are modeled as conditional expressions on lines 8 and 9, using separate switch conditions.

Then, on lines 11-14, they are used in a system of di↵erential equations that describes the behavior of

the circuit according to KVL and KCL. This is the first example involving more than one equation,

and also the first involving an internal variable (v, in this case).

Internal variables are declared as AnalogSignal instances, and are particularly convenient when

working with more complex systems, since they reduce the amount of hand analysis that is required

on the part of the user. For example, one could write down a single di↵erential equation describing

the behavior of the two-switch system by solving for the e↵ective resistance of the series combina-

tion of the switched resistors. However, it is likely more convenient to simply apply KCL at the

intermediate node, v.

From a performance or resource utilization perspective, there is no downside to introducing

stateless internal variables, like the one in this example, because msdsl performs a compile-time

optimization to eliminate internal variables that are not used elsewhere in the model. Since the

signal v falls into that category, it will be eliminated. However, if a capacitor were attached to that

node, it would have to be calculated and stored for the next emulation cycle.

At this point, one might wonder how many distinct operating modes can be represented on an

FPGA. The answer depends on the amount of LUTRAM on the FPGA, as well as the complexity

of the system being modeled. For example, suppose we are working with a Xilinx XC7Z045 FPGA,



CHAPTER 5. DIAL E FOR EMULATION 65

Listing 5.18: Modeling systems of di↵erential equations with multiple conditional statements.

1 from msdsl import *
2 r00 , r01 , r10 , r11 , c = 123 , 234 , 345 , 456 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 u = m.add_analog_input(’u’)
5 s0 = m.add_digital_input(’s0’)
6 s1 = m.add_digital_input(’s1’)
7 x = m.add_analog_output(’x’)
8 g0 = eqn_case([1/r00 , 1/r01], [s0])
9 g1 = eqn_case([1/r10 , 1/r11], [s1])
10 v = AnalogSignal(’v’)

11 m.add eqn sys([

12 (u - v) * g0 == (v - x) * g1,

13 (v - x) * g1 == c * Deriv(x)

14 ])
15 m.compile_and_print(VerilogGenerator ())

which is a higher-end FPGA in the Zynq-7000 series, containing about 14 Mb of LUTRAM (26 ·
218, 600 bits). We could store about 780,000 18-bit coe�cients in that space, although to avoid

hogging all of the LUT resources, 100,000 coe�cients is a more realistic number. Assuming that

the system being modeled has a small number of I/Os and state variables, requiring a half-dozen

distinct coe�cients, we could handle around 14 independent switch conditions (i.e., 214 = 16, 384

coe�cients in each lookup table).

The takeaway is that only switched systems with a small number of switch conditions can be

modeled e�ciently. As a rule of thumb, resource utilization will start to grow quickly once the

number of switch conditions exceeds the number of address bits for an individual LUT (e.g., 6 bits

for the Zynq-7000 series).

Handling systems with a larger number of switch conditions requires the system to be partitioned

into subcircuits, each with a small number of switch conditions. An example is shown in Fig. 5.8,

where two independently-switched RC filters are connected through a bu↵er. Due to the bu↵er, there

is no loading interaction between the two subcircuits, which means that as long as the intermediate

signal v is accurately represented over a single timestep (by making the timestep small enough or

using spline points), partitioning will not significantly degrade the model’s accuracy. Of course,

in real circuits, there is always some loading interaction between subcircuits; accurate partitioning

requires dependence of that interaction on the switch condition to be negligible.

As a side note, we could have used block RAM (BRAM) tiles instead of LUTRAM. However,

the one-cycle latency of BRAM would have e↵ectively cut the emulation throughput in half, since

we would have to determine switch conditions in one emulation cycle before evaluating coe�cients

in a↵ected switched systems. To make matters worse, the output of a switched system could itself



CHAPTER 5. DIAL E FOR EMULATION 66

u

C
R01

s0
R01

+1

C
R11

s1
R10

x

partition system here

v

Figure 5.8: Example of a switched system that can be partitioned into subcircuits, each with a
smaller number of switch conditions.

generate a switch condition signal that would require an additional emulation cycle to process,

resulting in an even greater slowdown.

Netlist Interface

It may be convenient to describe simple circuits using a manually-created system of di↵erential

equations, but that approach quickly becomes cumbersome as circuit complexity grows. As a result,

msdsl provides a netlist interface for building models, in which users can instantiate basic electrical

components. msdsl compiles the netlist into a system of di↵erential equations, with transistors and

diodes introducing multiple operating modes as described in the previous section. The system of

equations is solved at compile-time; unlike a CPU-based SPICE simulator, the FPGA emulator does

not attempt to invert matrices at runtime.

Linear circuits Listing 5.19 shows how the netlist interface can be used to model a basic RC

filter. Line 6 creates a Circuit object to contain the netlist, and lines 8-10 instantiate the capacitor,

resistor, and voltage source representing the filter input in that netlist. msdsl then builds a system

of di↵erential equations representing the system using KVL and KCL.

Since the voltage across the capacitor is a state variable, its range must be specified by the user,

since state variable ranges cannot be automatically determined by svreal, as discussed earlier. This

can be done in a flexible way, using the RangeOf operator to extract the ranges of existing signals.

In this case, we know that the output range cannot exceed the input range, so the capacitor voltage

range is set to RangeOf(x). However, in cases where the capacitor voltage range is not obvious,

it can be set to a small multiple of the capacitor breakdown voltage, since the capacitor’s voltage



CHAPTER 5. DIAL E FOR EMULATION 67

Listing 5.19: Netlist-level modeling of an RC filter in msdsl.

1 from msdsl import *
2 r, c = 1e3 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 x = m.add_analog_input(’x’)
5 y = m.add_analog_output(’y’)
6 circ = m.make_circuit ()
7 gnd = circ.make_ground ()

8 circ.capacitor(’net y’, gnd, c, voltage range=RangeOf(x))

9 circ.resistor(’net x’, ’net y’, r)

10 circ.voltage(’net x’, gnd, x)

11 circ.add_eqns(AnalogSignal(’net_y’) == y)
12 m.compile_and_print(VerilogGenerator ())

should not exceed that level in normal operation (and if it does, the capacitor will not be well-

modeled as a linear element). Similarly, when specifying the range of an inductor’s current (i.e., its

state variable), the saturation current can be used as a guideline.

Since msdsl’s netlist entry format is just a frontend for generating a system of symbolic dif-

ferential equations, additional symbolic equations can be added to that system. This is illustrated

on line 11, where the model output y is set equal to the voltage of net y. At the moment, this is

the only way to wire voltages and currents from within a Circuit to internal signals and I/O in a

MixedSignalModel. Since that is a very common operation, in the future it would be nice to add a

netlist primitive for probing voltage and current signals.

Transistors and diodes The netlist input format supports not only linear components, but also

transistors and diodes, as long they can be approximated as on/o↵ switches. For circuits with

these nonlinear elements, msdsl automatically generates a system of di↵erential equations with

conditional statements, leveraging the msdsl’s support of switched systems. In other words, it

“solves” the circuit at compile time for all on/o↵ combinations of transistors and diodes.

At runtime, it is straightforward to determine which transistors are on or o↵, since they are

directly controlled by gate voltage signals. Diodes, however, pose a bit of a challenge, because

they are not controlled by an explicit signal. As a result, msdsl must generate the control logic to

determine the on/o↵ status of each diode.

It is tempting to use a simple voltage threshold to determine whether a diode should turn on or

o↵. However, that does not work well for a switch-modeled diode, because once the diode is on, its

voltage is essentially clamped. As an extreme example, suppose that the diode were modeled as an

ideal switch, with zero current through it when o↵ and zero voltage across it when on. Now suppose

that the diode switch condition is v � 0 and the diode is initially o↵. Once the voltage across the



CHAPTER 5. DIAL E FOR EMULATION 68

=+

D S
G

swv_in

v_out

Figure 5.9: Buck converter circuit used as an example of modeling transistors and diodes with
msdsl’s netlist interface.

diode goes slightly positive, its voltage will be clamped to zero, latching the diode on forever. The

problem cannot be solved by simply changing the switch condition to v > 0, since that will cause

the diode to shut itself o↵ as soon as it turns on.

As I mentioned, this is an extreme example, since a more realistic switch model for a diode would

have finite on and o↵ resistances. However, a simple voltage threshold is still a poor choice in such

cases, often causing delay and chatter in diode transitions. To solve that problem, msdsl uses a

voltage threshold to determine when a diode should turn on, and a current threshold to determine

when it should turn o↵, which is a common approach in computer simulation of power circuits (e.g.,

as described by Verghese [69]).

As a practical use case of switch-level modeling of transistors and diodes, consider the buck

converter topology in Fig. 5.9, whose msdsl implementation is shown in Listing 5.20. As shown on

lines 13 and 14, transistors and diodes can be instantiated with a single line of code, just like any

other device in msdsl’s netlist mode. Since both are ultimately modeled as switches, they are given

on and o↵ resistances.

One might wonder why this simple example includes an RC snubber, since snubbers, while

common in switched power converters to reduce EMI, are not fundamental to the buck topology.

The reason is fairly interesting, because it has to do with the intersection of auto-formatted fixed-

point numbers and analog circuit behavior. If the snubber were not there, during the short period

that both the transistor and diode are o↵, the inductor current would flow through the parallel

combination of their o↵ resistances, which is likely at least 10 k⌦, if not much greater. Since the

inductor current may well be on the order of 10 A, the range calculated by svreal for the switch

node could be greater than 100 kV. Since the real range of switch node voltage is more likely on

the order of 10 V, this would result in a resolution reduction of 10,000x or more for the fixed-point

number used to represent the switch node.

Of course, the switch node would never reach such voltages in real life, not only because the diode

would turn on long before the switch node reached that point, but also because there is always some

parasitic capacitance on the switch node that limits how fast it can rise. As a result, this problem

can be solved by increasing the level of realism of the buck converter with some capacitance on the



CHAPTER 5. DIAL E FOR EMULATION 69

Listing 5.20: Modeling a buck converter using the netlist interface

1 from msdsl import *
2 # declare I/O

3 m = MixedSignalModel(’buck’, dt=0.1e-6)
4 sw = m.add_digital_input(’sw’)
5 v_in = m.add_analog_input(’v_in’)
6 v_out = m.add_analog_output(’v_out ’)
7 # create circuit

8 c = m.make_circuit ()
9 gnd = c.make_ground ()
10 # input

11 c.voltage(’net_v_in ’, gnd , v_in)
12 # transistor + diode

13 c.switch(’net v in’, ’net v sw’, sw, r on=1.0, r off=10e3)

14 c.diode(gnd, ’net v sw’, r on=1.0, r off=10e3)

15 # snubber

16 c.capacitor(’net_v_sw ’, ’net_v_x ’, 100e-12,
17 voltage_range=100.0)
18 c.resistor(’net_v_x ’, gnd , 300)
19 # inductor + capacitor

20 c.inductor(’net_v_sw ’, ’net_v_out ’, 2.2e-6,
21 current_range=20.0)
22 c.capacitor(’net_v_out ’, gnd , 10e-6, voltage_range=10.0)
23 # load

24 c.resistor(’net_v_out ’, gnd , 5.5)
25 # assign outputs

26 c.add_eqns(v_out == AnalogSignal(’net_v_out ’))
27 # print output

28 m.compile_and_print(VerilogGenerator ())

switch node.

With the RC snubber in place, the switch node voltage range, when both the diode and transistor

are o↵, is reduced to (Rsnub +�t/Csnub) · IL. The dependence on the timestep essentially means

that the amount of “mandatory snubbing” is reduced with shorter timesteps.

To close out the discussion on modeling transistors and diodes, it’s worth noting that the on/o↵

switch-level modeling concept could be extended to a more general form, where the I-V relationship of

a nonlinear device is represented with several piecewise-linear segments. In that case, each segment

would represent a distinct linear mode of the device. While this could potentially yield better

accuracy, the resource utilization of such an approach would grow quickly, as the total number of

switched modes for a given system would be the product of the number of PWL segments for each

device.



CHAPTER 5. DIAL E FOR EMULATION 70

vin
iin iout

vout

model 1 model 2 model n
vin
iin iout

vout vin
iin iout

vout

(a) In some cases, Circuit models can be connected to-

gether without losing loading e↵ects, by including the cur-

rent drawn by input as an output and similarly accepting

an input representing current drawn from the output.

C

R

vin =+

iin
iout

vout

(b) Example of a circuit-level model

that includes input and output cur-

rents for modeling loading.

Figure 5.10: Modeling loading in msdsl.

Modeling loading In certain specific cases, it is possible to connect multiple Circuit models

while preserving loading e↵ects. As illustrated in Fig. 5.10a, this can be done by including an output

for the current drawn by the circuit’s input, and an input for the current drawn from the circuit’s

output.

In general, tearing netlists this way is a bad idea; it is much better to break circuits at high-

impedance inputs such as MOS gates. This is because loading forms a feedback loop between

subcircuits, which must be interrupted by a one-cycle delay to avoid a combinational logic loop.

Such time-delayed loading will fail unless the timesteps taken by the emulator are small compared

to circuit time constants.

That said, when modeling switching power converters, it is sometimes necessary to break the

converter into multiple pieces (e.g., power factor corrector, flyback, etc.) so that there aren’t too

many transistors and diodes in any one subcircuit. That would be problematic, because it could cause

the number of switched modes to become very large. Fortunately, in a digitally-controlled switching

power converter, the operating frequency of the digital controller is often orders of magnitude faster

than analog time constants. Hence, for that specific case, it is possible to capture loading e↵ects

between msdsl Circuits.

As an example of how loading e↵ects can be added to a Circuit, consider the RC filter model

in Fig. 5.10b.4 As shown in Listing 5.21, only a few changes need to be made to the original RC

Circuit. First, the current drawn from vin is measured (line 12) and assigned to a model output

(line 15). In a complementary fashion, a current source is connected to vout, whose value is set by

a model input.

Focusing on the current measurement (line 12), observe that creating a voltage source returns a

symbolic variable corresponding to the current through the voltage source. That return value wasn’t

used in the previous RC model (and as a result was not explicitly computed in the generated model),

but here it is assigned to a model output. Since current measurements are defined as positive going

4In practice, one should never tear apart a cascaded RC circuit like this to model loading. This is simply a small
example showing how to measure current and apply current.



CHAPTER 5. DIAL E FOR EMULATION 71

Listing 5.21: Modeling an RC filter with “hooks” to capture the e↵ect of loading.

1 from msdsl import *
2 r, c = 1e3 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 vin = m.add_analog_input(’vin’)
5 iin = m.add_analog_output(’iin’) # note: output!

6 vout = m.add_analog_output(’vout’)
7 iout = m.add_analog_input(’iout’) # note: input!

8 circ = m.make_circuit ()
9 gnd = circ.make_ground ()
10 circ.capacitor(’net_vout ’, gnd , c, voltage_range=RangeOf(vin))
11 circ.resistor(’net_vin ’, ’net_vout ’, r)

12 c iin = circ.voltage(’net vin’, gnd, vin)

13 circ.current(’net vout’, gnd, iout)

14 circ.add_eqns(

15 iin == -c iin,

16 vout == AnalogSignal(’net_vout ’)
17 )
18 m.compile_and_print(VerilogGenerator ())

into the positive terminal of a voltage source, a negative sign is needed on line 15.

Transfer Functions

Although we have looked at various ways to model schematic-level designs over the past few sections,

it is sometimes preferable to describe analog behavior using a transfer function, rather than a model

derived from a circuit implementation. To support that modeling style, msdsl provides an operator

called set tf, which defines a transfer function relationship between two signals. Transfer functions

are specified by lists of coe�cients for numerator and denominator polynomials, which means that

any rational transfer function can be represented.

Listing 5.22 illustrates the use of that operator, defining the RC filter transfer function:

Y (s) /X (s) = 1/ (sRC + 1) (5.31)

The transfer function polynomials are specified in descending order from the highest-order term, so

in this case the numerator is written as [1], while the denominator is written as [RC, 1].

As with the previous features described, the underlying theme is that msdsl performs com-

putationally expensive operations at compile-time to generate hardware-e�cient representations for

FPGA implementation. In this case, msdsl uses the cont2discrete function from SciPy to perform

the transfer function discretization.



CHAPTER 5. DIAL E FOR EMULATION 72

Listing 5.22: Transfer function modeling in msdsl.

1 from msdsl import *
2 r, c = 1e3 , 1e-9
3 m = MixedSignalModel(’rc’, dt=0.1e-6)
4 x = m.add_analog_input(’x’)
5 y = m.add_analog_output(’y’)

6 m.set tf(x, y, [[1], [r*c, 1]])

7 m.compile_and_print(VerilogGenerator ())

veval

y

x

y=x

y=vsat·tanh(x/vsat)
compression

Figure 5.11: SaturationModel models a unity-gain bu↵er with a hyperbolic tangent-shaped com-
pression. The amount of compression is controlled by the parameter vsat.

Spline Modeling

At the highest level of abstraction, msdsl provides spline-based implementations of the three types

of AMS blocks discussed in Chapter 4: a saturation nonlinearity, a SISO state-space system, and a

step response system. Each one is a subclass of the generic AMS model type, MixedSignalModel.

Saturation Nonlinearity The simplest of these models is SaturationModel, which implements

a unity-gain bu↵er with hyperbolic tangent-shaped compression. As shown in Fig. 5.11, the amount

of compression is quantified by evaluating the voltage transfer curve at an input veval and comparing

it to the ideal output of a linear bu↵er. For example, if the model’s output is 0.9 V for a 1.0 V

input, we would say that its compression is 20 · log10 0.9/1.0 ⇡ �0.915 dB.

Users specify the amount of compression they want when instantiating SaturationModel. For

example, if the model should exhibit -1.0 dB compression for a 1.0 V input, they would type:

m = SaturationModel(-1, ’dB’, veval=1.0)



CHAPTER 5. DIAL E FOR EMULATION 73

Behind the scenes, msdsl solves for the value of vsat (from Fig. 5.11) that results in the specified

compression.

SISO state-space system msdsl also provides a spline implementation for a generic SISO state-

space system, LDSModel:

m = LDSModel(A, B, C, D, num_spline , spline_order)

The first four arguments are the matrices of the state-space equations, num spline is the number of

spline points to use, and spline order is the order of the implicit interpolation method.

Since it can be cumbersome to write down state-space equations directly, msdsl provides a sub-

class of LDSModel, TFModel, that accepts polynomial coe�cients for the numerator and denominator

of a rational transfer function, as with set tf:

m = TFModel(num , den , dtmax , num_spline , spline_order)

From a usability perspective, a challenge in supporting state-space systems is determining state

variable ranges, which are needed for svreal’s fixed-point auto-formatting system. This is particu-

larly problematic for TFModel, because users do not directly control the state-space representation,

and therefore cannot provide range information.

To solve that problem, msdsl uses a common approach described by Oppenheim and Schafer [52].

Discrete-time impulse responses, hj [n], are calculated for each state variable; the state variable

ranges are then calculated as the `1 norms of those impulse responses times the input range, ±R.

In other words, the range of the j-th state variable is ±R ·
P

|hj [n]|.
Since the system being modeled is continuous-time, the discrete-time impulse responses for state

variables are computed by oversampling the system’s state update equation with a timestep �tov:

h [n] = e
�tovA · h [n� 1] +

Z �tov

0
e
(�tov�⌧)A · b · � [n] d⌧ (5.32)

= e
�tovA · h [n� 1] +A

�1 ·
�
e
�tovA � I

�
· b · � [n] (5.33)

assuming that A is invertible. For notational convenience, h is defined as a vector containing the

individual impulse responses for each state variable.

Further assuming that the impulse response is causal, h [�1] = 0, and therefore h [0] = A
�1 ·

�
e
�tovA � I

�
· b. Therefore, by induction, the full impulse response is given by:

h [n] =
⇣
e
(k+1)�tovA � e

k�tovA
⌘
·A�1 · b (5.34)

In general, the impulse response is infinitely long, so its `1 norm can only be approximated

by a finite sum. This results in an underestimate of the norm, and hence the worst-case state

variable ranges, because the terms in the `1 summation are nonnegative. To account for that,



CHAPTER 5. DIAL E FOR EMULATION 74

msdsl multiplies range estimates by a factor called state range safety, which defaults to “10,”

but can be overridden by the user. The default is overkill, but only ends up throwing away a few

bits of resolution to essentially guarantee that overflow will be avoided. Since the default fixed-point

width of state variables is large (LONG WIDTH REAL), this conservative approach does not significantly

degrade accuracy.

Step response system The final type of spline model supported by msdsl is for a system char-

acterized by a step response:

m = ChannelModel(t_step , v_step , dtmax , num_spline , module_name)

where v step is a list of values sampled from the step response and t step is a list of times at which

those values were sampled. As with TFModel, the arguments dtmax and num spline indicate the

maximum timestep and number of spline points.

Being able to provide a step response as time-value pairs is powerful, because it allows the step

response to be calculated analytically, computed from S-parameters, drawn by hand, etc. However,

since channels are so often described by S-parameter measurements, msdsl provides a subclass of

ChannelModel, S4PModel, that accepts a Touchstone file [19] as input.

m = S4PModel(s4p_file , dtmax , num_spline , module_name)

Specifically, it works with S4P Touchstone files, which contain di↵erential S-parameter measure-

ments (i.e., 4x4 complex matrices) over a range of frequencies. Given a source and load impedance,

msdsl converts those S-parameters measurements to a step response using the process described in

Appendix B.

5.3 anasymod

Once msdsl-generated models are swapped into the DUT’s RTL, the result is a synthesizable model

of the entire chip. anasymod picks up the emulation flow from there by wrapping control infrastruc-

ture around the DUT and automating the FPGA build process. The development of anasymod is

led by Gabriel Rutsch of Infineon, which generously agreed to release the work as open source under

a BSD license at the start of the project. Since I wasn’t the primary developer for anasymod, I

cover it in a more abbreviated fashion than the previous two tools, with a focus on features that I

helped to develop to support mixed-signal modeling.

5.3.1 Basic Usage

anasymod operates on a folder containing design sources (Verilog, VHDL, etc.) and YAML files

that configure its behavior, as illustrated in Fig. 5.12. Its basic usage requires only two files, tb.sv,



CHAPTER 5. DIAL E FOR EMULATION 75

prj.yaml

gen.py

tb.sv

clks.yaml

source.yaml

> anasymod --emulate --view ...

> anasymod --sim --view ...

FPGA

CPU

simctrl.yaml

Figure 5.12: anasymod operates on a folder containing HDL sources, configured by various YAML
files (all optional except prj.yaml). It can run a computer-based simulation of the design or an
FPGA-based emulation.

representing the top level of the design or synthesizable testbench, and prj.yaml, which contains

information such as the name of the FPGA board being used and the target emulation frequency.

anasymod can be invoked either as a command-line tool or as a Python library. The command-

line mode is useful for simple projects because it minimizes the overhead to get started, whereas

the library mode is more suitable for larger projects and those involving complex test stimuli. In

either case, anasymod can launch a computer simulation or run an emulation on an FPGA board.

Although anasymod is geared towards emulation, computer simulation is useful for spot-checking

the construction of an emulator prior to launching the time-consuming bitstream build process.

The simulators currently supported are Xilinx Vivado, Cadence Xcelium, and Icarus Verilog

(open-source). Roughly speaking, Vivado simulations are useful to check that Vivado properly

elaborates the design, but are slower than Xcelium simulations. Icarus Verilog is great for small

designs, because it has a shorter startup time as compared to the other two, but it is slower for large

designs, and doesn’t support as many SystemVerilog features. Once the simulation looks OK, the

user can switch over to the emulation mode, which automates FPGA tools to build a bitstream and

program it to one of the supported FPGA boards.

On that note, anasymod currently supports seven Xilinx FPGA boards, spanning a range of

capabilities: Arty A7, PYNQ Z1, ZC702, ZC706, ZCU102, ZCU106, and VC707. Changing the

target board for emulation often requires only a one-line change in prj.yaml. (Occasionally, the

emulator frequency needs to be changed as well, which is set in the same YAML file.) Adding

support for new boards is usually a quick process, as well, because only a few details are required,

such as the FPGA clock pin location(s), whether the clock is single-ended or di↵erential, etc.

Since it’s usually not convenient to cram a whole design into the tb.sv file, users can list

additional source files in a file called source.yaml; about a dozen di↵erent file types are supported

(Verilog, VHDL, EDIF, etc.). This YAML file can also specify certain files as only pertaining to

simulation or emulation, which is helpful for cases where FPGA equivalents need to be substituted

for IP blocks and standard cells. To make it easier to deal with generated HDL, such as models



CHAPTER 5. DIAL E FOR EMULATION 76

produced by msdsl, anasymod recognizes a file called gen.py as containing code that should be

run to produce sources necessary for simulation and emulation. Files produced by gen.py do not

have to be specified in source.yaml.

Test stimulus I/O and waveform probing are specified in a file called simctrl.yaml. For computer

simulation, anasymod calls Verilog system tasks as necessary to save the specified waveforms to a

VCD file, and routes stimulus I/O to a user-provided stimulus block described in HDL. The emulation

mode provides the same functions, but its implementation is di↵erent: waveforms are captured by

an Integrated Logical Analyzer on the FPGA, which anasymod downloads and converts to a VCD

file, while test stimulus I/Os are routed to a Virtual I/O (VIO) or Processing System (PS) block

and made available to the user through a Python interface.

The final configuration file supported by anasymod is called clks.yaml, which supports variable

timestep management and clock generation, two key features for mixed-signal modeling. I’ll describe

these features in the next two subsections.

5.3.2 Variable timestep management

anasymod associates a timestep with every emulation cycle; the timestep can either be a static

value, determined at compile time (i.e., a fixed timestep), or a dynamic value, determined at run

time (i.e., a variable timestep). To support variable timestep operation, anasymod lets any AMS

model make a request for the size of the next timestep; the timestep actually taken is the minimum

of all requests.5 To make it easier to implement this scheme, anasymod generates hardware that

gathers all requests, computes the timestep, and communicates that information back to AMS models

(Fig. 5.13).

The clks.yaml configuration file lets users specify which models need to participate in the

timestep management scheme. Some models, such as a variable-timestep filter, need only participate

in a read-only fashion: they must know what the emulation timestep is, but do not need to make

timestep requests. However, a model such as an oscillator needs read/write access, because it needs

to request a timestep corresponding to its next clock edge, and also needs to keep track of emulator

timesteps to know how far in the future that edge will occur.

As an example, consider the simple oscillator model in Fig. 5.14. If the oscillator output is

currently low, then it makes a timestep request that corresponds to the exact time at which its

output should go high, and if the request is granted, then the oscillator output goes high. If the

request is not granted, that means the timestep chosen by the timestep manager was smaller than

the timestep requested by the oscillator. Hence, the oscillator decrements its timestep request by

the di↵erence between the requested and granted timestep. The same procedure is followed for a

5A fixed-timestep model can interoperate with variable-timestep models by having it request timesteps that cor-
respond to its sampling frequency. If the fixed-timestep model cannot be modified, a wrapper module can request
a timestep for the fixed-timestep model and connect a “timestep granted” signal to the fixed-timestep model’s clock
enable port.



CHAPTER 5. DIAL E FOR EMULATION 77

model 1

emu_dt

dt_req[1]

dt_req[2]
model 2

min

model N dt_req[N]

Figure 5.13: anasymod automatically generates infrastructure for timestep management, which
gathers timestep requests, takes the minimum, and passes that information back to AMS models.

==

D Q
0

1

D Q
0

1

Σ
+

-

0.5/f

emu_dt

clk_val

dt_req

emu_clk

Figure 5.14: Simple oscillator model, operating at a frequency f , that illustrates the timestep request
interface.

falling edge transition.

5.3.3 Emulator clock

In the simple oscillator model, there is an input for a signal called the “emulator clock” (emu clk).

This is not a real clock signal that would be present in a chip design, but instead marks the transition

from one emulator timestep to the next. The need for an emulator clock is not unique to oscillator

models; in fact, it is generally required for emulating continuous-time analog dynamics. Considering

the RC filter as another example, its physical I/O consists of only an analog input and an analog

output. However, in a discrete-time approximation, a clock signal is needed to update its state.

As illustrated in Fig. 5.15, anasymod takes care of generating the emulator clock and routing



CHAPTER 5. DIAL E FOR EMULATION 78

D Q

D Q
E

D Q
E

BUFG

BUFG

BUFG

emu_clkemu_clk_2x

clk_req[0] gen_clk[0]

gen_clk[1]clk_req[1]

MMCMext_clk

FPGAPCB

Figure 5.15: anasymod generates clock infrastructure that produces an emulator clock signal, along
with “true” clock signals that appear in the DUT. The input clock, emu clk 2x, runs at twice the
frequency of the emulator clock.

it to AMS models that need it. As with timestep management, users may specify modules that

need the emulator clock in the clks.yaml file. However, it is not always necessary to do that, as

anasymod defines the CLK MSDSL macro to point to the emulator clock, which is the default clock

used in generated msdsl models.

The frequency of the emulator clock is the rate at which timesteps are processed, and it is

completely independent of the size of emulation timesteps. Even as emulator timesteps vary over

a wide range, the emulator clock continues to run at a fixed frequency, the upper bound of which

is determined by the capabilities of the FPGA. In the special case that all emulator timesteps are

equal to the period of the emulator clock, the emulator runs in real-time.

5.3.4 Generated clocks

In addition to the emulator clock, AMS designs generally have one or more “true” clocks that are

present in the real chip design. In Fig. 5.15, for example, both oscillator outputs drive unmodified

digital RTL, as opposed to AMS models. In an emulation context, these “true” clocks must meet four

requirements: (1) they must be glitch-free, (2) they should utilize FPGA clock routing resources,

(3) their duty cycle should be accurate with respect to “emulator time,” and (4) the relationship

between the various clocks should not introduce unrealistic timing problems.

The last issue requires a bit of explanation. Suppose, as shown in Fig. 5.16, that an RC filter

provides the input to an ADC. The RC filter’s dynamics are updated on the emulator clock, emu clk,

while the ADC sample is taken on the rising edge of a clock signal from an oscillator model, clk adc.

Since clk adc is generated from the emulator clock, it is delayed with respect to emu clk. If that



CHAPTER 5. DIAL E FOR EMULATION 79

Oscillator

emu_clk
RC filter ADC

v_in v_out
d_adc

clk_adc

Figure 5.16: Illustration of the hold-time hazard in an AMS emulator with generated clocks. The
RC filter output changes on emu clk, but the clock that samples the result, clk adc, is delayed with
respect to clk adc and therefore may arrive too late.

delay is large enough, there will be a hold time issue at the ADC input, because the RC filter

output could change before the clk adc edge occurs. To make matters worse, since the RC output

is represented as a multi-bit digital signal, a hold time violation could cause an arbitrary voltage to

be sampled by the ADC; it is not simply a matter of an extra cycle of delay.

I resolved all four clocking issues by having anasymod generate the clocking infrastructure

illustrated in Fig. 5.15. An AMS model may emit a “clock request,” which is the value that the

clock signal will have during the next emulator clock cycle. The emulator then uses that signal to

generate a glitch-free clock signal whose edges (both rising and falling) are aligned to rising edges of

the emulator clock. Finally, anasymod wires the generated clock signal, which is driven using an

FPGA clock bu↵er, back into the model that sent the clock value request.

Our scheme is a bit di↵erent than how generated clocks are typically handled on an FPGA;

clock gating is a more commonly used approach. However, if we had generated the “true” clocks

by gating the emulator clock, we could not have given them arbitrary duty cycles with respect to

emulator time. This would have been problematic for AMS emulation because the behaviors of some

analog blocks vary with the duty cycle of clock inputs. In fact, even in digital emulation, if there

are negative edge-triggered circuits in a multi-clock system, clock duty cycle can a↵ect the sequence

of operations.

5.3.5 Interactive tests

When running an emulation, there is generally some degree of interaction required between the host

computer and the FPGA board to control the test stimulus. While one could implement stimuli

entirely as synthesizable RTL, I found that such an approach is not flexible enough for realistic use

cases, owing to the long amount of time that it takes to rebuild an FPGA bitstream to change the

stimulus. As a result, anasymod provides a Python interface for reading and writing signals within

a running emulator. Two di↵erent implementations of that interface are provided: a VIO-based

approach, and a PS-based approach called “firmware-in-the-middle” (FiM).



CHAPTER 5. DIAL E FOR EMULATION 80

Listing 5.23: Using anasymod to run a VIO-based interactive test on an emulator.

1 from anasymod.analysis import Analysis
2 ana = Analysis(’path/to/rc’)
3 ana.set_target(’fpga’)
4 ctrl = ana.launch () # program FPGA

5 ctrl.stall_emu ()
6 ctrl.set_param(name=’v_in’, value=1.0)
7 ctrl.set_reset(1)
8 ctrl.set_reset(0)
9 for _ in range(25):
10 ctrl.refresh_param(’vio_0_i ’)
11 v_out = ctrl.get_param(’v_out ’)
12 t = ctrl.get_emu_time ()
13 print(f’t: {t}, v_out: {v_out}’)
14 ctrl.sleep_emu(0.1e-6)

VIO approach

Listing 5.23 shows a simple example of VIO-based interaction with an emulated RC filter, drawn

from a unit test in the anasymod repository. In this case, the host-emulator interaction consists of

letting the filter run for a short period of (emulated) time, pausing the emulator to read the filter

output, and repeating the process a number of times.

The FPGA board is programmed via the launch command (line 4), which returns a CtrlApi

object. That object can be used to write signals via set param (line 6) and read signals via get param

(line 11). Special methods for controlling the flow of emulated time are also provided, such as

stall emu (line 5), get emu time (line 12), and sleep emu (line 14).

Under the hood, these Python methods are implemented by sending commands to a Vivado TCL

interpreter running in the background (which is created by the launch command). That background

process, in turn, interacts with a VIO instance on the FPGA through a USB-JTAG interface. As one

might suspect, all of this overhead means that VIO-based interaction with an emulator is quite slow.

Having observed that problem, we started exploring alternatives, which lead to the development of

the FiM approach.

FiM approach

With FiM, a Python program running on the host computer sends commands over USB-UART to a

processor on the FPGA, whose firmware translates those commands into low-level interactions with

the DUT. The processor firmware can be either generated by anasymod or customized by the user

for maximum performance.

When anasymod is used to generate PS firmware, the user receives a PS-based implementation



CHAPTER 5. DIAL E FOR EMULATION 81

Listing 5.24: Example of custom firmware running on an FPGA PS.

1 #include "gpio_funcs.h"
2 // ...
3 set_tms (1);
4 cycle (); // Move to Select -DR-Scan state
5 set_tms (0);
6 cycle (); // Move to Capture -DR state
7 set_tms (0);
8 cycle (); // Move to Shift -DR state
9 u32 retval = 0;

10 for (u32 i=0; i<(length -1); i++){
11 set_tdi (( data_in >> i) & 1);
12 retval |= (get_tdo () << i);
13 cycle ();
14 }
15 // ...

of the CtrlApi interface that can be used as a drop-in replacement for VIO-based interaction. This

can immediately provide a speedup of 1-2 orders of magnitude as compared to the VIO approach,

because it cuts out several layers of overhead. (Measured speedups will be discussed more precisely

in Chapter 6.)

A further speedup of 1-2 orders of magnitude can be achieved by writing custom PS firmware

that performs bit-level actions on-FPGA, such as toggling TCK/TDI/TDO/TMS to read and write

JTAG registers. anasymod streamlines the process of writing custom firmware by generating get *

and set * methods for the signals listed in simctrl.yaml. An example of using those methods is

shown in Listing 5.24, which is a snippet of custom firmware implementing a JTAG SHIFT-DR

command.6

It might seem di�cult to determine how to partition the emulator between Python code, PS

firmware, and PL RTL, but that choice can be informed by thinking about the lab equipment that

will interact with the physical chip when it returns from fabrication. For example, users typically

control JTAG cables through SHIFT-IR and SHIFT-DR commands, so those commands should be

implemented on-FPGA, rather than on the host computer.

Comparison

Since FiM can provide a speedup of 3-4 orders of magnitude as compared to VIO, while preserving

a good degree of flexibility, it is generally the preferred approach. However, FiM is currently only

6Complete JTAG driver firmware can be found within the open-source DragonPHY project: https:
//github.com/StanfordVLSI/dragonphy2/blob/e78c943271d29511b3ec316281ecd1ef60b0687e/tests/fpga_system_
tests/emu_macro/main.c#L47-L153. That said, in the future, firmware for commonly-used interfaces such as JTAG
(e.g., I2C, SPI etc.) should be distributed with anasymod, rather than copied in from other projects.

https://github.com/StanfordVLSI/dragonphy2/blob/e78c943271d29511b3ec316281ecd1ef60b0687e/tests/fpga_system_tests/emu_macro/main.c%23L47-L153
https://github.com/StanfordVLSI/dragonphy2/blob/e78c943271d29511b3ec316281ecd1ef60b0687e/tests/fpga_system_tests/emu_macro/main.c%23L47-L153
https://github.com/StanfordVLSI/dragonphy2/blob/e78c943271d29511b3ec316281ecd1ef60b0687e/tests/fpga_system_tests/emu_macro/main.c%23L47-L153


CHAPTER 5. DIAL E FOR EMULATION 82

supported on Zynq-7000 and Zynq-Ultrascale+ FPGAs, which have ARM cores. In theory, FiM

could be extended to other FPGAs by using MicroBlaze, a soft PS core, but anasymod does not

yet include this feature. Hence, for FPGA boards not supported by FiM, VIO serves as a fallback

for running interactive tests.

Of course, whether FiM or VIO is used, DUT stimuli that have to be very fast, such as a PRBS

generator, should be implemented in RTL. However, it is still a good idea to make such stimulus

blocks configurable by the host computer to reduce the likelihood of having to rebuild the emulator

bitstream. For example, one would likely want to be able to change the polynomial and initial state

of a PRBS generator from Python running on the host computer, even when the PRBS generator

is implemented as RTL.



Chapter 6

The Paradigm Cases

The open-source framework just described has been applied to seven mixed-signal designs: an NFC-

powered chip, a firmware-controlled flyback converter, a battery impedance sensor, an automotive

magnetic sensor [59], an IGBT driver, a microcontroller-based automotive power management unit

(PMU), and the open-source high-speed link DragonPHY [37]. These applications cover a wide

range of mixed-signal circuits and emulation use cases, demonstrating the generality of the frame-

work. In this chapter, I will describe experimental results from the flyback, NFC, and DragonPHY

applications. The focus will be on DragonPHY, since the design and emulator are both open-source,

which means that the results can be shared in detail and are reproducible by others.

6.1 Firmware-Controlled Flyback Converter

The first example we’ll consider is a firmware-controlled flyback converter design from Infineon,

illustrated in a simplified form in Figure 6.1. The design consists of a conventional flyback topology,

along with several auxiliary windings that feed back signals to a processor, which generates the gate

drive waveform for a MOSFET on the primary side of the transformer (only one auxiliary winding

is shown in the figure).

When I first started working on this project, Infineon already had a mixed-signal simulation

of the system running, which used SIMetrix [67] to simulate analog components at SPICE-level,

along with firmware, written in C, that ran as a custom SIMetrix plugin. However, this CPU-based

simulation was slow, which meant that it could only be used to spot-check a few important use

cases, rather than as a platform for firmware development. Infineon asked me to explore whether

that problem could be solved by creating an FPGA emulator for the system, with the idea that

firmware developers could use the emulator prior to the availability of silicon.

It would not have been trivial to discretize the flyback converter topology by hand, because it

contains multiple coupled windings, several diodes, and snubber circuitry. I instead described the

83



CHAPTER 6. THE PARADIGM CASES 84

=+ load

processor

D

S
G

Vin

Vout

Figure 6.1: Basic firmware-controlled flyback architecture: auxiliary windings (several, but one
shown here) feed back signals to a processor, which generates the gate drive waveform.

topology with msdsl’s netlist interface, which includes a transformer model, in about 200 lines of

Python code. This not only made the code more readable and easier to debug than deriving the

discrete-time equations by hand, but also made the model more flexible, since the circuit topology

and component values could easily be changed.

I relied on msdsl’s handling of switched systems to implement the flyback converter topology,

since it contains transistors and diodes that are used in a switch-like fashion. Since the full flyback

topology contained five diodes and one transistor, that meant that a total of 26 = 64 di↵erent linear

operating modes had to be analyzed at compile time (i.e., all combinations of on/o↵ states for all

switches). However, this did not take a noticeable amount of time, because the analysis of each

mode only requires the computation of a matrix exponential and a few matrix multiplications.

As it turns out, this system could be modeled accurately and e�ciently with fixed-timestep

oversampling because the processor frequency (10s of MHz) was orders of magnitude faster than

analog time constants (10-100 kHz). In other words, the spacing between digital emulator events

was so small, that there was no need for “analog-only” timesteps to achieve reasonable accuracy.

I was able to run the completed emulator at a frequency of 35 MHz on a Xilinx ZC706 FPGA

board, with each emulator clock cycle corresponding to one cycle of the flyback processor. This

represented a speedup of about 2,800x as compared to the existing CPU-based simulation that

Infineon was using. In other words, simulations that used to take an hour could run in a few seconds

on the emulator.

This application illustrates that the emulation framework lets users generate models that strike



CHAPTER 6. THE PARADIGM CASES 85

AM
TX RX

load 
modulation

processor

env. det.

rectifier

custom 
application

communication

Figure 6.2: Basic NFC architecture; the TX uses amplitude modulation to communicate, while the
RX uses load modulation.

a useful balance between accuracy and performance. Given that the flyback emulator was geared

toward firmware development, a relatively coarse level of accuracy was su�cient. For example, the

flyback model had to exhibit load-dependent ringing on an auxiliary winding, since it was monitored

as part of the firmware control algorithm, but the exact shape of the ringing waveform was less

important. That meant that we could use the simple on/o↵ models for transistors and diodes

discussed earlier, which were fast and resource-e�cient.

6.2 NFC-Powered Chip

In another commercial application, we used our framework to build a mixed-signal emulator for

the NFC-powered chip sketched in Figure 6.2. In this system, a transmitter (TX) sends a 13.56

MHz carrier to a receiver (RX) coil. The carrier is rectified to supply DC power to a processor and

custom application, while amplitude modulation (AM) on the carrier envelope is processed as digital

communication from the TX. Finally, the RX communicates by modulating the loading of its coil.

When I first started working on this project, Infineon had already implemented a hardware-in-

the-loop (HIL) emulator for the design. The HIL emulator used an FPGA to implement the processor

design, while physical analog components on a PCB implemented analog blocks in the chip design.

This worked for some types of tests, but had two issues: first, since the analog components used were

limited to what was available o↵-the-shelf, their behavior didn’t match that of the on-chip analog

blocks (particularly in terms of power consumption). The second issue had to do with varying

parameters of the design or use case, since, in some cases, this required modification of the HIL

PCB, which made it di�cult to conduct parameter sweeps.



CHAPTER 6. THE PARADIGM CASES 86

As a result, Infineon asked me to explore whether it was possible to make a fully virtual emulator

for the NFC-powered chip. In other words, they wanted to emulate the entire design, including both

analog and digital blocks, on an FPGA. As a side benefit, this would mean that the emulator could

be implemented on an o↵-the-shelf FPGA board, reducing its cost and making it easier to distribute

emulators to developers. (In fact, a fully virtual AMS emulator could even be implemented and

distributed using cloud FPGA resources.)

I modeled the NFC receiver using msdsl’s di↵erential equation interface in about 70 lines of

code. The NFC topology contains various switched elements (envelope detector, rectifier, load

modulation), so I made extensive use of the eqn case feature described earlier, which allows for

conditional expressions in symbolic di↵erential equations.

Even though the NFC topology is similar to the flyback topology, a key di↵erence between the

two is that the analog time constants of the NFC receiver are much faster; they are comparable

to the receiver’s digital clock period. This is somewhat fundamental, because TX and RX circuits

are designed to resonate at the carrier frequency, while the RX processor clock is recovered directly

from the carrier waveform. Hence, the spacing between digital events is not small enough that we

can use the processor clock directly for fixed-timestep oversampling, as in the previous application.

After making that observation, I realized that we would either need to introduce “analog-only”

timesteps to oversample the analog dynamics more finely, or develop a new method that would

allow larger timesteps to be taken while still achieving reasonable accuracy. This work preceded

the development of the spline-based modeling strategy discussed earlier in this thesis, so I took the

former approach (finer fixed-timestep oversampling). That said, I include some thoughts at the end

of this discussion on how that might be improved, with the benefit of hindsight.

With that in mind, I introduced 16x oversampling, meaning that there were 16 emulator cycles

for every period of the carrier waveform. This directly reduced emulator throughput by the same

factor, as pointed out in Chapter 3, but because the oversampling ratio was not particularly high,

the emulator still ended up being fast enough for firmware development, and did not warrant further

speed optimization at that time.

The fully virtual NFC chip emulator was implemented on a Xilinx VC707 board and achieved a

430x speedup as compared to an existing SystemVerilog simulation that used real number models

(RNMs) for AMS blocks. This demonstrates that our framework can virtualize analog blocks in an

existing hardware-in-the-loop emulator, while delivering the 2-3 orders-of-magnitude speedup that

is expected from emulation.

6.2.1 Taking bigger timesteps

The big challenge in modeling the NFC system is that it contains diodes (in the rectifier and envelope

detector), which are not directly turned on or o↵ by digital control signals. Hence, if we only take

timesteps corresponding to digital events, the transition of a diode from on to o↵, or vice versa, has



CHAPTER 6. THE PARADIGM CASES 87

to be aligned to digital events, even if that transition should occur in between.

When I was working on this application, I addressed this problem by increasing the oversampling

ratio until diode transitions were “close enough” that the NFC model exhibited realistic behavior.

Since the emulator was fast enough at that point for firmware development, I stopped there.

However, thinking about this system in the context of the spline-based modeling approach I later

developed, it would likely be possible to achieve better performance. Suppose that the voltage and

current of diodes were described by spline point feature vectors with linear interpolation. It would

then possible to determine if a zero crossing (i.e., diode transition condition) occurred between any

two successive spline points by checking if they have opposite signs. If so, the emulator could force

a new timestep at the estimated time of the earliest zero-crossing.

If the crossing occurs between two spline points ui and ui+1, separated in time by �th, then the

time of the zero-crossing is:

tc = (�thui) / (ui � ui+1) (6.1)

This expression does involve a division, which is well-known to be an expensive operation in hard-

ware. However, the division wouldn’t have to be very accurate to outperform the coarseness of

discretizing diode transitions to a fixed timestep. As a result, one could likely get away with a small

lookup table, leveraging the pseudo-logarithmic compression function, plog (x), provided by svreal.

6.3 DragonPHY

The last application of the emulation framework that we’ll consider is DragonPHY, an academic

16 Gb/s high-speed link design [37]. Both the design and the emulator variants described in this

section are available as open-source on GitHub (https://git.io/dragonphy).

As shown in Fig. 6.3, DragonPHY uses an ADC-based receiver architecture, consisting of 16

time-interleaved ADCs organized into four banks, with each bank driven by one phase interpolator

(PI). The PIs are essentially digitally-controlled delay lines and are adjusted, by changing the PI

control codes, so that they produce four equally-spaced clock phases. The ADCs in each bank are

activated sequentially, with one sample taken on each rising edge of the PI clock.

The DragonPHY architecture is split between an analog core, which contains the ADCs and

PIs, and a digital core, which contains DSP circuits to recover the transmitted data from the ADC

samples. Since the digital core is somewhat complex, and needs to be simulated over a long period

of time to verify low BER, DragonPHY simulations tend to be slow.

I sought to speed up those simulations by emulating the design on an FPGA. For comparison

purposes, I created two distinct implementations: a “low-level” emulator that swaps in synthesizable

models for the ADCs, PIs, and channel, and a “high-level” emulator that lumps all of those behaviors

together into a single model. The “low-level” architecture uses variable timesteps that are determined

at runtime, and its AMS models have a one-to-one mapping to the models that would be used in

https://git.io/dragonphy


CHAPTER 6. THE PARADIGM CASES 88

digital 
core

analog core

phase interpolator

ADC
ADC
ADC
ADC

DragonPHY

channelchannelTX

Figure 6.3: The DragonPHY architecture consists of 16 ADCs, organized into four banks, each
of which contains a phase interpolator. A digital core processes the ADC samples to recover the
transmitted data.

a conventional CPU-based simulation. The “high-level” architecture, on the other hand, has a

structure that is optimized for FPGA emulation; it makes better use of parallelism and implements

variable timesteps using a computation schedule that is determined at compile time.

We start by discussing variable-timestep modeling of the channel dynamics, which is applicable

to both emulator architectures, and then consider each implementation and its relative merits.

6.3.1 Channel modeling

Since the system-level behavior of DragonPHY depends on both clock jitter and sub-picosecond

sampling point adjustments, fine time resolution is required in emulating the design. My strategy

in achieving this resolution without significantly impacting the emulator is based on ideas from

Chapter 4: I have the emulator take large, but precise, timesteps, avoiding the creation of extra

timesteps whose only purpose is to update analog state variables.

When using this approach, special attention must be paid to the modeling of channel dynamics.

The channel input consists of a piecewise-constant waveform driven by the transmitter (TX), and

the channel output is sampled at a non-uniform interval due to jitter in the receiver (RX). The

overall channel behavior is described by the following equation:

y =
1X

i=1

xi · (f (ti)� f (ti�1)) (6.2)

where xi is the i-th TX data level (most recent first), ti is the time that has elapsed since the i-th



CHAPTER 6. THE PARADIGM CASES 89

data transition, and f (t) is the step response of the channel.

A practical implementation must truncate Equation 6.2 to a finite number of terms, n, which is

essentially the number of bits that contribute to intersymbol interference (ISI). We can bound the

residual error of that truncation, assuming the input is bounded between ±R as:

e 
1X

i=n+1

R · |f (ti)� f (ti�1)| (6.3)

If we further assume that f (t) has entered a monotonic settling regime by ti (i.e., f (ti) � f (ti�1)),

then the error bound simplifies to:

e  R · (f (1)� f (tn)) (6.4)

In other words, the relative error is the amount of settling that remains at the truncation point. For

example, modeling a channel response to within 1% requires that the step response has settled to

within 99% of its final value by the truncation point.

6.3.2 Low-level emulator

In building an emulator for DragonPHY, I first tried a low-level approach, illustrated in Fig. 6.4. A

16 GHz oscillator model drives a pseudorandom binary sequence (PRBS) generator that produces

the channel input; that clock signal is halved twice to produce a 4 GHz clock signal that drives the

four PIs. The PIs are modeled as digitally-controlled delay lines with jitter, and they each drive a

bank of four ADC models. The ADCs sample the channel output, with Gaussian noise added, to

produce measurements that go to the DragonPHY digital core, which was essentially unmodified for

emulation.

In this approach, there are four distinct AMS blocks whose models were generated by msdsl: the

PIs, the ADCs, the channel, and the 16 GHz oscillator. Many of the previously described features

of the emulation framework are put to use in the low-level emulator, such as variable timestep

emulation, which involves the clock edge events generated by four independent PIs and the 16 GHz

oscillator. msdsl’s arbitrary function support is used to implement the channel step response, f (t),

that appears in Equation 6.2, and the Gaussian noise generator is used to model PI jitter and ADC

noise.

This low-level approach was a direct translation of how DragonPHY was being modeled for

CPU-based simulation, with the emulator implementing features that would normally be handled

by a simulator. As a result, it made the process of porting simulation to emulation conceptually

straightforward.

However, after building the emulator, I found that it provided only mediocre performance. De-

tailed results will be discussed later, but broadly speaking, the lackluster performance was caused



CHAPTER 6. THE PARADIGM CASES 90

digital 
core

analog core
16 GHz 
oscillator

PRBS 
generator

msdsl model

÷2

ADC
PI

ADC
ADC
ADC

÷2

channelchannel

Figure 6.4: Low-level DragonPHY emulator, in which synthesizable AMS models are used within
the existing hierarchy of the analog core.

by a mismatch between the parallelism of the DragonPHY design and the parallelism of the emu-

lation models. In one cycle, DragonPHY’s digital core takes in 16 ADC samples and produces 16

bit estimates; its emulation throughput could therefore be as high as 16 bits/cycle. But since the

low-level emulator produces only one ADC sample per cycle, DragonPHY’s digital core was forced

to run 16x slower.

6.3.3 High-level emulator

Having made that observation, I wanted to try modeling DragonPHY’s analog core as producing 16

ADC samples per emulation cycle, so as to match the parallelism of the digital core. This required

the entire analog core to be replaced by a single AMS macromodel, encompassing the behavior of the

ADCs, the PIs, and the channel dynamics (Fig. 6.5). As a result, I result call this the “high-level”

modeling approach.

In the high-level emulator, time moves forward in increments of the 1 GHz clock rate of the

digital core, rather than the 16 GHz clock rate at which bits are being transmitted, keeping the

digital core more active than in the low-level emulator. This requires parallel computation of the

RX ADC samples, since they must all be provided to the digital core at once.

The most straightforward way to achieve that would have been to create 16 instances of the

channel model used in the low-level architecture. However, since this would have required more

resources than were available on the FPGA, I had to use a channel model with a lower resource

footprint. That model computed the terms in Equation 6.2 in batches, over several clock cycles,

with the batch size set as a compile-time parameter.



CHAPTER 6. THE PARADIGM CASES 91

analog core

PRBS gen.

PRBS gen.

PRBS gen.

digital core

“1 GHz” clock

adc[0]
adc[1]

adc[15]

pi[0]
pi[1]
pi[2]
pi[3]

in[0]

in[1]

in[15]

Figure 6.5: High-level DragonPHY emulator, in which the analog core is replaced by a single macro-
model, and the behaviors of all 16 ADCs are modeled in parallel.

Since the AMS macromodel produces ADC samples in parallel, the transmitted bits also need to

be produced in parallel. Fortunately, because the TX data source is an LFSR-based PRBS generator,

this parallelization could be implemented in a straightforward way that generated exactly the same

sequence of bits that was produced in the low-level case. I did this by creating 16 instances of the

original PRBS generator that were given special seed values, such that the n-th PRBS generator

produced a bit sequence equal to the original sequence shifted by n, then decimated by 16. This

technique leverages a useful property of maximal-length LFSR sequences, namely that decimation

by a power of two is equivalent to shifting the sequence by some amount [22].

6.3.4 Architecture comparison

The key advantage of the high-level architecture is speed. This is due not only to its increased

parallelism, but also to the reduction in the infrastructure that is needed to manage variable timestep

requests, which allows for a faster emulator cycle time. Although the high-level architecture is not a

direct mapping of a CPU-based simulation, I found that it was easier to develop, because only one

AMS model needed to be created and tested.

The main drawback of the high-level approach is that it can miss some details in the design. For

example, a high-level block might have hundreds of I/Os whose behaviors must be modeled if they

are to be included in emulation. In the low-level modeling approach, the e↵ects of those I/Os are

often modeled “automatically” through the connections between lower-level models and the digital

logic that glues them together.

That said, I have found the high-level modeling approach to be a better fit for emulation. For

one, it is easier to integrate and maintain a few high-level models than a large number of low-level



CHAPTER 6. THE PARADIGM CASES 92

Table 6.1: DragonPHY Throughput Comparison

Approach
Real Number

Format
Platform

Throughput
(Mb/s)

B. Lim [41] N/A CPU 0.0071

DragonPHY Sim. N/A CPU 0.0143

High-Level Emu. Floating-Point FPGA 4.702

Low-Level Emu. Fixed-Point FPGA 4.996

S. Herbst [30] Fixed-Point FPGA 10.0

High-Level Emu. Fixed-Point FPGA 79.94

models. In addition, given that emulation performs poorly when there are many independent digital

events, the high-level approach makes it easier to keep the number of events under control. Even

though the high-level approach doesn’t provide the same level of modeling fidelity as the low-level

approach, it is a good fit for the tasks an emulator has to support: pre-silicon FW/SW development

and running long tests. For other tasks, such as connectivity and coverage tests, it is better to use

computer simulation, rather than low-level emulation.

6.3.5 Experimental results

Both the low- and high-level DragonPHY emulators were constructed using the open-source em-

ulation framework and run on a Xilinx ZC706 board, which includes a Xilinx XC7Z045 FPGA.

Since the framework makes it easy to switch real-number representations, I built two versions of

the high-level emulator: one using a fixed-point representation and the other using floating-point.

The simulation baseline was run on an Intel Xeon Silver 4214 CPU @ 2.20GHz, with 125 GB RAM,

using the Cadence Xcelium simulator.

Throughput Table 6.1 compares the throughput, defined as bits per second processed by the

DUT, of our emulators and other CPU- and FPGA-based approaches. The result from B. Lim [41]

is the fastest published RTL-level high-speed link simulation of which I am aware; it used a PWL

waveform representation as a means to create e�cient behavioral models of AMS blocks. I also

created my own simulation baseline for DragonPHY using B. Lim’s PWL approach, with care taken

to use the same level of modeling detail that was used in the low- and high-level emulators.

The fixed-point high-level emulator was 5,590x faster than those CPU-based simulations. To

put that in perspective, it could process one trillion bits in 3.5 hours, while CPU simulation would

take 2.2 years to complete such a task. Hence, while CPU simulation necessitates extrapolation over

orders of magnitude to estimate BER, the high-level emulator brings that task into the realm of

direct measurement.



CHAPTER 6. THE PARADIGM CASES 93

Table 6.2: DragonPHY Emulator Latency Comparison

Approach Run Time (s)

VIO, bit-level 23,904

FiM, bit-level 186.6

FiM, transaction-level 3.76

The low-level DragonPHY emulator ran about 16x slower than the high-level version for two

reasons: first, the high-level architecture could use a 50% faster emulator clock because its critical

path was shorter, and second, it reduced the average number of clock cycles per transmitted bit

from 4 to 0.375.

In studying how the DragonPHY emulator stacks up to other high-speed link emulators, there

is unfortunately only one other published result to serve as a comparison point: my own study from

ICCAD 2018 [30]. Since the link design in that study was simpler than DragonPHY, the low-level

DragonPHY emulator was about 2x slower than the ICCAD ’18 result. However, the high-level

DragonPHY emulator was about 8x faster.

As a final throughput comparison, I used svreal to switch real-number operations to floating-

point in the high-level emulator, resulting in a 17x slowdown. This was due to two factors: first,

I had to reduce the emulator clock frequency by 3x because of the slower speed of floating-point

operations, and second, I had to reduce the parallelism of channel dynamics calculations by 5.6x

because of the increased resource utilization. This illustrates the value of using svreal’s automated

fixed-point formatting system, which makes it straightforward to boost performance by an order of

magnitude as compared to a floating-point implementation.

Latency Since the emulation framework supports both VIO- and FiM-based interactive tests, I

used DragonPHY as a test case to explore the relative performance between those two methods, in

terms of the time taken to send a series of emulated JTAG commands to the DUT to set up and

run a BER test.

Table 6.2 shows the results of that experiment. The VIO-based approach took 6.64 hr, which is

clearly too long for real-world use. For the FiM approach, I looked at two di↵erent implementations.

The first was a bit-level approach, where the host computer toggled individual DUT pins through

the PS; this was 128x faster than the VIO-based approach, but still took 3.11 min. The second FiM

approach was transaction-level, where the PS firmware received register read/write commands from

the host computer and implemented them at bit-level. This brought the runtime for the startup

task down to 3.76 sec, which is a speedup of 6,357x as compared to the VIO-based approach.

The takeaway is that switching from VIO to FiM can immediately provide a reduction in latency

of two orders of magnitude, and a further speedup of almost two orders of magnitude can be achieved

by implementing bit-level tasks in firmware on the FPGA, rather than on the host computer.



CHAPTER 6. THE PARADIGM CASES 94

Figure 6.6: Comparison of BER predicted by the DragonPHY simulation baseline and both emulator
architectures. The lower curve represents the e↵ect of jitter alone, while the upper curve includes a
fixed level of voltage noise.

Accuracy I evaluated the accuracy of the DragonPHY emulator by comparing the BER predicted

by the high- and low-level implementations to that of the simulation baseline. I chose to compare

BER, rather than individual analog waveforms, because BER is a single number, observable at the

system level, that depends on all of the key features provided by the emulation framework: analog

dynamics, noise, and jitter.

Fig. 6.6 shows the comparison, using two noise scenarios. The lower curve shows the BER for

varying amounts of jitter in the sampling times of the RX ADCs. The upper curve shows the BER

when 30 mVrms input-referred noise was added to the ADC. The BER predictions are in good

agreement; none vary by more than 7.5%.

For this experiment, the BER was intentionally skewed higher than what would be desirable for

a real link by adding fairly large amounts of noise and jitter. This was necessary because accurately

measuring the probability of an unlikely event (namely, a bit error) requires a number of observations

that is inversely proportional to the event probability; that number quickly becomes too large for

the baseline simulation.

More precisely, the 95% Wald confidence interval (CI) of a probability estimate p made from n

trials is ±1.96
p
p (1� p) /n.1 With the BER as p, and assuming that bit errors are very rare, the

1The Wald CI is well-known to perform poorly for very likely or very unlikely events, and/or when n is small.
However, adding two successes and two failures the observation set significantly improves its performance (Agresti
and Coull [3]). Hence, as long as number of observed successes and failures are both much greater than two, the
conclusions that follow should hold.



CHAPTER 6. THE PARADIGM CASES 95

Table 6.3: DragonPHY Emulator Resource Utilization (ZC706)

Approach
Real Number

Format
LUT FF DSP BRAM

Low-level Fixed-point 31.2% 5.6% 20.8% 13.6%

High-level Fixed-point 44.5% 6.1% 94.4% 36.7%

High-level Floating-point 75.2% 5.5% 60.4% 13.7%

Table 6.4: Low-Level Emulator: Resource Utilization by Model (ZC706)

AMS Model LUT FF DSP BRAM
Number of
Instances

Lossy Channel 4,529 1,026 75 25 1x

ADC 555 53 5 0.5 18x

Phase Interpolator 864 116 5 0.5 4x

16 GHz Oscillator 94 26 0 0 1x

Total Available 218,600 437,200 900 545 -

CI simplifies to ±1.96 ·
p
p/n. By dividing that expression by p, we arrive at an expression for the

relative error bars on the BER: ±1.96
p
1/ (pn).

In other words, the relative error in the BER estimate is inversely proportional to the square

root of the number of errors observed (not the number of trials). I aimed for a minimum of 1,000

observed errors to place the relative error bars at about ±6%. Since the DragonPHY CPU baseline

could only run at 14.3 kb/s, this meant that getting a baseline estimate of a BER around 10�4 took

11-12 minutes, and with lower BERs quickly becoming impractical.

Resource Utilization The resource utilization for both emulator architectures is shown in Ta-

ble 6.3. The low-level architecture was fairly lightweight, not using more than about a quarter

of any given resource. Its detailed resource utilization is shown in Table 6.4, demonstrating that

each AMS model instance has a small footprint, with the most resource-intensive being the channel

model. Taken together, AMS models only accounted for about a third of the LUT utilization in

the low-level emulator, with most of the remaining LUTs used by DragonPHY’s digital core. While

AMS models did account for most (70%) of the emulator’s DSP utilization, this did not cause any

issues, because the total DSP utilization only represented 21% of the FPGA’s available DSP slices.

For the fixed- and floating-point implementations of the high-level architecture, I optimized

for performance, aiming to max out one or more FPGA resources by adjusting the parallelism of

channel dynamics calculations. In the fixed-point case, DSP slices were the bottleneck, since fixed-

point arithmetic operations only consumed a few dozen LUTs each. For the floating-point case,

LUTs were the bottleneck, as those same operations consumed hundreds of LUTs apiece.



CHAPTER 6. THE PARADIGM CASES 96

In all cases, BRAM utilization was driven largely by the number of instances of the step response

function, since each instance required an independently-addressable coe�cient lookup table.

Productivity Although it is di�cult to precisely quantify productivity benefits, I used source

lines of code (SLOC) as a rough metric. SLOC does not include comment lines and blank lines, so

it is a slightly more direct measure of code complexity than a raw line count. However, since SLOC

requires a basic understanding of language syntax, its measurement requires a specialized tool; I

chose cloc [15] because it supports the key languages used in building emulators: Verilog, Python,

TCL, C, and YAML.

Unfortunately, there is not much to which I can compare the DragonPHY SLOC measurements.

My own work for ICCAD ’18 is the only other example of a publicly-available implementation of

a high-speed link emulator, so I used that as the comparison point. Since that work involved a

simpler design, the SLOC comparison is not very precise, but at least is not biased towards the new

emulation framework.

The SLOC measurements for the ICCAD ’18 and DragonPHY emulators are shown in Fig. 6.7. I

included code for AMS synthesizable models and emulator infrastructure, but not the RTL of digital

blocks that were unmodified for emulation. Overall, the amount of AMS emulation code was ap-

proximately cut in half by using the open-source framework. Interestingly, the biggest di↵erence was

in Python, not Verilog; I had previously used some ad-hoc model generators and build automation

that could be implemented more succinctly using the framework.



CHAPTER 6. THE PARADIGM CASES 97

Figure 6.7: Composition of AMS modeling and infrastructure code for several high-speed link emu-
lators.



Chapter 7

Conclusion

In this thesis, I have shown that emulating AMS chip designs on o↵-the-shelf FPGA boards can

achieve speedups of 2-3 orders of magnitude as compared to traditional computer simulation meth-

ods. These speedups open a wide range of possibilities for AMS chip development. On one hand,

a fast emulator can be used for pre-silicon development of firmware that will run on-chip. But it

can also be used for developing software that will interact with the chip, reducing bringup time.

Another possibility is to use the emulator as a stand-in for developing factory test infrastructure

prior to silicon availability.

However, in order to achieve these speedups, I demonstrated that it is essential to use the

right modeling techniques for analog blocks. In particular, much more so than in simulation, it is

important to reduce or eliminate “analog-only” timesteps, which are timesteps taken in an emulator

while digital parts of the design sit idle. To address that issue, I introduced a new spline-based

approach for analog modeling and demonstrated that it can reduce the number of analog-only

timesteps by about two orders of magnitude in modeling a high-speed link.

I also suggested that, when possible, one should match the parallelism of analog emulation models

to the level of parallelism inherent in the chip’s digital circuits. It is possible to achieve a speedup of

more than an order of magnitude by applying this technique, as I demonstrated with the “high-level”

DragonPHY emulator. In that case, a DSP core processed blocks of 16 ADC samples at a time, so

I adapted the analog modeling approach to generate all 16 ADC samples in one emulation cycle,

rather than in successive cycles.

In some ways, the spline approach and high-level modeling strategy are similar: both spend

additional FPGA resources to increase the level of parallelism of synthesizable models to the extent

that they are no longer the bottleneck in emulator performance. It is worthwhile to do this, because

unlike in an ASIC design, there is little downside to using more resources on an FPGA, as long as

the design still fits. At the same time, as I demonstrated through several experiments, my modeling

approaches do not require extravagant resource utilization; they fit on middle-of-the-road FPGA

98



CHAPTER 7. CONCLUSION 99

boards.

As I explored the analog emulation space, I discovered that there was no complete, publicly

available framework for emulating AMS chip designs, and this made it di�cult to apply traditional

analog modeling strategies, as well as to experiment with the new techniques I was developing. This

motivated me to develop the open-source AMS emulation framework that is described in this thesis.

The framework consists of three tools: msdsl [28], for writing synthesizable AMS models in

Python, svreal [29], for implementing synthesizable real-number operations e�ciently and accu-

rately, and anasymod [60], which presents a simulator-like abstraction of FPGA boards. I collab-

orated with Infineon on the framework to ensure its industry applicability, and they in fact led the

development of one of the tools, anasymod.

My goal in partitioning the framework was to achieve a degree of modularity, where each tool

could provide standalone features that were useful in their own right. This seems to have been

somewhat successful for svreal, which has attracted some users outside of the emulation space, who

are just interested in an easy-to-use fixed-point Verilog type.

As I showed in a lines-of-code comparison between the DragonPHY emulator, implemented with

the emulation framework, and a simpler high-speed link emulator, implemented in an ad-hoc fashion,

using the emulation framework reduces the amount of code required by at least a factor of two. In the

future, even greater productivity benefits might be possible by connecting the emulation framework

to an AMS behavioral model generator, such as fixture [64], with the goal of generating both

simulation and emulation models from a single source of truth.

To close, it is my hope that the new synthesizable AMS modeling techniques I developed will

improve the payo↵ in emulating future AMS designs, and that the open-source emulation frame-

work will reduce barriers to achieving that payo↵. Taken together, I believe the work represents a

step towards breaking through the verification bottleneck in AMS design, and, as free open-source

software, is part of an ongoing, broad e↵ort to democratize hardware design.



Appendix A

Integral of a Matrix Exponential

Times a Polynomial

From Chapter 4, the spline implementation of a state-space system includes the integral:

f̃jk (t) =

Z t

0
e
(t�⌧)A

b

✓
⌧ � j�th

�th

◆k

H̃j (⌧) d⌧ (A.1)

This appendix describes an e�cient way to compute this integral, including the derivation of a

formula for the integral of matrix times a polynomial, which may be useful for other purposes.

First, observe that since H̃j is a rectangular window function between j�th and (j + 1)�th, we

can eliminate it by changing the integration interval to:

[t�, t+] = [0, t] \ [j�th, (j + 1)�th] (A.2)

This leads to the following:

f̃jk (t) = e
tA ·

 Z t+

t�

e
�⌧A

✓
⌧ � j�th

�th

◆k

d⌧

!
· b (A.3)

Next, make the change of variables s = (⌧ � j�th) /�th, resulting in:

f̃jk (t) = �th · etA ·
 Z t+/�th�j

t�/�th�j
e
�(s+j)�thAs

k
ds

!
· b (A.4)

= �th · e(t�j�th)A ·
 Z s+

s�

e
�s�thAs

k
ds

!
· b (A.5)

The computation now boils down to the integral
R
e
sM

s
k
ds, with M = ��thA. I conclude by

100



APPENDIX A. INTEGRAL OF A MATRIX EXPONENTIAL TIMES A POLYNOMIAL 101

demonstrating how to compute that integral without explicit numerical integration. Using integra-

tion by parts, we have:

Z
e
sM

s
k
ds = M

�1
e
sM

s
k �

Z
M

�1
e
sM

ks
k�1

ds (A.6)

= M
�1

e
sM

s
k � kM

�1

Z
e
sM

s
k�1

ds (A.7)

This leverages the property that de
sM

/ds = Me
sM [57], and therefore an antiderivative of esM is

M
�1

e
sM , so long as M is invertible. (I make that assumption for the rest of this analysis.)

Repeating integration by parts once more yields:

Z
e
sM

s
k
ds = M

�1
e
sM

s
k � kM

�1

✓
M

�1
e
sM

s
k�1 � (k � 1)M�1

Z
e
sM

s
k�2

ds

◆
(A.8)

= M
�1

e
sM

s
k � kM

�2
e
sM

s
k�1 + k (k � 1)M�2

Z
e
sM

s
k�2

ds (A.9)

At this point, the pattern is becoming clear: each successive term picks up a factor of M�1 and a

factor of k further decremented, and its sign flips. We can generalize this into the following formula:

Z
e
sM

s
k
ds =

 
kX

i=0

(�1)k�i · k!
i!

·M�k+i�1 · si
!

· esM (A.10)

As a sanity check, one can make M a scalar and verify the result matches the formula that could be

found in a textbook on single-variable calculus.

Having gone through this analysis, the original integral in the spline points implementation can

be computed without explicit numerical integration. In practice, this makes the di↵erence between a

model that compiles in around a second, as compared to several minutes without this optimization.



Appendix B

Generating a Step Response from

S-Parameters

Converting measured S-parameters to a step response requires several distinct steps:

1. Convert 4-port S-parameters (i.e. 4x4 matrix) to 2-port S-parameters (i.e., 2x2 matrix).

2. Convert 2-port S-parameters to a transfer function.

3. Convert the transfer function into an impulse response.

4. Integrate the impulse response to obtain the step response.

This appendix covers the first three steps; the last step can be e�ciently performed with cumulative

trapezoidal numerical integration.

B.1 Computing 2-port S-parameters

S-parameters of a lossy channel are often reported as 4-port measurements, with each wire in a data

pair considered a single-ended signal (Fig. B.1a). However, in order to model the behavior of a

channel with a single transfer function, we need to calculate the 2-port S-parameters of this system,

which represent only the di↵erential part of incident and reflected waves (Fig. B.1b).

Hence, we are looking for a 2-port di↵erential-to-di↵erential S-parameter matrix:

Sdd =

"
Sd1d1 Sd1d2

Sd2d1 Sd2d2

#
(B.1)

As others have shown [16], these S-parameters can be calculated from the 4-port measurements as

102



APPENDIX B. GENERATING A STEP RESPONSE FROM S-PARAMETERS 103

port 1
port 3

port 2
port 4

(a) 4-port representation of a lossy channel,

where each port represents one side of a data

pair. The order shown here is the one typically

used in Touchstone files.

port 1 port 2
+

-

+

-

(b) 2-port representation of a lossy channel, which

considers the di↵erential part of incident and reflected

waves on each side of the channel.

Figure B.1: S-parameter representations of a lossy channel.

follows:

Sd1d1 = 1/2 · (S11 � S13 � S31 + S33) (B.2)

Sd1d2 = 1/2 · (S12 � S14 � S32 + S34) (B.3)

Sd2d1 = 1/2 · (S21 � S23 � S41 + S43) (B.4)

Sd2d2 = 1/2 · (S22 � S24 � S42 + S44) (B.5)

B.2 Computing the transfer function

With a 2-port S-parameter matrix in hand, we can compute the transfer function from one side of a

channel to the other, given the source impedance, ZS , on the transmitter side, load impedance, ZL,

on the receiver side, and characteristic impedance, Z0, used in reporting the S parameters. Using a

formula from MATLAB documentation [47], the transfer function at a given frequency is:

H =
ZS + Z

⇤
S

Z
⇤
S

· S21 · (1 + �L) · (1� �S)

2 · (1� S22 · �L) · (1� �in · �S)
(B.6)

where:

�L = (ZL � Z0)/(ZL + Z0) (B.7)

�S = (ZS � Z0)/(ZS + Z0) (B.8)

�in = S11 + (S12 · S21 · �L/ (1� S22 · �L))) (B.9)

H should be calculated at each frequency where the S-parameters have been measured, resulting

in a transfer function, H (f). Since the transfer function is dependent on the source and load

impedance, it has reflection behavior “baked in.”



APPENDIX B. GENERATING A STEP RESPONSE FROM S-PARAMETERS 104

B.3 Computing the impulse response

The impulse response of the channel is the inverse Fourier transform of its transfer function:

h (t) =

Z 1

�1
e
i2⇡ft

H (f) df (B.10)

While the above integral could be computed for various values of t using general-purpose numerical

integration, it is more computationally e�cient to use the inverse fast Fourier transform (IFFT).

However, we have to be careful with shifting and scaling to get the correct result. Truncating the

original integration interval to ±fs/2, and taking advantage of the fact that the Fourier transform

of a real signal is conjugate-symmetric:

h (t) ⇡
Z fs/2

�fs/2
e
i2⇡ft

H (f) df (B.11)

=

Z fs/2

0
H (f) ei2⇡ft df +

Z fs

fs/2
H

⇤ (fs � f) ei2⇡ft df (B.12)

⇡
n�1X

k=0

H̃ (k�f) ei2⇡k�ft �f (B.13)

=
fs

n
·
n�1X

k=0

H̃

✓
k

n
fs

◆
e
i2⇡kfst/n (B.14)

where �f = fs/n and

H̃ (f) =

8
<

:
H (f) , for 0  f  fs/2

H
⇤ (fs � f) , for fs/2 < k  fs

(B.15)

Comparing this result to the typical definition of the IFFT,1 we conclude that:

h

✓
0

fs

◆
, h

✓
1

fs

◆
, . . . , h

✓
n� 1

fs

◆
⇡ fs · IFFT

⇢
H̃

✓
0

n
fs

◆
, H̃

✓
1

n
fs

◆
, . . . , H̃

✓
n� 1

n
fs

◆�
(B.16)

In other words, the time resolution of the computed impulse response is the inverse of the sam-

pling frequency, 1/fs, while the duration is approximately the inverse of the frequency resolution of

measurements.

As a practical matter, H̃ (0) and H̃ (fs/2) must real in order for the assumption of conjugate

symmetry to hold (if not, the impulse response will be complex). I typically accomplish that by

clipping the imaginary part of H̃ (0) to zero (since that represents measurement error), and by

setting H̃ (fs/2) to zero, e↵ectively applying a box filter that cuts o↵ at, not above, fs/2.

1A factor of 1/n is typically included, so the j-th element in the IFFT of Y is 1
n ·

Pn�1
k=0 Yk · ei2⇡jk/n.



Bibliography

[1] IEEE Standard Verilog Hardware Description Language. IEEE Std 1364-2001, pages 318–319,

2001.

[2] IEEE Standard for Digitizing Waveform Recorders. IEEE Std 1057-2017 (Revision of IEEE

Std 1057-2007), pages 1–0, 2018. doi:10.1109/IEEESTD.2018.8291741.

[3] Alan Agresti and Brent A. Coull. Approximate Is Better than ”Exact” for Interval Estimation

of Binomial Proportions. The American Statistician, 52(2):119–126, 1998. URL: http://www.

jstor.org/stable/2685469.

[4] P. Alfke. E�cient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Gener-

ators, 1996. URL: https://www.xilinx.com/support/documentation/application_notes/

xapp052.pdf.

[5] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar, H. Mao,

A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J. Zhao, Y. S. Shao, K. Asanović,

and B. Nikolić. Chipyard: Integrated Design, Simulation, and Implementation Framework for

Custom SoCs. IEEE Micro, 40(4):10–21, 2020.

[6] Sameh Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit Kapur, Benjamin

Parker, Thomas Roewer, Proshanta Saha, Todd Takken, and José Tierno. A Cycle-Accurate,

Cycle-Reproducible Multi-FPGA System for Accelerating Multi-Core Processor Simulation. In

Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

FPGA ’12, page 153–162, New York, NY, USA, 2012. Association for Computing Machinery.

doi:10.1145/2145694.2145720.

[7] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and

K. Asanović. Chisel: Constructing hardware in a Scala embedded language. In DAC Design

Automation Conference 2012, pages 1212–1221, 2012.

[8] D. Bertsekas and J. Tsitsiklis. Introduction to probability, chapter 3. Athena Scientific, Belmont,

Mass., 2002.

105

https://doi.org/10.1109/IEEESTD.2018.8291741
http://www.jstor.org/stable/2685469
http://www.jstor.org/stable/2685469
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://doi.org/10.1145/2145694.2145720


BIBLIOGRAPHY 106

[9] R. Bhattacharya, S. Biswas, and S. Mukhopadhyay. FPGA based chip emulation system for test

development of analog and mixed signal circuits: A case study of DC–DC buck converter. Mea-

surement, 45(8):1997 – 2020, 2012. URL: http://www.sciencedirect.com/science/article/

pii/S0263224112001923, doi:https://doi.org/10.1016/j.measurement.2012.04.022.

[10] C. De Boor. A practical guide to splines, chapter 4. Springer-Verlag, New York, 1978.

[11] Emmanuel Boutillon, Jean-Luc Danger, and Adel Ghazel. Design of high speed AWGN com-

munication channel emulator. Analog Integrated Circuits and Signal Processing, 34(2):133–142,

2003.

[12] G. E. P. Box and Mervin E. Muller. A Note on the Generation of Random Normal Deviates.

Ann. Math. Statist., 29(2):610–611, 06 1958. doi:10.1214/aoms/1177706645.

[13] Cadence. Cadence Palladium. URL: https://www.cadence.com/en_US/home/tools/

system-design-and-verification/acceleration-and-emulation/palladium-z1.html.

[14] Steve Carlson. Mixing It Up in Hardware (an Advantest Case Study in Faster Full-Chip

Simulations), 2014. URL: https://community.cadence.com/cadence_blogs_8/b/ms/posts/

mixing-it-up-in-hardware-steve-carlson-the-low-road.

[15] Al Danial. cloc: Count Lines of Code, 2021. URL: https://github.com/AlDanial/cloc.

[16] W. Fan, A. Lu, L.L. Wai, and B.K. Lok. Mixed-mode S-parameter characterization of di↵erential

structures. In Proceedings of the 5th Electronics Packaging Technology Conference (EPTC

2003), pages 533–537, 2003. doi:10.1109/EPTC.2003.1271579.

[17] A. Fernandez-Alvarez, M. Portela-Garcia, and M. Garcia-Valderas. FPGA-based HW/SW co-

simulation system for mixed-signal circuits. In 2016 Conference on Design of Circuits and

Integrated Systems (DCIS), pages 1–6, 2016.

[18] Alex Forencich. Verilog Mersenne Twister, 2016. URL: https://github.com/alexforencich/

verilog-mersenne.

[19] IBIS Open Forum. Touchstone File Format Specification, 2009. URL: https://ibis.org/

touchstone_ver2.0/touchstone_ver2_0.pdf.

[20] SkyWater Technology Foundry and Google. SkyWater Open Source PDK, 2020. URL: https:

//github.com/google/skywater-pdk.

[21] G. Franklin and J. Powell. Digital control of dynamic systems, chapter 3. Addison-Wesley Pub.

Co., Reading, Mass., 1980.

[22] Solomon W. Golomb. Shift Register Sequences. Holden-Day, 1967. pg. 76.

http://www.sciencedirect.com/science/article/pii/S0263224112001923
http://www.sciencedirect.com/science/article/pii/S0263224112001923
https://doi.org/https://doi.org/10.1016/j.measurement.2012.04.022
https://doi.org/10.1214/aoms/1177706645
https://www.cadence.com/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-z1.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-z1.html
https://community.cadence.com/cadence_blogs_8/b/ms/posts/mixing-it-up-in-hardware-steve-carlson-the-low-road
https://community.cadence.com/cadence_blogs_8/b/ms/posts/mixing-it-up-in-hardware-steve-carlson-the-low-road
https://github.com/AlDanial/cloc
https://doi.org/10.1109/EPTC.2003.1271579
https://github.com/alexforencich/verilog-mersenne
https://github.com/alexforencich/verilog-mersenne
https://ibis.org/touchstone_ver2.0/touchstone_ver2_0.pdf
https://ibis.org/touchstone_ver2.0/touchstone_ver2_0.pdf
https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk


BIBLIOGRAPHY 107

[23] Mentor Graphics. Mentor Veloce Emulation Platform. URL: https://www.mentor.com/

products/fv/emulation-systems/.

[24] P. Hanrahan. magma, 2021. URL: https://github.com/phanrahan/magma.

[25] John Hauser. Berkeley HardFloat, 2019. URL: http://www.jhauser.us/arithmetic/

HardFloat.html.

[26] Thomas Henkel and Henriette Ossoinig. Timing-accurate emulation of a mixed-signal SoC using

Palladium XP. CDNLive 2013, Munich, 2010.

[27] John L. Hennessy and David A. Patterson. A New Golden Age for Computer Architecture.

Commun. ACM, 62(2):48–60, January 2019. URL: https://doi-org.stanford.idm.oclc.

org/10.1145/3282307, doi:10.1145/3282307.

[28] S. Herbst. msdsl, 2021. URL: https://git.io/msdsl.

[29] S. Herbst. svreal, 2021. URL: https://git.io/svreal.

[30] S. Herbst, B. Lim, and M. Horowitz. Fast FPGA Emulation of Analog Dynamics in Digitally-

Driven Systems. In Proceedings of the International Conference on Computer-Aided Design,

ICCAD ’18, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/

3240765.3240808.

[31] A. Iserles. A First Course in the Numerical Analysis of Di↵erential Equations., vol-

ume 2nd ed of Cambridge Texts in Applied Mathematics. Cambridge University Press,

2009. URL: https://stanford.idm.oclc.org/login?url=https://search.ebscohost.

com/login.aspx?direct=true&db=nlebk&AN=400705&site=ehost-live&scope=site.

[32] J. Jang, M. Park, and J. Kim. An event-driven simulation methodology for integrated

switching power supplies in systemverilog. In Proceedings of the 50th Annual Design Au-

tomation Conference, DAC ’13, New York, NY, USA, 2013. Association for Computing Ma-

chinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/2463209.2488903, doi:

10.1145/2463209.2488903.

[33] J. Jang, M. Park, D. Lee, and J. Kim. True event-driven simulation of analog/mixed-

signal behaviors in SystemVerilog: A decision-feedback equalizing (DFE) receiver example.

In Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, pages 1–4, 2012.

doi:10.1109/CICC.2012.6330558.

[34] T. Kailath. Linear systems, chapter 2. Prentice-Hall, Englewood Cli↵s, N.J., 1980.

https://www.mentor.com/products/fv/emulation-systems/
https://www.mentor.com/products/fv/emulation-systems/
https://github.com/phanrahan/magma
http://www.jhauser.us/arithmetic/HardFloat.html
http://www.jhauser.us/arithmetic/HardFloat.html
https://doi-org.stanford.idm.oclc.org/10.1145/3282307
https://doi-org.stanford.idm.oclc.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://git.io/msdsl
https://git.io/svreal
https://doi.org/10.1145/3240765.3240808
https://doi.org/10.1145/3240765.3240808
https://stanford.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=400705&site=ehost-live&scope=site
https://stanford.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=400705&site=ehost-live&scope=site
https://doi-org.stanford.idm.oclc.org/10.1145/2463209.2488903
https://doi.org/10.1145/2463209.2488903
https://doi.org/10.1145/2463209.2488903
https://doi.org/10.1109/CICC.2012.6330558


BIBLIOGRAPHY 108

[35] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro,

C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz, J. Bachrach, and

K. Asanovic. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the

Public Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-

tecture (ISCA), pages 29–42, 2018.

[36] D. Kececioglu. Reliabililty engineering handbook, volume 1, chapter 7. Prentice-Hall, Englewood

Cli↵s, N.J., 1991.

[37] S. Kim, Z. Myers, S. Herbst, B. Lim, and M. Horowitz. Open-Source Synthesizable Analog

Blocks for High-Speed Link Designs: 20-GS/s 5b ENOB Analog-to-Digital Converter and 5-

GHz Phase Interpolator. In 2020 IEEE Symposium on VLSI Circuits, pages 1–2, 2020.

[38] Seehyun Kim and Wonyong Sung. A floating-point to fixed-point assembly program translator

for the TMS 320C25. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, 41(11):730–739, 1994. doi:10.1109/82.331543.

[39] E. Lee and D. Messerschmitt. Digital communication, chapter 5. Kluwer Academic Publishers,

Boston, 1988.

[40] S. Liao and M. Horowitz. A Verilog piecewise-linear analog behavior model for mixed-signal

validation. In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, pages 1–5,

2013. doi:10.1109/CICC.2013.6658461.

[41] B. C. Lim and M. Horowitz. Error Control and Limit Cycle Elimination in Event-Driven

Piecewise Linear Analog Functional Models. IEEE Transactions on Circuits and Systems I:

Regular Papers, 63(1):23–33, 2016.

[42] Guangxi Liu. Gaussian Noise Generator. URL: http://opencores.org/project/gng.

[43] Chick Markley, Paul Rigge, Stevo Bailey, and Angie Wang. dsptools: A Library of Chisel3

Tools for Digital Signal Processing, 2016. URL: https://github.com/ucb-bar/dsptools.

[44] G. Marsaglia. The Marsaglia Random Number CDROM, with The Diehard Battery of Tests

of Randomness, 1985.

[45] MathWorks. Simulink HDL Coder. URL: https://www.mathworks.com/products/

hdl-coder.html.

[46] MathWorks. Simscape Electrical User’s Guide, 2021. URL: https://www.mathworks.com/

help/pdf_doc/physmod/sps/sps_ug.pdf.

[47] Inc. MathWorks. s2tf: Convert S-parameters of 2-port network to voltage or power-wave

transfer function, 2021. URL: https://www.mathworks.com/help//rf/ref/s2tf.html.

https://doi.org/10.1109/82.331543
https://doi.org/10.1109/CICC.2013.6658461
http://opencores.org/project/gng
https://github.com/ucb-bar/dsptools
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/help/pdf_doc/physmod/sps/sps_ug.pdf
https://www.mathworks.com/help/pdf_doc/physmod/sps/sps_ug.pdf
https://www.mathworks.com/help//rf/ref/s2tf.html


BIBLIOGRAPHY 109

[48] Maxim Integrated Products, Inc. Application Note 5384: Understanding Noise, ENOB,

and E↵ective Resolution in Analog-to-Digital Converters, 2012. URL: https://www.

maximintegrated.com/en/design/technical-documents/app-notes/5/5384.html.

[49] B. K. Mishra, S. Save, and R. Mane. A Frame Work for Model Based Designing of Analog Cir-

cuits Using Simulink. In Proceedings of the International Conference & Workshop on Emerging

Trends in Technology, ICWET ’11, page 1225–1228, New York, NY, USA, 2011. Association

for Computing Machinery. doi:10.1145/1980022.1980290.

[50] Frank Austin Nothaft, Luis Fernandez, Stephen Cefali, Nishant Shah, Jacob Rael, and Luke

Darnell. Pragma-Based Floating-to-Fixed Point Conversion for the Emulation of Analog Behav-

ioral Models. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-

Aided Design, ICCAD ’14, page 633–640. IEEE Press, 2014.

[51] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[52] A. V. Oppenheim and R. W. Schafer. Discrete-time signal processing. Prentice Hall, Upper

Saddle River, N.J., 2010.

[53] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals & Systems, chapter 2. Prentice

Hall, Upper Saddle River, N.J., 1997.

[54] A. W. Overhauser. Analytic Definition of Curves and Surfaces by Parabolic Blending. Technical

Report SL68-40, Ford Motor Company Scientific Laboratory, May 1968. URL: https://arxiv.

org/abs/cs/0503054.

[55] PCI-SIG. PCI Express Base Specification Revision 3.1a. 2015. URL: https://pcisig.com/

specifications.

[56] W. Peters, E. Gong, C. Chen, and H. Kim. Improved HVM ATCA Measurement Data, June

2005. URL: https://www.ieee802.org/3/ap/public/jun05/peters_01_0605.pdf.

[57] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook, November 2012. URL: https:

//www2.imm.dtu.dk/pubdb/pubs/3274-full.html.

[58] J. G. Reid. Linear system fundamentals: continuous and discrete, classic and modern, chapter 7.

McGraw-Hill, New York, 1983.

[59] G. Rutsch, S. Fontanesi, S. Herbst, S. Tan Hee Yeng, A. Possemato, G. Formato, M. Horowitz,

and W. Ecker. Boosting mixed-signal design productivity with FPGA-based methods through-

out the chip design process. Design and Verification Conference in Europe, 2020. URL:

https://dvcon-europe.org.

[60] G. Rutsch, S. Herbst, and S. Saravanan. anasymod, 2021. URL: https://git.io/anasymod.

https://www.maximintegrated.com/en/design/technical-documents/app-notes/5/5384.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/5/5384.html
https://doi.org/10.1145/1980022.1980290
https://arxiv.org/abs/cs/0503054
https://arxiv.org/abs/cs/0503054
https://pcisig.com/specifications
https://pcisig.com/specifications
https://www.ieee802.org/3/ap/public/jun05/peters_01_0605.pdf
https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html
https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html
https://dvcon-europe.org
https://git.io/anasymod


BIBLIOGRAPHY 110

[61] R. M. Sanchez, B. T. Reyes, A. L. Pola, and M. R. Hueda. An FPGA-based emulation platform

for evaluation of time-interleaved ADC calibration systems. In 2016 IEEE 7th Latin American

Symposium on Circuits Systems (LASCAS), pages 187–190, 2016.

[62] Mohamed Shalan and Tim Edwards. Building OpenLANE: A 130nm Openroad-Based Tapeout-

Proven Flow. In Proceedings of the 39th International Conference on Computer-Aided Design,

ICCAD ’20, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/

3400302.3415735.

[63] C. E. Shannon. Communication in the Presence of Noise. Proceedings of the IRE, 37(1):10–21,

1949. doi:10.1109/JRPROC.1949.232969.

[64] D. Stanley. fixture, 2021. URL: https://github.com/standanley/fixture.

[65] Synopsys. Synopsys ZeBu. URL: https://www.synopsys.com/verification/emulation.

html.

[66] Cadence Design Systems. Application Notes on Direct Time-Domain Noise Analysis using

Virtuoso Spectre. 2006.

[67] SIMetrix Technologies. Simetrix. URL: https://www.simetrix.co.uk.

[68] P. Tertel and L. Hedrich. Real-time emulation of block-based analog circuits on an FPGA. In

2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods

and Applications to Circuit Design (SMACD), pages 1–4, 2017.

[69] George C. Verghese, Malik E. Elbuluk, and John G. Kassakian. A General Approach to

Sampled-Data Modeling for Power Electronic Circuits. IEEE Transactions on Power Elec-

tronics, PE-1(2):76–89, 1986. doi:10.1109/TPEL.1986.4766286.

[70] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.

van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, An-

drew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng,

Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-

riksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian

Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-

rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:https:

//doi.org/10.1038/s41592-019-0686-2.

[71] G. Wang and Y. Chiu. Fast FPGA emulation of background-calibrated SAR ADC with internal

redundancy dithering. In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference,

pages 1–4, 2013.

https://doi.org/10.1145/3400302.3415735
https://doi.org/10.1145/3400302.3415735
https://doi.org/10.1109/JRPROC.1949.232969
https://github.com/standanley/fixture
https://www.synopsys.com/verification/emulation.html
https://www.synopsys.com/verification/emulation.html
https://www.simetrix.co.uk
https://doi.org/10.1109/TPEL.1986.4766286
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2


BIBLIOGRAPHY 111

[72] David L. Weaver. OpenSPARC Internals, chapter 2. Sun Microsystems, Inc., Santa

Clara, CA, 2008. URL: https://www.oracle.com/technetwork/systems/opensparc/

opensparc-internals-book-1500271.pdf.

[73] W. Wu, Y. Chen, Y. Ma, C. J. Liu, J. Jou, S. Pamarti, and L. He. Wave digital filter based

analog circuit emulation on FPGA. In 2016 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1286–1289, 2016.

[74] Xilinx. 7 Series DSP48E1 Slice User Guide (UG479), 2018. URL: https://www.xilinx.com/

support/documentation/user_guides/ug479_7Series_DSP48E1.pdf.

[75] Xilinx. High-Level Synthesis, 2020. URL: https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf.

[76] Xilinx. Model-Based DSP Design using System Generator, 2020. URL: https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2020_1/ug897-vivado-sysgen-user.

pdf.

https://www.oracle.com/technetwork/systems/opensparc/opensparc-internals-book-1500271.pdf
https://www.oracle.com/technetwork/systems/opensparc/opensparc-internals-book-1500271.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug897-vivado-sysgen-user.pdf


ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28688325

2021


	Abstract
	Acknowledgments
	Introduction
	Related Work
	Hardware-in-the-Loop Emulation
	Oversampling with Xilinx System Generator
	Oversampling with Simscape Electrical
	Emulation of Discrete-Time Analog Circuits
	Automated Floating- to Fixed-Point Conversion
	Library of Oversampled Analog Blocks
	Oversampling at the Component Level
	Running Oversampled Analog Models on a Processor
	Gate-Level Timing Emulation

	The Trouble with Oversampling
	Simulation Performance
	Emulation Performance

	The Analog Timestep Vanishes
	Interpolation
	Modeling approaches
	Static Nonlinearity
	State Space Modeling
	State update
	Output update

	Impulse Response Modeling
	Piecewise-Constant Input
	General Case

	High-Speed Link Experiment
	Modeling
	Spline Points
	Results


	Dial E for Emulation
	svreal
	Basic Usage
	Fixed-Point Format
	Real-Number Constants
	Debugging
	Operations Supported
	Hierarchy

	msdsl
	Basic Flow
	Building Blocks
	Input Formats

	anasymod
	Basic Usage
	Variable timestep management
	Emulator clock
	Generated clocks
	Interactive tests


	The Paradigm Cases
	Firmware-Controlled Flyback Converter
	NFC-Powered Chip
	Taking bigger timesteps

	DragonPHY
	Channel modeling
	Low-level emulator
	High-level emulator
	Architecture comparison
	Experimental results


	Conclusion
	Integral of a Matrix Exponential Times a Polynomial
	Generating a Step Response from S-Parameters
	Computing 2-port S-parameters
	Computing the transfer function
	Computing the impulse response

	Bibliography

