INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
cne exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher

quality 6” x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor, Mt 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Number 8912882

Incremental VLSI compaction

Carpenter, Clyde William, Ph.D.

Stanford University, 1989

Copyright ©1989 by Carpenter, Clyde William. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INCREMENTAL VLSI COMPACTION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Clyde W. Carpenter
November 1988

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Clyde W. Carpenter 1989

All Rights Reserved

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

e Yol

Mark A. Horowitz |
(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

CHte.

V John L. Hennessy (>

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

7\ -
s /feffrey D. Ullman

Approved for the University Committee on Graduate Studies:

g 2aul elmqf;wgas‘-

ean of Graduate Studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INCREMENTAL VLSI COMPACTION

Clyde W. Carpenter, Ph.D.
Stanford University, 1989

Abstract

VLSI compaction is the translation from a high level description of a circuit down
to the detailed layout needed for fabrication. A compactor tries to make as compact a
layout as possible without violating any design rules. An incremental compactor allows
one to edit a schematic or change layout constraints and quickly see the effects of the
change.

An incremental compactor has to incrementally generate and solve the constraints
needed to enforce the design rules. This dissertation presents an algorithm that uses
adjacency lists to generate and incrementally update a minimal complete set of the
spacing constraints needed to keep adjacent tiles in a layout from interfering with each
other. The base algorithm creates clockwise threaded lists of non-overlapping, fixed-
size tiles. The algorithm is complicated by the need to handle wires, overlapping tiles,
and various different spacing rules. In near linear time it generates an average of 1.2
spacing constraints per tile. The adjacency lists allow fast, efficient updates when tiles
are moved, deleted, or inserted.

This dissertation also presents three algorithms to solve the constraints once they
are generated. In addition to minimizing area, these algorithms also minimize the total
wire length. One of them calculates the sum of the wire-pull weights on each subtree of
a directed spanning tree of active constraints to decide which subtrees need to be
moved. This weighted tree provides enough information to make incremental changes
in time proportional to the size of the change instead of to the size of the circuit. Wire-
length minimization improves the layout but gives compaction a slightly worse than
linear expected time.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This material is based upon work supported under a National Science Foundation
Graduate Fellowship. This work was supported in part by the National Science
Foundation under Grant DMC8451822 and in part by the Defense Advanced Research
Projects Agency under contracts MDA903-83-C-0335 and N00014-87-K-0828.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract
1. Introduction

1.1. Background
1.2. Generating Constraints
1.3. Solving Constraints

2. Generating Constraints

2.1. Adjacency Lists

2.2. Single Color Case
2.2.1. Growing Tiles
2.2.2. Shrinking Tiles
2.2.3. Changing Tiles

2.3. Wires

2.4. Overlapping Tiles
2.4.1. General Case
2.4.2. Restricted Case

2.5. Multiple Colors
2.5.1. Fuzzy Edges
2.5.2. Growing Tiles
2.5.3. Shrinking Tiles
2.5.4. Summary

2.6. Quick Loading

2.7. Complexities

2.8. Summary

3. Solving Constraints

3.1. Simple Compaction
3.1.1. Incremental Compaction
3.1.2. Summary
3.2. Wire-Length Minimization
3.2.1. Balance Algorithm
3.2.2. Slack Algorithm
3.2.3. Balance and Slack Timings
3.3. Tree Compaction
3.3.1. Simplex Algorithm
3.3.2. Tree Weight Algorithm
3.3.3. incremental Compaction
3.4. Summary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Implementation 59

4.1. Tcmp 59
4.2. Technology File 60
4.3. Tile Data Structure 63
4.4. Compaction 64
4.4.1. Incremental Compaction 68

4.5. Results 70
4.5.1. Translations 74

4.5.2. Adjacency Lists 75

4.5.3. Compaction 79

4.6. Summary 83

5. Conclusions 85
5.1. Future Work 87
Appendix A. Semi-Merged Tiles 88
A.1. Growing and Shrinking 89
A.2. Quick Load 91
Appendix B. Adjacency Lists 94
B.1. Top Edge Up 94
B.2. Bottom Edge Up 96
B.3. Quick Load 97
Appendix C. Examples 98
References 104

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1-1 RAM Cell Stick Diagram and Layout

Figure 1-2 Constraints: Alignment, Wire, Spacing
Figure 1-3 A. Every Pair B. Sorted Every Pair

Figure 1-4 A. Shadowing B. Scan Line

Figure 1-5 Corner Stitching: Tile Addition

Figure 2-1 A. Adjacencies B. Visibilities

Figure 2-2 A. Adjacency Pointers B. Non-Nil-Ended List
Figure 2-3 Concave Left Turnaround

Figure 2-4 Before and After Breaking a Left List

Figure 2-5 Before and After Breaking a Right List
Figure 2-6 Before and After Growing a Tile

Figure 2-7 Final Search for Top Adjacencies

Figure 2-8 Before and After Shrinking a Tile

Figure 2-9 Locating Where to Insert a Tile

Figure 2-10 Wire Adjacencies

Figure 2-11 Constraints With Pass-Throughs

Figure 2-12 Fixing Negative Length Wires

Figure 2-13 A. Insert on Left or Right? B. Cannot Insert Wire
Figure 2-14 Constraints Without Pass-Throughs

Figure 2-15 Compaction-Order Effects on Overlap
Figure 2-16 A. Spacing and B. Overlap Bleed-Throughs
Figure 2-17 A. Locate Off By Bloat B. Shrink Slip Through
Figure 2-18 A. Crossed Constraints B. Up Pointer Conflict
Figure 2-19 A Complex Around-the-Corner Search
Figure 2-20 Five-Color Rule

Figure 2-21 Temporarily Cached Missing Constraint
Figure 2-22 Temporary Extra Adjacency

Figure 2-23 Shrink Shadow: Skip Tiles C and D

Figure 2-24 Quick Load Steps: Locate, Swap, Search
Figure 2-25 Final Searches for Three Tiles

Figure 2-26 Visible Turnaround Range

Figure 2-27 Grow and Shrink Worst Cases

Figure 3-1 Group Deletion Movement Order

Figure 3-2 Tile Insertion Movement Order

Figure 3-3 Tile Deletion Movement Order

Figure 3-4 A. Flow and B. Weight Analogies

Figure 3-5 Possible Wire Lengths and Stresses

Figure 3-6 Four Minimization Algorithm Types

Figure 3-7 Two Balance Algorithm Tile Movements

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permis

sion.

Figure 3-8 Stress Reduction: Three Added Stress Paths 45

Figure 3-9 0(n12) Repeated Verses 2m Total Tile Movements 47
Figure 3-10 Two Slack Algorithm Tile Movements 49
Figure 3-11 Two Simplex Constraint Violation Fixes 52
Figure 3-12 Two Tree Weight Negative Subtree Movements 53
Figure 3-13 Two Subtrees Orphaned by a Tile Deletion 55
Figure 3-14 Two Movements Caused by a Tile Insertion 56
Figure 3-15 Three X-Y Steps from One Change 57
Figure 4-1 Graft Effects on (Height) and [Weight] 67
Figure 4-2 Cuts: Negative and Positive Fragments 68
Figure 4-3 Benchmark Results 71
Figure 4-4 Compaction Timings 73
Figure 4-5 Area and Wire Lengths 73
Figure 4-6 Object Types and Translations 74
Figure 4-7 Tile Types and Planes 75
Figure 4-8 Quick Load Search Distances and Successes 75
Figure 4-9 Tiles Grown/Shrunk and Types 76
Figure 4-10 Grow/Shrink Stats and Semi-Merges 77
Figure 4-11 Grow/Shrink Search Distances and Successes 77
Figure 4-12 Shrink Skip Reasons and Adjacencies 78
Figure 4-13 Group and Graph Constraints 80
Figure 4-14 Tiles Affected Batch 80
Figure 4-15 Tiles Affected Incremental 80
Figure 4-16 Batch and Incremental Stats 81
Figure 4-17 Batch and Incremental Moves 82
Figure 4-18 Tree Queue Effects and Stats 82
Figure A-1 Semi-Merging Tiles 88
Figure A-2 Tile L’s Four Right Adjacencies 89
Figure A-3 Vanishing Corners: 8 to 4 30
Figure A-4 Violated Over-Restrictive Adjacencies 91
Figure A-5 A. Proper Load Order B. Shadowed Endpoints 92
Figure A-6 Four Double Merge Cases 92
Figure B-1 Four L and U Nil/Non-Nil Cases 94
Figure C-1 4x4 Multiplier: 344x336\, 10.5k 98
Figure C-2 4x4 Ram: 127x160), 3.5k 99
Figure C-3 Full Adder (afavg): 79x94A, 1k 100
Figure C-4 Adder with Left-Right Spanning Tree 101
Figure C-5 Adder with Up-Down Spanning Tree 102
Figure C-6 Routing (C132): 426x2012, 5.3k 103
Figure C-7 O(n2) Worst Case Compaction 103
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 1

Chapter 1

Introduction

One of the most tedious parts of designing full custom integrated circuits is laying
out the artwork needed to fabricate the circuit. The detailed layout has to specify the
exact location and size of all the objects required by the fabrication technology to create
the desired circuit. VLSI (Very Large Scale Integration) technology has allowed the
creation of more and more complex circuits and made layout more and more time
consuming. One way to handle this increased complexity is to design circuits at a more
abstract level and then automatically translate the designs down to the detailed layout.

ram.of somle: 0.183721 {468 Size: 36 x 41 miorons

|
E

Figure 1-1 RAM Cell Stick Diagram and Layout

Working at a slightly more abstract level allows designers to worry about the
relative placement of transistors and wires instead of how to form transistors and how
far apart the technology requires things to be spaced. The compaction program takes
care of these technology-dependent design rules. An abstract diagram consisting of
symbolic transistors wired together with dimensionless wires is called a stick diagram.
A stick diagram is much easier to understand and modify than the resulting layout.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 2

Figure 1-1 shows a stick diagram for a six-transistor CMOS static RAM cell and its
250-tile layout. When displayed on a color monitor, the wires are colored to show in
which layout layer they run. The stick diagram was converted to a layout by a two-step
batch process. First, the compactor created a set of layout-level tiles and generated
constraints between the tiles to enforce the design rules. Then it solved the constraints
and produced the actual layout.

We want layouts to be as small as possible since smaller layouts are cheaper to
manufacture and are generally higher performance. Because of the difficulty of true,
two-dimensional area compaction, most compactors instead separately minimize the
width and height of a Jayout. A major problem with these one-dimensional compactors
is the lack of control over the interaction between the two dimensions. In batch
compaction, if designers do not like a compacted layout or have to change the circuit,
they change the circuit description and run everything again in the hope of a better
layout. Besides taking a great deal of time, this process often makes it difficult or even
impossible to achieve the desired improvement. This dissertation describes algorithms
for building an incremental compactor. In incremental compaction, enough information
is saved to allow the layout to be quickly updated to reflect changes. For example,
when the corners of two tiles catch on each other during a compaction, the designer can
simply nudge one of them to break the interlock and produce a better compaction. In
batch compaction, the designer can at best rearrange the stick diagram to try to avoid
the interlock without creating other, worse problems.

This dissertation is divided into two main parts corresponding to the two main
tasks in an incremental compactor: generating and solving the constraints. After giving
a brief history of compaction, we describe how adjacency lists can be used to quickly
generate and incrementally update a minimal complete set of the spacing constraints
needed to keep adjacent tiles in a layout from interfering with each other. These
constraints are difficult to handle because they depend on the current tile positions and
thus change during compaction. We first describe the adjacency lists algorithm for the
simple single-color case and then discuss the enhancements added to handle wires,

overlapping tiles, and multiple colors.

The second part of this dissertation describes methods of solving the constraints
once we have them. After discussing efficient non-wire-length minimization
algorithms, we describe four wire-length minimization algorithms based on the four
solution conditions of our weight analogy version of the min-cost max-flow problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 3

Minimizing the total wire length is difficult because a tile’s placement depends on the
total weight of the set of tiles pressing against it, which changes as the tiles move. The
first two algorithms work well for batch compaction but do not save enough
information to allow incremental updates. The final algorithm, the tree weight
algorithm, maintains a directed spanning tree of active constraints. By calculating and
storing with each tile the sum of the wire-pull weights on the subtree above it, the
algorithm can easily determine which subtrees need to be moved.

After describing these two main tasks, this dissertation ends by giving some
implementation details and timings and statistics for a running test compactor. This
includes a description of the interaction between the adjacency lists and tree weight
algorithms and more detail about the tree operations used by the tree weight algorithm.
The tree compactor’s performance is compared with several other compactors’ on a set
of benchmark circuits. It produces better layouts very quickly without using too much
memory.

1.1. Background

The earliest computer-aided layout systems were simple drafting programs:
layouts were created by digitizing a hand-drawn layout. While this was all right for
small circuits, it became tedious as circuits got larger and more complex. One had to
worry about creating objects and spacing them far enough apart to not interfere with
each other but close enough together to not waste valuable chip area. To make the
creation of well-formed objects easier and faster, macros that allowed one-step
placement of multiple-tile objects were added to the editors. Batch design-rule checkers
were created to check layouts for accidental design-rule violations [Baird 77]. Only
recently has this checking been merged with the editors to allow mistakes to be fixed
before they propagate too far [Taylor 84].

Even with simple macros and design rule checkers, designers were still responsible
for creating artwork without errors and had to be very careful about the space between
objects. To try to simplify and speed up the design process, design systems working at
a more abstract level were created. Tiles were replaced by symbolic objects; instead of
using a macro to place tiles, one just placed a symbolic object on a coarse grid.
Williams coined the term sticks [Williams 78] and proposed that compaction should
translate a stick diagram, a sketch of the circuit, into a layout. Placing objects on a
coarse grid freed the designer from worrying about all the detailed spacing rules. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 4

first translation systems simply spaced the grid lines using a constant spacing calculated
to prevent any possible design-rule violations [Gibson 76]. This wasted a lot of space.

One method to reduce this waste entailed using the shear line algorithm [Akers 70]
to post-process the layout. Starting with a layout, a smaller layout was produced by
repeatedly compacting along compression ridges. Found by an expensive search and
backtrack algorithm, a compression ridge consists of a group of strips of unused space
running from one side of the layout to the other. Removing this excess space causes the
halves of the layout on either side of the ridge to slide together along shear lines
perpendicular to the ridge. The repeated empty-space searches were too slow to be
practical [Dunlop 78]. A method that kept track of local information from previous
searches was used to speed up the process [Dunlop 80] but did not help much.

Virtual grid systems [Weste 81] used a much faster but less fiexible method to
reduce the wasted space. They improved the fixed grid method by allowing the grid
spacings to vary depending on the objects actually present on each grid line; the largest
constraint between two nearby grid lines determined their spacing. The spacing
constraints were easy to find since most of them occured between tiles on neighboring
grid points. The major problem with these systems was that they linked together groups
of tiles that were only related by being on the same grid line and thus unnecessarily
increased the layout sizes. Later virtual grid systems [Nyland 87] [Beyer 87a] made
trade-offs between allowing more freedom of movement within each virtual grid line
and searching for the needed spacing constraints.

More flexible systems [Cho 77] ignored the grid lines completely and instead
created a graph of the constraints needed to properly space neighboring objects. The
graph was then solved to produce a legal layout. In the next section we discuss the
history of generating constraints and in the subsequent section we discuss the history of

solving them.

1.2. Generating Constraints

Compaction algorithms operate on the constraints needed to enforce the layout
design rules. The stick object definitions prevent ill-formed objects. Therefore a
compactor does not have to worry about rules such as poly overlaps of transistors and
minimum sizes. Alignment rules tie together the parts of an object and force them to
move as a unit. Examples are alignments between a transistor’s source, gate, and drain

Introduction 5

Figure 1-2 Constraints: Alignment, Wire, Spacing

regions (constraints A in Figure 1-2), or between a contact’s layers. Wire rules keep
wires fully connected to their endpoints, but they also allow wires to slide on wide
endpoints. Each wire-endpoint needs one constraint to keep the endpoint’s left edge at
or to the left of its vertical wire’s left edge and another to keep its right edge at or to the
right of the wire’s right edge (constraints W in Figure 1-2). Finally, the spacing rules
provide the margins needed in the fabrication to keep adjacent objects from interfering
with each other (constraints S in Figure 1-2). The alignment and wire constraints are
easy to handle: they are generated from the circuit description and are invariant during
compaction. The spacing constraints are more difficult because they depend on the

current x and y positions of the layout tiles.

Many algorithms have been used to generate the spacing constraints. The simplest
method is to check for interactions between every pair of tiles. The distance between
two tiles is taken to be the maximum of the x and y distances between their edges. Thus
an x-direction constraint is needed between two tiles only if the tiles are separated by
less than the minimum legal spacing in the y-direction. This algorithm is easy to code
but has the drawback that although each comparison is quick, n? comparisons are
required for an n-tile layout. In Figure 1-3A, half the tests produce constraints (the dark

arrows).

Figure 1-3 A. Every Pair B. Sorted Every Pair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 6

The number of comparisons can be reduced by first sorting the tiles by their
bottom coordinates (to generate x constraints). Then each tile can be compared with
just the tiles in the horizontal band above it. This gives O(n!”) total comparisons for a
roughly square layout [Eichenberger 86]. Besides requiring many comparisons, these
two algorithms have another drawback: for normal layouts they produce o)
constraints when, because of transitivity, only O(n) constraints are needed. In Figure
1-3B, the constraint between tiles A and B is unnecessary because of their constraints
with the tile between them.

Another way to reduce the number of comparisons and generated constraints is to
use intervening groups. Tiles that are rigidly held together are grouped into features.
As all the pairs of features are compared, an approximation of the longest path between
every pair is created. When constraints with previously compared features require two
features to be further apart than the maximum design-rule spacing, there is no need to
check the actual spacing constraints between the tiles in these two features. One
method [Kingsley 84] keeps track of just one longest path, which results in extra
comparisons. Another [Hedges 85] uses a limited-depth search and a square bitmap to
store previous results, which requires a great deal of memory. While these are still
O(nz) worst case algorithms, they are relatively fast O(nz) algorithms. Using the
horizontal-band improvement described in the previous paragraph reduces the worst

case to O(nl's).

A more complex and theoretically faster algorithm uses shadowing [Hsueh 79a].
The tiles are lexicographically sorted on the (x,y) coordinates of their lower left hand
corners. A vertical frontier forms and moves to the right as the tiles are processed. The
frontier consists of the processed tiles that could still possibly be seen by a tile to the
frontier’s right. Constraints are generated from tile(s) in the frontier to each tile before
that tile is added to, and shadows part of, the frontier. A tile is shadowed when
constraints from it to any possible tile to the right of the frontier are superfluous. This is
an elaboration of the basic algorithm used in many design-rule checkers [Baird 77].
Maintaining the frontier can be difficult since a tile often shadows only part of another
tile and a large tile can be cut into pieces by the shadows of several small tiles. In
Figure 14A, tile A is completely shadowed, tile B is partially shadowed, and tile C is

shadowed in several sections.

The scan line algorithm [Schlag 82] (sometimes called event driven [Burns 87)) is
shadowing seen from the other dimension. A horizontal line is scanned from bottom to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 7

Figure 1-4 A. Shadowing B. Scan Line

top and the set of tiles currently cut by the line is maintained in a balanced tree. Tiles
are inserted into and deleted from the tree as the scan line crosses their bottoms and
tops, respectively. Neighboring tiles in the tree are visible to each other (along the scan
line) and are given spacing constraints. This O(nlgn) algorithm generates at most 3n
constraints. Visibilities still generate more constraints than are absolutely necessary. In
Figure 1-4B, the current scan-line position generates three constraints but only the one
between tiles A and B is necessary since the others are blocked by intervening tiles. By
caching recent constraints, the algorithm can remove unnecessary constraints during the
constraint generation [Lengauer 83). In Figure 14B for example, when the scan line
hits tile E, the algorithm realizes that the constraint between tiles C and D can be

thrown out.

The above algorithms need to be completely rerun whenever anything is moved or
changed. One way to reduce these recomputations is to use the wires to divide the
layout into regions [Watanabe 84]. The set of tiles in or on the edge of each region is
invariant during compaction since wires remain connected to their endpeints. An every
pair algorithm can be used separately on each region. When tiles are moved, only the
affected regions need to be redone. One problem with this algorithm is that it runs

slowly when regions are large.

The comer-stitching [Ousterhout 84] data structure allows more general,
incremental changes. While designed for a layout editor, the routines used to check for
design-rule violations are similar to the ones needed to generate the design-rule
constraints. Corner stitching adds space tiles to fill the empty spaces in the layout and
completely cover the plane. The algorithm keeps the tiles in a canonic form of maximal
horizontal strips by cutting tiles horizontally and recombining them, giving prefe.ence
to width over height. This canonic form is useful in a layout editor since it prevents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 8

fragmentation, but it has some drawbacks for compaction: it loses x-y symmetry and
obscures the mapping between higher level descriptions and the layout. Figure 1-5
gives an example of the space tile changes that occur when a tile (shown dark) is added.

Figure 1-5 Corner Stitching: Tile Addition

A variant of corner stitching combined with shadowing forms the basis for the
algorithm described in Chapter 2. The adjacency lists algorithm [Carperter 87] retains
the speed of shadowing and the incremental properties of corner stitching but is tailored
to generating design-rule constraints.

1.3. Solving Constraints

CABBAGE [Hsueh 79b] was one of the first systems to generate and then solve
constraints. It forces wires to connect to fixed points on endpoints so wire constraints
are not needed to keep wires and endpoints fully connected. The spacing constraints
form an acyclic graph that is easily solved in linear time to find the critical path across
the circuit. The critical path determines the layout’s minimum size and the placement
of the tiles on the path. CABBAGE uses a scheduling algorithm to place each group of
wired-together tiles as low as possible. A group can be placed only after all the groups
that could hold it up have been placed -- each group is given a count of the unplaced
groups directly below it and when that count is reduced to zero, the group is added to a
queue of placeable groups. REST [Mosteller 81] uses the same compaction algorithm
but in addition has an elaborate system to allow stick diagrams to be entered using
sloppy line segments.

Liao gives an algorithm [Liao 83] to handle the constraint-graph cycles caused by
designer-specified maximum spacings. It altemnatively performs the scheduling
algorithm to satisfy the spacing constraints and a separate, simple pass to satisfy the
designer-specified constraints (by moving single groups upwards ignoring the spacing
constraints). The algorithm finishes when a simple pass does not move any groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 9

The maximum number of passes is bounded by the number of designer-specified
constraints in the critical path. More flexible compaction systems have a much larger
number of constraint cycles -- caused by the wire constraints needed when wires are
allowed to slide on wide endpoints. Not tying wired-together tiles into rigid groups
allows smaller layouts to be created. Schiele’s compactor [Schiele 83] handles the
constraint cycles by repeatedly passing through a list of the constraints to move single
tiles up to fix any found constraint violations. Again, the algorithm finishes when a
pass does not move anything, but now the maximum number of passes is bounded by
the length of the critical path. This gives the algorithm a slow, O(n?) worst case.

Just compacting a layout to minimum size leaves a range of possible placements
for tiles not on critical paths. One way to take advantage of this freedom is to perform
wire-length minimization. Shorter wires allow circuits to operate faster and, by
bunching things together, can actually allow the creation of smaller layouts. Schiele
heuristically minimizes wire length. First, all the lower endpoints (of vertical wires)
that are free to move up without moving any other tiles are moved up. Since
movements can free other movements, this step loops until no more simple movements
arc possible. Then a single pass is made through the lower endpoints to move larger
sets of tiles. This heuristic not only makes useless simple movements, it also gives up
too easily on larger movements. Lakhani uses an improved, event-driven
algorithm [Lakhani 87] that continues until all helpful movements have been made.

LAVA [Eichenberger 86] uses a min-cost max-flow network algorithm to
minimize each dimension’s total wire length. The compaction problem is converted
into a linear-programming problem: the constraints become linear inequalities and the
wire lengths are embedded in the objective function. The network algorithm first
minimizes the wire lengths and then searches through the constraints to find a set of n
constraints that enforce a legal layout. This search has an exponential worst case. The
algorithm is described in Chapter 3. Tailor’s compactor [Marple 88] is similar e.tcept it
uses a dual network algorithm that first finds a legal layout and then adjusts it to

minimize the wire lengths.

Optimal two-dimensional compaction is NP-complete [Sastry 82]. It requires
deciding for every pair of neighboring tiles whether it is better for one to be above or to
the right of the other. Schlag gives an algorithm [Schlag 83] that starts with just the
wire constraints and then recursively adds one possible spacing constraint at a time
(from the O(nz) size set of all possible left-right, up-down constraints). It stops and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 10

backtracks when either a legal layout is created, the current layout becomes larger than
the smallest known legal layout, or the current set of constraints becomes infeasible.
Given enough time, this simple branch-and-bound search will always find an optimal
layout. Watanabe’s compactor [Kedem 84] uses a more efficient search over a smaller
set of constraints. Instead of starting with infeasible tile positions and adding
constraints, it starts with a legal layout and swaps x and y constraints to reduce the

critical paths and thus the layout area.

Many approximate two-dimensional algorithms have been devised. Mosteller’s 2-
D compactor [Mosteller 87] uses Monte Carlo methods to produce curvilinear layouts:
wires bend around randomly placed and moved round endpoints.
Supercompaction [Wolf 88] is a compromise between one- and two-dimensional
compaction. It iteratively recompacts after moving tiles and creating wire jogs to
reduce the preferred dimension’s critical path. MACS [Crocker 87] uses a more
efficient, event-driven approach to incrementally introduce wire jogs along the critical
path and to move groups to minimize wire length. ZORRO [Shin 87] does local two-
dimensional compaction by allowing lateral movements of elements to try to pack the

tiles during repeated compaction steps.

The above algorithms are all batch algorithms: they need to be completely rerun
whenever anything is moved or changed. They do not give the designer any control
over the interaction between the two dimensions except maybe to specify which
dimension has priority and should be compacted first (the compaction in the first
dimension interferes with the compaction in the second). An incremental compactor
can efficiently propagate changes between the two dimensions. Thus it not only gives
designers more control, it also quickly performs multiple one-dimensional steps and
makes an ideal basis for two-dimensional compaction. An incremental compactor
needs a data structure that stores enough information to allow quick updates. We
combine the min-cost max-flow network spanning tree with routines to move weighted
subtrees to derive the tree weight algorithm. The algorithm uses a simple batch graph
compaction to produce a good estimate of the desired spanning tree. Then a depth-first
scan through the tree minimizes the wire length and prepares for incremental changes.
This algorithm is described in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 11

Chapter 2

Generating Constraints

This chapter describes how the set of spacing constraints needed for compaction is
generated and incrementally updated. The algorithm presented not only quickly
generates the smallest complete set of constraints for a circuit, but also allows one to
update the constraints with an effort proportional to the size of the change instead of the
size of the circuit when objects are moved, deleted, or inserted. We start with a
description of the adjacency lists data structure and its use in the simple single-color
case. Then we cover the extensions needed to handle wires, overlapping tiles, and
multiple colors. We also give a simple, quick method for initially loading the adjacency
lists data structure. We finish with a discussion of the algorithm complexities. The
examples in this chapter show generating and updating the set of constraints needed for
an x-direction compaction. These constraints are affected by y-direction movements.
Using two data structures, one for each dimension, allows the same routines to be used

for the symmetric y-x case.

2.1. Adjacency Lists

Figure 2-1 A. Adjacencies B. Visibilities
The constraint generation algorithm is based on a strict definition of adjacency.
Two tiles are adjacent if and only if moving them in the compaction direction could
cause them to hit each other without passing through any other tiles. This is more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 12

restrictive than using visibilities. Because of the intervening tiles in Figure 2-1A, tile A
is not adjacent to tiles B and C even though it is visible to them. If we add space tiles to
the example (Figure 2-1B), we see that, in the single-color case, the space tiles
correspond to visibilities while a subset of the space tiles (marked by dashes)
corresponds to our adjacencies. The space tiles form maximal horizontal strips;
therefore each space tile’s height is determined by neighboring non-space tiles. A space
tile’s top edge must touch either a non-space tile’s bottom edge or one of its top corners
(or some combination). Each of a non-space tile’s two top corners and one bottom edge
can determine the top of at most one space tile. Hence, if there are n non-space tiles
there are at most 3n space tiles. The space tiles corresponding to adjacencies have both
a top and a bottom comer touching nen-space tile corners; thus there are at most 27
adjacencies. In Figure 2-1B, the space tile comresponding to tile A’s top adjacency
touches on the top left and bottom right (circled), tile A’s bottom adjacency touches on
the top and bottom right, and the non-adjacency between tiles A and C touches on only
the bottom right.

B

e
- 2
B 23?' <

—> Left Adjacency List
—# Right Adjacency List

Figure 2-2 A. Adjacency Pointers B. Non-Nil-Ended List

Since there are at most 2n planar adjacencies, the adjacency information can be
stored using threaded lists. Each tile record has left, right, up, and down pointers. The
lists are threaded clockwise; the left pointer points to the lowest left adjacent tile and the
up pointers are followed for the rest of the left adjacency list. In Figure 2-2A, the dark
tile has three left adjacencies, found by following light arrows. Likewise, the right
pointer points to the highest right adjacency and the down pointers are followed for the
rest (the dark arrows). Note that these lists are not always nil ended. It is possible for a
tile to be the last tile in one tile’s adjacency list and the first in another’s. The dark tile
in Figure 2-2B is the last tile in tile A’s right adjacency list and the first in tile B’s. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 13

down pointer of a record is always part of the right adjacency list of the tile pointed to
by the record’s left pointer. Likewise, the up pointer belongs to the list of the tile
pointed to by the right pointer. In the example, the dark tile’s left pointer points to tile
B so its down pointer continues tile B’s, not tile A’s, right list.

a

Figure 2-3 Concave Left Tumnaround

One commor;, but non-obvious, operation is to find the tiles above or below a
given tile using just the left and right adjacency lists. If tile L in Figure 2-3 were moved
upwards we would have to search above it for possible new adjacencies. Since tile L’s
up pointer is nil we cannot search directly up. Instead we search to the right for a
turnaround; then we can search back to the left. Turnaround tile T must be found to
travel up or down within the example: the lower half of the tiles have nil up pointers
and the upper half have nil down pointers. Right pointers tend to go upwards since they
point to top right adjacencies. So, to find a concave left turnaround from below, one
just follows right pointers until a non-nil up pointer is found. To find one from above,
right and down pointers are followed to find bottom right adjacencies. The turnaround
from above occurs when a tile’s left pointer does not point back to the previous bottom
right tile. In the example, tumaround tile T’s left pointer does not point back to tile A.

2.2. Single Color Case

Having defined what adjacency lists are, we now describe the routines used to
maintain the adjacency lists for the simple case where there is only one color (type) of
tile and the only design rule is that tiles can touch but not overlap. This rule is
equivalent to replacing a spacing rule of k with a spacing rule of zero after bloating all
the tiles by k/2. A frame of special tiles surrounds the layout so that all the normal tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 14

will have left and right neighbors. We describe the growing and shrinking of tiles first,
as they are the basic operations used to move, delete, and insert tiles. Starting with a
simple case makes it easier to explain the basic algorithm; the extensions needed to

handle real layouts are described in subsequent sections.

2.2.1. Growing Tiles

Tiles are grown by moving their tops up or bottoms down. The cases are
symmetric so we just describe moving tops up. As a tile grows, its path may cut old
adjacencies and require them to be deleted. The growing tile may also gain new
adjacencies which have to be added to its lists. The main part of the grow routine is a
loop that scans counter-clockwise upwards to look for adjacencies that cross the
growing tile’s path. The scan searches right for a turnaround, goes up once, and then
left until a tile is found to the left of the growing tile, that is, we scan around concave
left turnarounds (Figure 2-3) to find all the crossing adjacencies, one by one, working
upwards until a crossing is found at or above the growing tile’s final top.

R

Figure 2-4 Before and After Breaking a Left List

Two cases can occur at the turnaround point: the up tile can be to the left of the
growing tile or it can be to the right. If it is to the left, the growing tile has broken into
the middle of the turnaround tile’s left adjacency list. We remove the up tile from the
turnaround’s list and add it to the growing tile’s left list. In Figure 2-4, up tile U goes
from being adjacent to turnaround tile T to being adjacent to the dark, growing tile.
Only the relevant pointers are shown. In the other case, the up tile is on right and we
have to search for the cut adjacency. Left pointers are followed to find a pair of tiles,
one to the right and one to the left of the growing tile’s path. If the right tile is the
bottom-most tile in the left tile’s right list, the right and growing tiles can be made

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 15

Figure 2-5 Before and After Breaking a Right List
adjacent to each other by simply adding them to each other’s adjacency lists.
Otherwise, the growing tile has broken into the middle of the left tile’s right adjacency
list. We remove the right tile from the left tile’s right list and add it to the growing
tile’s right list (tile R changes adjacencies in Figure 2-5).

8

=

Figure 2-6 Before and After Growing a Tile

Sometimes when a tile is added to the top of a growing tile’s adjacency list, that
tile shadows the previous top adjacent tile and causes it to be removed from the list. In
Figure 2-6, newly adjacent tiles L and R shadow the growing tile’s old adjacent tiles TL
and TR. This occurs on the right when the growing tile’s up pointer is non-nil and on
the left when some tile’s down pointer points to the growing tile. In the example, tile L
points down to the growing tile, which points up to tile R.

After the growing upwards loop is finished, one more adjacency may remain to be
found on each side of the grown tile. The grow loop finds all the adjacencies created
when the growing path cuts between pairs of tiles, but the grown tile’s top corners may
also catch on nearby tiles’ bottom comers to create new adjacencies. On the right side,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 16

Figure 2-7 Final Search for Top Adjacencies

the top half of the last scanned turnaround is reverse scanned for a tile whose bottom is
low enough to be adjacent to the growing tile. A similar search until turnaround is
made to the left for a new top left adjacent tile. In Figure 2-7, we find two new
adjacencies: the search from tile R finds tile TR and from tile L finds tile TL. If the
grown tile were grown up again, further, these final adjacencies would be shadowed (as
in the previous paragraph).

2.2.2. Shrinking Tiles

Shrinking a tile is the reverse of growing one. We only describe moving bottoms
up since the tops down case is symmetric. As a tile shrinks, it may lose some of its
adjacencies and cause new adjacencies to be stitched between tiles on either side of its
old position. The shrink routine is a loop that moves the bottom up to drop one tile at a
time from the shrinking tile’s adjacency lists.

Figure 2-8 Before and After Shrinking a Tile

Two searches are performed as each tile is dropped. When the bottom tile is
removed from the shrinking tile’s right adjacency list, one search is made to the right of
the dropped tile for a tile to replace it in the shrinking tile’s right adjacency list and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 17

other search is made to the left of the shrinking tile for a new top left adjacency for the
dropped tile. The search for a new right adjacency follows right pointers until a
turnaround is reached or a tile is found whose top is high enough to be adjacent to the
shrinking tile’s current bottom. The left search likewise follows left pointers looking
for a tile with a bottom low enough to be adjacent to the dropped tile. In Figure 2-8, the
right search from dropped tile D finds that tile R should now be adjacent to the
shrinking tile, while the left search finds that tile L should now be adjacent to tile D. If
the shrinking tile shrunk a little more, it would drop its new adjacency with tile
R. When a tile is dropped from the shrinking tile’s left rather than right adjacency list,
symmetric left-up and right-down searches for new adjacencies are used.

2.2.3. Changing Tiles

The grow and shrink routines are used to move, delete, and insert tiles. To move a
tile a short distance, we can grow it to make it stretch over its new position and then
shrink it to its proper size. To move a tile a longer distance, it is faster to delete the tile
and then add it back at its new position to avoid cutting and restitching many

adjacencies.

To delete a tile, the tile is first shrunk to zero height so that it will have exactly one
left and one right adjacency. The zero height tile is then removed from these tiles’
adjacency lists and a simple check decides if the left and right tiles should be adjacent to
each other or not. They are made adjacent if the deleted tile was either the only tile in
one or both of their adjacency lists, the last tile in both lists, or the first in both lists.

Inserting a tile is the reverse of deleting one. A zero height tile is inserted hetween
two tiles to start its adjacency lists and is then grown (down and up) to its proper size.
Locating the two initial adjacencies is a two-step process. Starting at any tile
(preferably one nearby), up/right or down/left pointers are followed to find a tile at the
same height as the bottom of the new tile. The up pointers move quickly, but if one is
nil or jumps over the desired height, the right pointers also tend to go up since they
point to top adjacencies. Likewise, the down and left pointers are used to go down.
Starting at tile S in Figure 2-9, the height search uses one right and one up pointer.

Once a tile is found at the correct height, the adjacency lists are followed to the left
or right to find pairs of tiles at the correct height until a pair is found with one tile on the
left and one on the right of the new tile’s desired position. The tiles in each pair of tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 18

Figure 2-9 Locating Where to Insert a Tile

are visible to each other but need not be adjacent; when none of the tiles in a list are at
the wanted height, a search until turnaround is used to go up or down from the listed
tile(s) found just below or above the wanted height. In Figure 2-9, the second found
pair is the correct one. The final right tile R is found by searching through tile B below
the desired height.

2.3. Wires

So far we have discussed one kind of tile, but in layouts there are two very
different kinds of tiles: fixed-size objects and wires. In our system, wires connect to
fixed-size tiles, not to other wires, with at most one wire connected to each tile’s side.
An endpoint is made at least as wide as the wire(s) connected to it in order to provide a
full connection. When an endpoint is wider than a wire, the wire is free to slide along
it. In Figure 2-10, vertical wire V is not rigidly connected to endpoint tile E. Wires
could be represented as simple, varying-size tiles but we can take advantage of the fact
that their ends are protected -- a horizontal wire never generates any constraints useful
in x-direction compactions because it is always completely shadowed by the two
endpoints to which it is attached. In Figure 2-10, no tile is needed for horizontal wire
H. Thus, while non-wire tiles require two tile records, one for each dimension, we can

get by with just one tile record per wire.

If we use two pointers in each tile record, a wire-up and a wire-down pointer, to
doubly link wires and endpoints together, we can take advantage of the fact that wires
stretch when their endpoints move. Wires themselves never need to be moved. When
an endpoint is shrunk away from its wire, the wire grows to follow it. Thus instead of
the usual shrink loop, the shrink routine can just see how many of the tiles in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 19

Figure 2-10 Wire Adjacencies

endpoint’s adjacency lists need to be moved to the wire’s adjacency lists. Endpoints
growing towards their wires likewise shrink wires and simply take back some of these
adjacencies. Moving endpoint E down and up in Figure 2-10 causes vertical wire V to
grow and shrink and gain and lose adjacencies (with tiles T and R), respectively. The
wire-up and wire-down pointers can also serve as turnarounds since nothing can pass
between a wire and its endpoints. If tile L in the example was grown upwards, the
counter-clockwise grow scan could turn around at wire V.

Since a vertical wire is horizontally constrained by its endpoints, it follows, using
transitivity, that if a tile is adjacent to one or both of a wire’s endpoints, it does not need
to also be adjacent to the wire. In Figure 2-10, because of the spacing constraint
between tile T and endpoint E and the wire constraint between the left edge of endpoint
E and the left edge of its wire V, no spacing constraint is needed between tile T and
wire V. Thus we can change the definition of adjacency to say that a tile and a wire are
adjacent if and only if the tile is adjacent only to the wire (on that side) and that two
wires are never adjacent. In Figure 2-10, tile R’s only left adjacency is wire V and the
two vertical wires are not adjacent. Note that now, unlike other tiles, a wire’s left and
right pointers can be nil and its up and down pointers are always nil. Wire V in the
example has no left adjacencies.

It is relatively easy to modify the algorithms to handle this definition. A grown tile
with more than one adjacency will never be adjacent to a wire, but one extraneous wire
adjacency is allowed while a tile is growing so that it can grow past wires. A wire
adjacency will be shadowed by any new adjacency or, if necessary, removed after the
grow loop. A shrinking tile becomes adjacent to a wire only when nothing else is
available; thus a shrinking tile will never lose a wire adjacency. While doing a locate
and searching an adjacency list from a wire, if the list is empty or its tiles are all too

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 20

high or all too low, the search is continued from the wire’s endpoints. To delete a wire,
one endpoint is grown towards the other endpoint to zero out the wire. Then the wire is
removed and the endpoint is shrunk back. Likewise, to insert a wire, one endpoint is
grown towards the other until no adjacencies cross between the endpoints. Then the
wire is added between the endpoints and the grown endpoint is shrunk back to its
correct size. This causes the proper adjacencies to be transferred from the endpoint to

the wire.

In summary, taking advantage of the special properties of wires greatly improves
the constraint generation. Using fewer tile records means less memory is required. The
wire-up and wire-down pointers, which are needed anyway during compaction to keep
wires and endpoints connected, speed up constraint generation and make updates faster.
More importantly, since fewer constraints are generated in both dimensions, less time
will be required to solve the constraints. The algorithm changes required to achieve
these improvements are relatively simple, especially since something has to be done
anyway to allow for the varying wire lengths.

2.4. Overlapping Tiles

In VLSI compaction, most of the spacing rules can be relaxed between tiles that
are electrically connected since there is no need to keep them from shorting out. Not
allowing bloated tiles to overlap causes every wire’s two endpoints to be spaced at least
their minimum spacing distance apart and thus gives every wire a minimum length
equal to the bloat distance. This, for example, would cause wire jogs to always jog at
least the spacing distance and would space diffusion contacts far away from transistors.
To overcome this problem, we can create netlists specifying which tiles are electrically
connected and can thus legally overlap. One simple, but slow, method is to force
overlapping tiles to be adjacent to each other. Any wire between two such tiles is
unnecessary and is removed and added to a list of negative-length wires. After all the
movements are done, this list is checked to see if any of the wires now have positive
lengths and should be added back to the graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 21

2.4.1. General Case

Figure 2-11 Constraints With Pass-Throughs

The most general algorithm would not generate any constraints at all between
electrically connected tiles and thus allow such tiles to pass through each other. This
flexibility allows a left wire jog to become a right wire jog and vice versa and allows
the ordering of taps off of busses to vary. It also makes it much harder to read the
constraints from the adjacency lists. To find all the constraints for a tile on net I, we not
only have to make a transitive search through adjacent net-I tiles to find the first
constraint, say with a tile on net J, we then have to continue the search until we find a
tile not on net J. This long search is required because even the furthest away (last
scanned) net-J tile could pass through all the intervening net-J tiles and hit the net-I tile
after that tile has passed through all the intervening net-I tiles. In Figure 2-11, we have
to search all the way from the right-most tile to the left-most tile to find the right tile’s
two left spacing constraints. While these transitive searches complicate and slow
normal shadowing algorithms, they are particularly bad in incremental compaction
since constraints may be read from the adjacency lists many times.

Figure 2-12 Fixing Negative Length Wires

Another problem with letting tiles pass through each other is that negative-length
wires are created when one endpoint of a wire passes completely through the other
endpoint. Having a wire’s upper endpoint below its lower endpoint would confuse the
grow and shrink routines. Swapping a negative-length wire’s wire-up and wire-down
pointers restores its positive length and fixes the problem but, unfortunately, creates a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 22

new problem -- it may try to point an endpoint’s wire pointer at two different wires at
once. In Figure 2-12, moving the center endpoint down gives the right wire a negative
length. Swapping the wire’s endpoints causes a problem with the moved endpoint’s
wire-up pointer. When a pointer conflict occurs, the shorter wire is given preference:
the longer wire is disconnected from the endpoint, shrunk, and attached to the other
endpoint of the shorter wire. This recurses until a free endpoint is found. A wire or
endpoint may have to be moved horizontally slightly to make a full connection when a
vertical wire’s endpoints are changed. In Figure 2-12, the left, longer wire is shrunk
and connected to the new center endpoint, which is moved left slightly to allow a full

connection.

s R

Figure 2-13 A. Insert on Left or Right? B. Cannot Insert Wire

Besides requiring left-right pointer updates, allowing tiles to overlap and cross left-
to-right also causes a problem with the function used to decide whether a tile is to the
left or right of another tile. Because we use left and right adjacency lists even when two
tiles overlap, one tile has to be declared the left so they can be made adjacent. Just
comparing left coordinates no longer gives consistent results near wires. When a wire’s
endpoints are wider than the wire, their left edges do not have to line up. A tile’s left
edge could be to the left of one endpoint’s left edge and to the right of the other’s. In
Figure 2-13A, it is not clear whether the new tile, which overlaps the center endpoint,
should be added on the left or right of the overlapped endpoint since a comparison with
the bottom endpoint implies it should be on the left but a comparison with the top
endpoint implies it should be on the right. Similarly, if a new wire’s desired endpoints
are on the opposite sides of a tile, one of them needs to be moved before the wire can be
inserted. In Figure 2-13B, the search from the bottom endpoint, on the right, will not be
able to find the top endpoint, on the left.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 23

2.4.2. Restricted Case

Figure 2-14 Constraints Without Pass-Throughs

In the previous section we saw that allowing tiles to pass through each other causes
several problems. With a slight loss in generality we can greatly reduce these
difficulties. We allow tiles to overlap but not pass through other tiles; we force the right
tile’s right edge to be at or to the right of the left tile’s right edge and likewise for their
left edges. Thus, when two tiles are electrically connected, instead of generating a
spacing constraint between the right edge of the left tile and the left edge of the right
tile, we generate two zero valued constraints: one between their left edges and one
between their right edges (see Figure 2-14). Not allowing left edges to cross left edges,
and right over right, fixes many of the pass-through problems: no adjacency searches
are needed to determine the constraints, there are no negative-length wire conflicts, and

movements never swap left and right adjacencies.

The problem with determining left-rightness is also eliminated except when edges
exactly overlap. A simple way to solve this is to define two tiles to be electrically
connected if and only if there is a wire directly between them. Then, when two tiles
exactly overlap, we can check the wire pointers to determine which is the left and which
is the right endpoint. If, when moving several tiles, we always grow the left-most
endpoint up first, right endpoints will always grow to the right of any tile they exactly
overlap. This allows the grow routine to always break ties in the same direction. To
keep from producing temporarily negative-length wires, we break vertical ties so that
top endpoints always move up before bottom endpoints. We move right and bottom
endpoints down first for the same reasons. Using the direct-connect definition of
electrically connected also saves us the trouble of incrementally updating the netlists

when tiles are inserted or deleted.

Left and right overlaps in one dimension appear as up and down overlaps in the
other. A pointer conflict can occur when top-to-bottom overlapped tiles need to share
some of their adjacencies. For example, if three overlapping tiles, on the left, are
adjacent to three overlapping tiles, on the right, we may have to generate adjacencies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 24

between each of the left tiles and each of the right tiles -- nine adjacencies in all. The
planar adjacency list pointers cannot directly handle so many adjacencies. To resolve
this problem, we semi-merge top-to-bottom overlapped tiles -- the semi-merged tiles
share one common pair of adjacency lists but still move independently. For more
details see Appendix A. Semi-merging makes it slightly harder to read the constraints
from the adjacency lists and it can create a few over-restrictive adjacencies. The
method works fairly well but our implementation depends on the simple direct-connect
definition of electrically connected.

il X First

Y First

Figure 2-15 Compaction-Order Effects on Overlap

Using the direct-connect definition makes it fairly easy to overlap and merge tiles
but, unfortunately, it does not allow all legal overlaps. The most noticeable case is that
the three endpoints in an L-shape wire cannot all overlap. The two end endpoints are
not directly connected by a wire and thus are not allowed to overlap. Which endpoint
will overlap the middle endpoint depends on which dimension is compacted first; the
second dimension will see a spacing constraint between the two end endpoints. In
Figure 2-15, a x-then-y compaction reduces the L-shape wire to a vertical wire, while a
y-then-x compaction reduces it to a horizontal wire. While many L-shape wires can be
eliminated by changing the stick diagram, doing so is awkward and prevents some
useful constructs. The only practical way to fix this problem is to use full netlists and
modify the adjacency routines to allow locally unrelated tiles to overlap.

2.5. Multiple Colors

So far we have had just one color (type) of tile and one spacing rule. A real layout
needs many types of tiles and many spacing rules. We separate the colors that do not
interact into independent planes; each plane consists of a set of tiles connected together
by adjacency lists. For nMOS there is a metal plane and a poly-diffusion plane. In a
plane with two or more colors, it is unlikely that using constant bloats for each color
will satisfy all the spacing rules. Therefore the tiles are stored unbloated and when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 25

comparing two tiles, their colors are used as indices into an array of spacing rules to
find the appropriate bloat. Rules with very large spacing distances (p- to n-diffusion in
CMOS can bleed across poly) would force us to search through adjacencies to find all
the spacing constraints. To prevent these searches, we restrict the rules handled in each
plane so that whenever tile L is adjacent to tile M and tile M is adjacent to tile R, no
spacing constraint is needed between tiles L and R. Figure 2-16A shows the three-color
rule that must apply for all possible color combinations within each plane: the sum of
spacing constraints A and C, from tiles L to M and M to R, and the minimum legal size
B of tile M must be greater than or equal to any spacing constraint D from tiles L to
R. For CMOS, a well plane (with well boundary tiles and duplicated diffusion tiles)
must be created to handle the p- to n-diffusion rules.

A+B+C>=D A=Max (C-B) A+B>=C

Figure 2-16 A. Spacing and B. Overlap Bleed-Throughs

A similar rule bleed-through problem occurs when tiles overlap. When all the
spacing rules were identical, not allowing the right edges of a left tile and an overlapped
middle tile to cross guaranteed that no spacing constraint was needed between the left
tile and any possible tile to the right of the middie tile. To prevent multiple colors from
requiring us to search through overlapped tiles, we increase the constraint between
overlapped tiles’ right (and left) edges from the previous zero value to a small constant.
For each possible pair of overlapping tile colors, we calculate and store in an array the
maximum difference between the spacing constraints from the left and the overlapped
middle tile to any possible color right tile. In Figure 2-16B, constraint A, the minimum
allowable right to right edge distance for tile colors L and M, is calculated using
constraint B, from tiles M to R, to make constraint C, from tiles L to R, unnecessary
regardless of tile R’s color.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 26

2.5.1. Fuzzy Edges

il
\ B
= |

Figure 2-17 A. Locate Off By Bloat B. Shrink Slip Through

The apparent positions of tile tops and bottoms are now fuzzy since the effective
bloat of a tile varies with the color of the tile with which it is being compared. This
fuzziness causes two problems. The first is minor and occurs when a tile is smaller than
the minimum legal size (for that color tile). This can only happen during a tile insertion
or deletion. For insertions, the locate to find a pair of tiles to start a new tile’s
adjacency lists might not be able to find two unbloated tiles at exactly the desired
height. In Figure 2-17A, the locate (starting at tile L) returns tiles L and R even though
the new tile might not be adjacent to them. After the new tile is inserted and grown to
its proper size, the adjacency between it and right tile R may have to be removed
(depending on their proper bloat). For deletions, if the shrinking tile in Figure 2-17B
dropped its adjacency with tile T, it would be left with no legal right adjacency. The
shrinking tile is in the middle of T’s left adjacency list; letting it slip over tile T would
destroy T’s list. Since the shrinking tile is about to be removed, we can just make the
shrink loop stop early and leave the shrinking tile adjacent to tile T. If it was not for the
three-color rule (Figure 2-16A), normal small tiles could also slip diagonally between
adjacencies and cause many problems.

The second fuzzy-edge problem, the around-the-corner problem, is more serious.
The adjacency list data structure can only model planar graphs: that is what makes it
possible to have just one up and one down pointer per record. But the fuzzy edges
make it possible for constraints to diagonally cross. A simple case is shown in Figure
2-18A where four tiles are arranged in a tight square with a diffusion tile above a poly
tile on the left and below one on the right. The tiles can be close enough to generate
four pairs of constraints since the poly-diffusion spacing rule is smaller than the poly-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 27

Figure 2-18 A. Crossed Constraints B. Up Pointer Conflict

poly and diffusion-diffusion spacing rules. Adding another tile in the middle of all this
can cause an up or down pointer to need to point to two tiles at once. Tile P in Figure
2-18B is in the middle of two left adjacency lists.

Searches for around-the-comer adjacencies are needed after growing and while
shrinking tiles to avoid missing any constraints. These constraints are kept in a separate
list since they cannot be included in the normal adjacency lists. In a batch compactor,
this list is checked when the compaction constraints are generated to see if the
constraints are still valid and, if so, if they can now be added to the normal lists.
Missing constraints can only occur when tile tops and bottoms are very close; thus a
simple test can eliminate or cut short most of the around-the-comer searches. The
maximum vertical extent of a search is determined using a precalculated function of the
colors’ bloat distances. This fudge distance is how far the top of a middle tile must be
above the top of a left tile before any right tile high enough to be able to slide
horizontally over the middle tile will also be able to slide over the left tile (the middle
tile completely shadows the left). Note that this distance is the same as the one used to
keep constraints from bleeding through overlapped tiles (Figure 2-16B rotated ninety
degrees). The next two sections describe how to modify the grow and shrink routines to

handle multiple colors.

2.5.2. Growing Tiles

After we grow a tile, we have to search for a missing adjacency on its left and on
its right. In the section on growing tiles upwards we saw that after the growing loop
was finished we sometimes had to search left and right-down until turnaround from tiles
just above the grown tile to look for possible final adjacencies. The around-the-corner
search is the continuation of this search pretending that the first found turnaround tile
was removed. On the right side, the turnaround was the last tile in some tile’s right

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 28

Figure 2-19 A Complex Around-the-Comer Search

adjacency list (tile T in tile L’s list in Figure 2-19). We find the second to last tile in
that list, if there is one (tile A in the example), and continue searching right-down from
it. If we find a tile with a bottom low enough to be adjacent to the grown tile, we have
found an adjacency that could have been added if the turnaround tile was not there. In
Figure 2-19, the search finds a missing constraint between the two dark tiles. To start a
search, right pointers are followed from the grown tile to find the first turnaround. If
any of these tiles have tops more than the fudge distance above the grown tile, the
grown tile will be shadowed from any problems on this side and we can abort the
search. In Figure 2-19, the two tiles scanned before reaching tile T are not high enough

to stop the search.

A+1-B+C
+D+E>=F

Figure 2-20 Five-Color Rule

Previously we noted that the spacing and minimum size rules in each plane had to
obey a function of three tile colors (Figure 2-16A) to prevent bleed-throughs. It turns
out that this three-color rule is not quite strict enough to allow the around-the-corner
searches to pretend to remove only cne turnaround tile. If tiles 3 and 4 in Figure 2-20
could be adjacent, the search would have to not only examine tile 2, tile 5’s second from
bottom right adjacency, but also tile 3, the third from bottom adjacency. To prevent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 29

this, we make sure tiles 3 and 4 cannot be adjacent: A+1-B+C+D+E>=F must be valid
for all possible colorings of five tiles within a plane. All the values are spacing
distances except D the minimum size for tile 2. The 1-B occurs because tiles 1 and 5
must be adjacent and B is the spacing rule between those two tiles. This five-color rule
does not cause any problem with the CMOS rules as long as the spacing rules are
properly divided between the four planes (metal-2, metal-1, active, and well) already
required to satisfy the three-color rule.

2.5.3. Shrinking Tiles

Figure 2-21 Temporarily Cached Missing Constraint

Two major changes have to be made to the shrink routine to handle the around-the-
comer problem. First, an extra search is needed after each tile is dropped from a
shrinking tile’s adjacency lists. When the bottom of a shrinking tile moves up just
enough to drop an adjacency on one side (R), it is quite possible that an around-the-
comer constraint between the dropped tile and a tile on the other side (L) of the
shrinking tile is created. As the shrinking tile continues to shrink and drops the bottom
adjacency on this other side (B), it is likely that the constraint can be added directly to
the adjacency lists. Therefore we search (left) from the shrinking tile’s second from
bottom adjacency and cache the missing adjacency, if one, in the hope that it can be
quickly resolved. In the first step of Figure 2-21, dropping right dark tile R creates an
around-the-corner constraint between it and dark tile L (found by searching from tile
U). Dropping the shrinking tile’s bottom left adjacency B in the second step allows this
missing constraint to be added to the adjacency lists. After the shrinking tile is finished
shrinking, if any adjacencies have been dropped from a side, we also have to search for
possible missing constraints with the shrunk tile.

The second change to the shrink routine occurs because of the fuzziness of tile tops
and bottoms -- the shrinking tile’s bottom does not move monotonically upwards. The
top of a tile on one side (R) of the shrinking tile may be low enough to not be adjacent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 30

0
:';S;:‘ S

- ﬁ

Figure 2-22 Temporary Extra Adjacency

to the shrinking tile’s current bottom but still high enough, because of the varying
bloats, to be adjacent to a tile on the other side (L) of the shrinking tile. If we just skip
the first tile (R), we will miss this unshadowed adjacency (L-R). A simple fix is to not
skip any tiles: always make the shrinking tile adjacent to each dropped adjacency’s first
adjacency. This, in effect, causes the shrinking tile’s bottom to sometimes move back
down slightly. As each of the adjacent tiles is dropped, its proper unshadowed
adjacency, if one, will be found. In the first step of Figure 2-22, we drop the shrinking
tile’s bottom right adjacency B and make right dark tile R adjacent to the shrinking tile
even though it could never possibly hit it. When adjacency R is dropped in the second
step, the search to the left of the shrinking tile finds left dark tile L and we make tiles L

and R adjacent.

We can do better than the simple, no-skip fix -- many of the tiles can safely be
skipped. A dropped adjacent tile will completely shadow from the shrinking tile all the
tiles with tops a certain distance below its own. This distance is like the fudge distance
except we take the minimum over all possible colors instead of the maximum. Any tile
with a top at or below this fudge position can be skipped. This position will
monotonically increase during the shrinking loop. Actually, a dropped tile will shadow
tiles at various heights depending on their colors. We could store in a shadow array the
height below which each different color tile could safely be skipped, but the cost of
updating all the entries after every drop is not worth the slight gain from skipping a few

more tiles.

A more effective improvement is to store in the shadow array the position of the
last tile dropped of each different color. A tile always shadows any tile of the same
color with a top at or below its own top. Thus we can skip a tile if its top is at or below
the fudge position or if it has been shadowed by a tile of its own color. Except for
initializing the array before starting each shrink, this has very little overhead and insures
that at most one tile of each color at each height will be checked. Figure 2-23 gives an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 31

example. First, tile A is dropped and the fudge position F is set to slightly below A’s
top. Tile B’s top is above F so it is made adjacent to the shrinking tile and then
dropped. Tile B’s fudge position is below F so the current fudge position is not
changed. Tile C’s top is above F but since it shadowed by same color tile B we can skip
it anyway. Tile D is likewise shadowed by same color tile A. Tile E’s top is above F
and above same color tile A’s top so it cannot be skipped. Dropping tile E moves the
fudge position up slightly.

Figure 2-23 Shrink Shadow: Skip Tiles C and D

2.5.4. Summary

Duplicating some of the tiles to create an extra plane to handle large, non-transitive
spacing rules is a good compromise between handling all the bloat problems in one
plane and eliminating the problems by creating many extra planes (each with a constant
bloat). The five-color rule determines which rules can be handled in each plane.
Within a plane, the varying bloats cause several problems. Around-the-corner searches
are required after growing and while shrinking tiles to keep from missing crossed
constraints that cannot be included in the planar adjacency lists. A precalculated
function of the bloat distances is used to cut short most of these searches. A constraint
cache and a shadow array are used in the shrink routine to help add missing constraints

to the adjacency lists and to avoid processing more tiles than is necessary.

2.6. Quick Loading

The adjacency lists data structure could be loaded, given an initial placement, by
just inserting every tile. This would use a lot of time just locating where to insert each
tile. Sorting the tiles lexicographically on the (y,x) coordinates of their lower left hand
corners before inserting them makes the locates fast but creates a long horizontal
frontier between the added tiles and the top edge of the frame that is often searched as
tiles are grown to their proper sizes. It is better to sort the tiles on (x,y). As they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 32

added in this order, each tile will have nothing to its right except the right edge of the
frame. Thus a simple, quick load routine can be used. The locate reduces to finding the
tile in the right edge’s left adjacency list just below the new tile’s bottom. The growing
loop reduces to replacing some of the tiles in that left adjacency list with the new tile
and making those tiles the new tile’s left adjacencies. We still need to scan until
turnaround to look for final top and bottom left adjacencies.

Figure 2-24 Quick Load Steps: Locate, Swap, Search

Figure 2-24 shows the steps of locating dark tile B below new tile N, swapping two
tiles out of the right edge’s left list, and the final searches from above and below the
new tile, both of which find an adjacency in this case. Note that this load routine is
actually a fast, simple shadowing routine. The tiles in the right edge’s left adjacency
list correspond to the shadowing frontier’s completely unshadowed tiles and the
partially shadowed tiles are found left or left-up from the tiles which shadow them.

Wires are easily loaded. No search for where to add a wire is needed since it
begins and ends at its endpoints; we just have to ensure that its endpoints are added
first. In the sorted load order, wires are always after their lower endpoints but are often
before their upper. If we come to a wire before its upper endpoint has been added, we
adjust the list so that the wire will instead be added just after the endpoint. When a wire
is added, its left adjacency list will consist of the tiles, if any, between its endpoints in
the right edge’s left adjacency list. No final searches are needed since wires have no

corners to catch on top and bottom adjacencies.

Mutltiple colors are easily handled: we just need to add leftward searches from the
top and bottom of each non-wire tile to look for possible around-the-corner constraints.
Overlapping and semi-merged tiles cause more problems: wires and left and right
endpoints need to be added in the proper order, endpoints may be partially shadowed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 33

before their wires are added, and the tiles that should be semi-merged are not added in
any particular order. See Appendix A for more details. The quick load works very
well. Even with all the modifications it is not too complicated. A simple batch
compactor could use the load and not even implement the grow and shrink routines.
Since the quick load only has to worry about left adjacencies, it should be at least twice
as fast as separately inserting and growing each tile.

2.7. Complexities

In this section we examine the run-time complexities for the quick load and for
incremental changes. We use n to represent the number of tiles in one dimension’s data
structure. Note that objects such as transistors and contacts consist of several tiles and
that each wire is represented by a tile in only one of the two dimensions. We assume
the area of a layout is O(n), that is, the density and size of tiles is independent of n.
This assumption is slightly optimistic since larger layouts are more likely to have long
wires and maybe even larger driving transistors and more dead space. We also assume
that layouts are roughly square, that is, the aspect ratio is independent of n. Together,
these two assumptions give us layouts that are O(n->) lambda on a side. Finally, we
assume that the number of overlapping tiles semi-merged into each set is small and
independent of n. Thus we can ignore layouts, for example, which consist of a few
large stacks of tiles and produce a huge number of set to set spacing constraints. The
number of different tile colors and spacing rules is determined by the technology and
thus is independent of n.

The quick load sorts the tiles on the (x,y) position of their lower left hand corners.
Since tile positions are rather dense over a small range, a linear-time radix sort is very
efficient. For example, using 256 bins allows sorting, starting with the least significant
byte, with just a few passes through the tiles. We assume that the feasible tile positions
used to load the data structure produce an initial layout O(z->) on a side. Loading each
of the n tiles requires three steps: locate, swap, and final search. The locate of the tile in
the right edge’s left adjacency list just below each new tile starts from the tile found in
the previous locate. Thus the locates for all the tiles with a given x-coordinate (and
increasing y-coordinate) are done with a single pass through the right edge’s left
adjacency list. For a roughly square layout this uses x = O(n->) passes through a y =
O(n'5) length list for a total O(xy) = O(n) time. Each tile can be added to and removed
from the right edge’s left adjacency list only once so the total time swapping left

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 34

adjacencies is also O(n).

The final searches are trickier. An above search follows left pointers, which point

Q_U'D\
Figure 2-25 Final Searches for Three Tiles

to bottom left adjacencies, until an adjacency or turnaround is found. In a roughly
square layout each tile has at most x = O(n-) tiles directly to its left so even if all n
above searches reach the left edge, we get a worst case O(nx) = O(nl's) total. A below
search follows left and up pointers to scan along top left adjacencies. Since the tiles
with a given x-coordinate are added in a bottom to top order, each below search at worst
continues where the previous search finished. Thus all the searches for a column of
tiles will visit each previously added tile at most once. For a roughly square layout this
gives x = O(n's) passes through at most O(n) tiles for a worst case O(xn) = O(nl's) total.
Figure 2-25 shows the searches for three tile additions. The first two below searches
and the last two above searches find adjacencies. The size of the empty spaces searched
around should normally be relatively independent of # so the final searches should have
a basically linear expected time.

o

Figure 2-26 Visible Turnaround Range

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 35

We can reduce the number of final searches performed in the single-color case. A
turnaround tile is located in the gap between each pair of tiles in the right edge’s left
adjacency list. We keep track of the unshadowed part of each of these turnaround tiles
-- the still visible range. A final search is needed if and only if the top of a new tile is
above the visible range or the bottom is below it. In Figure 2-26, new tile N’s top is
below tile A’s bottom but above turnaround tile T’s visible range V. Thus a left search
is needed from tile A to find the adjacency with tile L. The overhead of storing these
ranges is probably not worth the normally slight gain from skipping a few searches. For
multiple colors it is definitely not worth the trouble of storing and constantly updating
the visible range of each turnaround for every possible tile color. However, if we were
only worried about theoretical worst case times, keeping track of the turnaround
visibilities would be worth-while. Every search would then find an adjacency and in
effect shadow an area proportional to the number of left pointers followed. Doubly
linking the adjacency lists would provide direct top left adjacency pointers and thus
eliminate the below search’s need to follow up pointers. Together this would give the
final searches an O(area) worst case time (even without any of our assumptions).

None of the model extensions affect the load time complexity. Adding a wire tile
is faster than adding a non-wire tile. Handling the semi-merge order problem
complicates the code and can produce O(m?) effects to merge a set of m tiles, but
because the m’s are small they do not affect the time complexity. The around-the-
corner searches are so restricted that their worst case time is no more than the final
search time. Thus the quick load has a basically linear expected time and an
O(n+n+n1'5) = O(nl's) worst case. Keeping track of turnaround visibilities and doubly

linking the lists would reduce the worst case to O(area) but give a slower expected time.

An incremental move has an expected time roughly proportional to the number of
changed adjacencies which is roughly proportional to the distance the tile is moved.
The worst case for growing a tile is the sum of two effects. For a tile reaching across a
layout, each of y = O(n'S) counter-clockwise scans to find new adjacencies may scan
through x = O(n>) tiles. And each of these y found adjacent tiles may have to be
removed from the end of an initially y = O(n-) length adjacency list. Thus the worst
case to grow a tile is O(y(x+y)) = O(n). In Figure 2-27, the growing loop scans through
the entire array of nine tiles and moves tiles 1, 2, and 3, in that order, from the end of
tile L’s right adjacency list to the beginning of the growing tile’s right list.

Shrinking a tile causes searches similar to the load’s final searches. The right-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 36

Figure 2-27 Grow and Shrink Worst Cases

down search after dropping each of the at most / = O(n) tiles on the left of a shrinking
up tile can visit the at most r = O(n) tiles on its right for an O(r) = O(nz) WOrst case.
Using the shrink shadow array (as in Figure 2-23) has little effect on the expected time
but reduces the number of tiles dropped to at most y = O(n's) for an O(yr) = O(nl's)
worst case. Doubly linking the adjacency lists requires a lot of space but would reduce
the number of right tiles searched after each drop to at most x = O(n's) for an O(yx) =
O(n) worst case. Since neither effect is very important in the expected case, we use a
shadow array but not double links. In Figure 2-27, the shrinking tile drops three left
adjacencies: 1, 2, and then 3. As each is dropped, most of the right tiles are searched
through for a possible new right adjacency for the dropped tile. Without the shadow
array, all nine left tiles would cause right searches. The doubly-linked lists’ bottom
right adjacency pointers would have allowed the searches to scan only the bottom-most

right tiles.

2.8. Summary

In this chapter we described how to use adjacency lists to generate and
incrementally update the set of spacing constraints needed for compaction. The
adjacencies correspond one-to-one with the at most 2n needed spacing constraints and
thus can be efficiently stored using clockwise threaded left and right lists. These lists
allow us to quickly grow and shrink tiles to move, delete, or insert them. Although the
grow and shrink routines have to handle several special cases, each test and action is
fairly simple. The other single-color routines are also relatively straight forward.

Simple modifications allow the algorithm to take advantage of the special
properties of wires: each wire only needs to be represented in one of the two
dimensions, wires stretch to grow and shrink as their endpoints are moved, and tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generating Constraints 37

cannot pass between a wire and its endpoints. More importantly, since vertical wires
are horizontally constrained by their endpoints, wires generate fewer spacing constraints
than non-wire tiles: a tile adjacent to a wire and its endpoint only needs the adjacency
with the endpoint.

Handling overlapping tiles is more difficult. The general case of allowing all tiles
on the same netlist to pass through each other causes many problems: it makes it hard
to read the spacing constraints from the adjacency lists and requires extra updates when
tiles do pass through each other. To ease these difficulties, we allow tiles to overlap but
not pass through each other. We also semi-merge tiles that overlap top-to-bottom to
keep from producing constraints that cannot be including in the planar adjacency lists.
To make it easier to merge/unmerge sets and to decide on the left-right and bottom-top
order of exactly overlapping tiles, we define two tiles to be electrically connected if and
only if there is a wire directly between them. This over-simplifying definition is not
very good since it can prevent many legal tile overlaps.

The final enhancement to the algorithm allows it to handle multiple colors.
Multiple planes handle independent layers and the five-color rule determines which
spacing rules can be handled in each plane. The effective bloat of a tile depends on the
color of the tile with which it is being compared. This causes several problems: the
worst being that crossed constraints may be generated that cannot be included in the
planar adjacency lists. Special around-the-comner searches have to be added after
growing and while shrinking tiles to find these constraints. Most of these searches are
short since the problem can only occur when tile tops and bottoms are very close. The
shrinking case is particularly bad since multiple colors can cause the shrink routine to
process many tiles that it would otherwise just skip. A constraint cache and a shadow
array help mitigate the shrink problems.

We showed that the adjacency lists can be quick loaded by first sorting the tiles on
(x,y). As the tiles are added in this order, each tile will have nothing on its right except
the right edge of the frame. Most of the left adjacencies are taken from that edge’s left
adjacency list. Searches are needed for possible final top and bottom adjacencies and
for around-the-comner constraints. The quick load has a basically linear expected time
and, because of the final searches, an O(nl's) worst case. This compares to growing or
shrinking one tile in an expected time roughly proportional to the distance moved and a
worst case O(n) grow or 0(n1'5) shrink. If we were only worried about worst case

1.5

times we could reduce the n**’s to n’s by preventing unnecessary searches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 38

Chapter 3

Solving Constraints

In the previous chapter we showed how to generate and incrementally update the
set of spacing constraints needed for compaction. In this chapter we examine how to
use these constraints to actually perform incremental compactions. First we give
efficient algorithms for simple, non-wire-length compaction. Then we describe a
weight analogy for wire-length minimization and use it to derive four wire-length
minimization algorithms. Each algorithm sets a different three of four necessary
solution conditions true and then corrects the final one. We look at the algorithm
complexities, their correspondence to min-cost max-flow network algorithms, and some
practical improvements. Two basic operations are required to perform incremental
changes: the first improves a layout by taking advantage of the empty space created
when tiles are moved or deleted and the second creates enough room to legally insert
new tiles. One of the wire-length minimization algorithms, the tree weight algorithm,
maintains enough information in a weighted spanning tree to efficiently perform these
operations.

3.1. Simple Compaction

Before we delve into the intricacies of wire-length minimization, we look at how to
make incremental changes under the simpler group and graph compaction models. To
introduce the models, we first describe suitable, efficient batch compaction algorithms.
Each compaction step in these one-dimensional compaction algorithms determines a
dimension’s minimum size by finding a critical, longest path across the circuit. The
examples in this section show compactions trying to move tiles down as far as possible.

The group compaction model forces wires to connect to fixed points on endpoints;
each group of wired-together tiles must be placed and moved as a unit. The spacing
constraints for this model form a directed acyclic graph. Batch compaction is done with
a linear-time scheduling algorithm: each group is placed as low as possible in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 39

topological-sort order. To ensure proper placement we need an order where each group
is placed after all the groups that could hold it up have been placed. One method is to
mark all the groups unplaced except for the bottom edge (at zero) and then use a depth-
first scan down from the top edge in which we recursively place each group after we
place all of the groups directly below it [Aho 83]. Another method is to calculate for
each group the number of unplaced groups directly below it [Knuth 73). Starting with
the bottom edge, when we place a group we decrement the count in all of the groups
directly above it and add those with zero counts to a queue of placeable groups. These
algorithms only work on acyclic graphs: a cycle causes the first to never stop and the

second to stop too soon.

The graph compaction model is more complex: it allows wires to slide on wide
endpoints to produce smaller layouts. The resulting negative wire constraints cause
cycles in the constraint graph. Since every tile in a cycle depends on every other tile in
the cycle, there is no topological order in which to place the tiles. Compaction is not
difficult, however, given an initial feasible solution to the constraints. Instead of
solving for tile positions we solve for how far down each tile can move. The constraints
for this movement problem are the slacks in the constraints for the position
problem [Edmonds 72]. Since a feasible solution has all nonnegative slacks we can use
a simple shortest path algorithm [Dijkstra 59]. Starting with the bottom edge, when a
tile is moved we add all the unmoved tiles directly above it to a priority queue sorted for
minimum downward-movable distance ignoring constraints to unmoved tiles. The
distance a queued tile can move will later decrease if some of these ignored constraints
are more restrictive. By always moving the least-movable tile, we know that none of
the unmoved tiles will be in the way since they will all later be moved at least as far.
This is physically equivalent to sweeping the bottom edge up and shoving tiles as they
are hit.

One way to generate the needed feasible solution is to place the objects far enough
apart to satisfy the spacing constraints and then make any small adjustments needed to
satisfy the wire constraints. If the problem has a solution with wires connected to fixed
points on endpoints, the group model’s topological sort can be used to create a feasible
solution. From this initial solution, the maximum distance a tile can be moved down by
the shortest path algorithm is relatively small. Instead of using a standard n-node,
O(nlgn) time priority queue (a heap [Williams 641, a balanced binary tree embedded in
an array, sorted so that each node has greater priority than its children), we use an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 40

O(n+b) time bin priority queue (a queue with an array of b bins [Dial 69], one linked-
list header for each possible priority). For a roughly square layout, a priority queue
with O(n's) bins gives an O(n+n'5) = O(n) compaction time.

Although it cannot happen with most stick editors, specifications with cyclic group
graphs require a depth-first search [Tarjan 72] to separate out the strongly connected
components and a worst case O(kzlgk) general shortest path algorithm on each k-tile
cyclic subgraph [Johnson 77]. The depth-first search numbers the tiles (in preorder) and
recursively finds the smallest numbered tile of each remaining component. The shortest
path algorithm alternates between a fixed-order topological sort to correct the positive
spacing constraints and a priority-queue sort to correct the negative wire constraints.
The maximum number of O(klgk) passes is bounded by the number of times the critical
path alternates from wire to spacing constraint -- O(k) in a k-tile subgraph. Starting
from the bottom edge of a solution with violated wire constraints, we could instead use
a breath-first simple queue of the tiles found to need moving. Then each step is faster,
but the maximum number of steps is bounded by the number of wire constraints in the

critical path.

3.1.1. Incremental Compaction

Incremental changes are relatively easy under the group and graph models since
there is never any question of which way to move tiles. When a tile is inserted and
there is not enough room for it in the layout, the tiles that it overlaps are moved up, out
of the way. An upward movement may create new overlaps and thus canse more tiles
to move up. When a tile is deleted, the remaining constraints of the tiles that it was
holding up are checked to see if any tiles are now free to move down (to create a
smaller layout). A downward movement may slacken active constraints and thus allow
more tiles to move down. An efficient incremental algorithm will move each tile at

most once per incremental change.

Under the group model, insertions and deletions can be done using a priority queue
sorted for lowest current group position. By always moving the lowest group that needs
moving, we know that all the groups below it are in their final position and thus never
move a group more than once. Moving the groups in the numbered order after deleting
the dark tile in Figure 3-1 moves tile 5 directly to its correct position. To move m
bounded-size tiles a maximum distance d we can use a priority queue with worst case
O(m) or O(m+d) bins for deletions or insertions, respectively, and a count of groups still

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 41

Figure 3-1 Group Deletion Movement Order

needing moving. Inserting or deleting wires can merge or split groups so we have to be
able to merge and split constraint-graph nodes.

If we knew before hand which m groups an incremental change would move, we
could perform incremental compactions with the group’s batch O(m) topological sort.
We do know that the groups that move after deleting a tile will always be a subset of the
graph of active constraints rooted at and above that tile -- the groups held up by the
deleted tile (E and the numbered groups in Figure 3-1). But the overhead of marking
this subgraph with its e extra groups makes the resulting O(m+e) topological sort

relatively slow: many nonmoving groups may be processed.

Figure 3-2 Tile Insertion Movement Order

Under the graph model, insertions, which force tiles to move up, can be done using
a priority queue of tiles sorted for maximum distance that we know each tile must be
moved. By always moving the tile that needs moving the farthest, we know that a
movement will not hit and force one of the just moved tiles to move again (since they
have already moved at least as far as the moving tile). Moving the tiles in the numbered
order in Figure 3-2 moves tile 9 directly to its correct position. As before, the distance a
tile must move can change while the tile is in the queue. When a tile moves up, it
forces all the tiles in the subgraph of active constraints above it to move with it (tiles 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 4?2

to 8 with tile 4 in the example). Therefore we can save time by moving whole
subgraphs without putting all of their tiles through the queue. Even better, since almost
all insertions cause short maximum movements d we can use a priority queue with d
bins to move m tiles in O(m+d) time.

Figure 3-3 Tile Deletion Movement Order

Deletions, which allow tiles to move down, are more difficult. While one violated
constraint forces a tile to be raised, all of the constraints holding up a tile must be slack
before it can lowered. The tiles in a cycle of active constraints will never move down
since each seems to be held up by another. Tiles 4 to 6 in Figure 3-3 will slowly ratchet
down because of their constraint cycle. We solve this problem as we did in the batch
algorithm -- by ignoring constraints between unmoved tiles. The tiles in the subgraph
of active constraints above a tile are the only ones that might move after the tile is
deleted. We mark those tiles unmoved (the numbered tiles in the example), leave the
others marked moved, and add all the unmoved tiles directly above a moved tile to a
priority queue. Then, as in the batch algorithm, we sort for minimum movable distance
and always move the least-movable tile (the numbered order in Figure 3-3). We can
again move whole subgraphs without putting all of their tiles through the queue. Even
though deletions are more likely to cause long movements than insertions, for
maximum movements d we can still use a priority queue with d bins to move m tiles

after checking ¢ nonmoving tiles (the first three in the example) in O(m+c+d) time.

3.1.2. Summary

In this section we have described a couple of simple compaction algorithms. A
linear-time topological sort creates an optimal solution for the groups created when
wires are connected to fixed points on endpoints. From a feasible solution, a linear-time
shortest path algorithm (using a bin priority queue sorted for minimum constraint slack)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 43

further compacts a layout by allowing wires to slide on wide endpoints. Incremental
group deleﬁoﬁs and insertions can be done in O(m) and O(m+d) time, respectively, to
move m tiles a maximum distance d by always moving the lowest-positioned group that
needs moving. Incremental graph insertions can also be done in O(m+d) time by
always moving the tile that needs moving up the farthest. Incremental graph deletions,
done by always moving down the least-movable tile, are slightly more difficult because

they require checking possibly many nonmoving tiles.

3.2. Wire-Length Minimization

Compacting a circuit to its smallest size only determines the placement of tiles in
critical paths; the rest of the tiles have a range of possible placements. Instead of just
minimizing the placement height of each tile as in the previous section, we use the
freedom to minimize the sum of the wire lengths, suitably weighted by type (layer) of
wire. Adding a heavy weight dummy wire between the top and bottom edges will
minimize the layout’s height. Wire-length minimization improves layouts and makes it
easier for designers to specify incremental changes. By bunching tiles together, it also
leaves larger holes and allows subsequent compaction steps to do a better job.

Figure 3-4 A. Flow and B. Weight Analogies

We can use variations of min-cost max-flow network algorithms to perform wire-
length minimizations. In the flow analogy, the constraints carry nonnegative flow from
their lower to upper nodes. The cost per unit flow traveling through a constraint arc is
the negative of the constraint value. Wires force flow from their lower to upper
endpoint nodes. To preserve the conservation of flow at each node, we add dummy arcs
from the source or drain to supply or consume the forced flows (the arcs from and to the
dark blocks in Figure 3-4A). A tile’s position is the price (the dual variable), the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 44

negative of the savings if one less unit of flow had to flow to its node. Optimal tile
positions correspond to a min-cost flow [Eichenberger 86].

We are going to use a more direct analogy. Each tile is given a weight equal to the
sum of the weights of the wires pulling it down minus the sum pulling it up (see Figure
3-4B); positive-weight tiles want to move down, negative up. A vertical wire is
represented by adding its weight to its top endpoint and subtracting an equal weight
from its bottom endpoint. Wires have the same effect as springs pulling their end;;oints
towards each other. Constraints correspond to fixed length struts between tile edges.
Each constraint has a stress, caused by holding positive weight up and an equal negative
weight down, that is equal to the flow through the constraint in the flow analogy.
Constraints can be slack, active (exactly satisfied), or violated. An optimal solution has
four necessary and sufficient conditions: each tile’s weight is balanced by the forces on
it, the slack constraints must have zero stress (since they are not holding any tiles apart),
there are no violated constraints, and each active constraint’s nonnegative stress pushes
with an equal force up on its upper tile and down on its lower tile.

/ B 7 o

0 Yo

Figure 3-5 Possible Wire Lengths and Stresses

In the previous chapter we decided not to allow tiles to pass through each other.
Thus there will always be constraints keeping the upper endpoint of a vertical wire at or
above the lower endpoint; we do not have to worry about wire-length minimization
preferring negative-length wires over zero-length wires. It would be fairly easy to
modify the weight analogy to handle pass-throughs. A relative force between -w and w
should not pull a weight w wire’s endpoints apart. Since a stress of w is initially put
between the two endpoints, this range corresponds to a stress between 0 and 2w. To
hold this stress for zero-length wires, we add a zero-value constraint directly between
each wire’s endpoints that can hold a maximum stress of 2w. It is legal for such a
constraint to be unstressed and slack, stressed and active, or fully stressed and violated.
Figure 3-5 shows the stress distribution for the three possible wire-length cases: the
zero constraint has 0, w, or 2w stress for wires with positive, zero, or negative lengths,

respectively. We get the same effect more simply by just swapping a wire’s upper and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 45

lower endpoint pointers when its zero constraint is overstressed. In our physical model,
this corresponds to a strut failing and being replaced by one with switched top and

bottom connections.

Balance Slack Violation Stress
Figure 3-6 Four Minimization Algorithm Types

Wire-length minimization is more difficult to solve than simple graph corapaction
because now a tile’s placement depends on the total weight of the set of tiles pressing
against it, which changes as the tiles are moved. We will describe four batch
compaction algorithms to solve this problem. Each is based on setting three of the four
solution conditions true and then correcting the final one. Figure 3-6 shows the four
cases: the first algorithm has to fix the tile weight-force balances, the second any
stressed slack constraints, the third any violated constraints, and the fourth any negative
stresses. All but the third start with a graph compaction to generate an initial solution.
Placing all the tiles as low as possible reduces batch wire-length minimization to
determining how far up to move each tile. We describe the algorithms in a more-
intuitive to less-intuitive order. The first two are based on common network algorithms
to which we have added several enhancements to take advantage of compaction’s
special properties. The third is the standard simplex network algorithm and the fourth,
the tree weight algorithm, is a new, efficient algorithm that is easily modified to
perform incremental changes.

3.2.1. Balance Algorithm

The balance algorithm starts with all the stresses set to zero. Thus only zero-
weight tiles are balanced by the forces on them. We calculate and store with each tile
its current imbalance, its weight. We could fix the imbalances one at a time, but it is
better to simultaneously fix them. We repeatedly move the remaining negative-weight
tiles upwards as a group the smallest distance needed to hit a zero or positive tile. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 46

Figure 3-7 Two Balance Algorithm Tile Movements

tiles’ imbalances and thus their desire to move are reduced as positive weight cancels
negative weight. In Figure 3-7, the first movement satisfies the left negative tile and the
second movement the right. In each step, we mark all the negative tiles and then breath-
first recursively mark all the tiles reachable by traversing up active constraints. A back
pointer from each marked tile is used to store the reverse of the path traversed to reach
it so that when a positive tile is found, the stress caused by its weight can be added to all
the constraints in the path back to a negative tile. If the positive weight is greater than
the absolute value of the negative weight, only enough stress to satisfy the negative
weight is added to the path.

— Old Stress -~ New Stress

Figure 3-8 Stress Reduction: Three Added Stress Paths

After we traverse up all the active constraints, we move all the marked tiles
upwards enough to hit something. This produces new active constraints which are
traversed to mark more tiles. We continue moving and marking to find positive tiles.
Once a constraint is stressed, it is possible that because of other wires we will later want

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 47

to reduce that stress. Therefore, instead of only traversing up active constraints we also
have to traverse down constraints with positive stress. In Figure 3-8, the light arrows
show newly added stress paths and the dark arrows show old stress. In the example’s
second step, the added stress reduces the stress in the two stressed constraints that are
traversed down. Since stress cannot be reduced below zero, a path’s least stressed such
constraint can restrict the amount of added stress to less than would otherwise be added.
Thus in Figure 3-8 a third step, a third path, is needed to distribute the final unit of
stress. Movements will never violate constraints or slacken stressed constraints since
we traverse up all reachable active constraints and down all reachable stressed

constraints before moving any tiles.

When a negative tile’s weight is reduced to zero it no longer wants to move and is
no longer a valid end for back-paths. When a constraint’s stress is reduced to zero it is
no longer a valid step in the path that traversed down it. We have to unmark all the tiles
that were marked traversing paths from that tile or constraint and are not reachable by
other paths. A simple solution is to unmark all the tiles and begin a fresh marking.
Each such pass in a general graph reduces the total negative weight w by at least one
and consists of alternatingly marking at least one more of the at most # unmarked tiles
and moving the at most » marked tiles. This gives an O(wnn) = O(n3) total worst case
since w is O(n) for bounded-weight wires. This corresponds to the out-of-kilter
algorithm with the entire flow initially in an added artificial arc and kiltered by
redistribution into flows each through two dummy arcs and some intervening constraint
arcs [Fulkerson 61].

4 I 4

Figure 3-9 O(m?) Repeated Verses 2m Total Tile Movements

We can make two modifications to the balance algorithm to improve its expected
running time. First, instead of making more constraints active by repeatedly moving all
the marked tiles upwards we just move each tile down once as it is marked and up once
as it is unmarked. In the left half of Figure 3-9 we move one, then two, then three tiles,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 48

while in the right half we move one tile at a time except in the final step. We keep all
the unmarked tiles directly above marked tiles in a priority queue sorted for minimum
slack in constraints to marked tiles. By always marking and moving down the tile with
the minimum slack, we mark tiles and make constraints active in the same order as
before. When tiles are unmarked, they are moved up the same distance the last tile was
moved down,; each tile is moved up at least as far as it was moved down and at least the
just found positive tile ends up unmoved. The tiles arrive at the same positions as if
they had been repeatedly moved upwards. Each of at most w passes in a general graph
now consists of marking at most » tiles while making at most 2n tile movements. Using
a priority queue with s bins gives an O(w(n+2n)+s) = O(nz) total worst case since in a
roughly square layout the maximum constraint slack s is O(n>). This corresponds to
the algorithm that starts with zero flow and repeatedly adds flow along the min-delta-
cost remaining path [Edmonds 72].

The second modification is to just unmark the tiles that need unmarking instead of
repeatedly unmarking all the tiles. We could reconstruct the paths traversed from a
newly zeroed-weight tile or unstressed constraint using the back-path pointers, but it is
easier to remember the paths by keeping the marked tiles in a forest of trees with one
tree per negative-weight tile. Each tree contains the tiles that were marked by
traversing from its root, its negative tile (see Figure 3-7). Thus, when a tile’s negative
weight is satisfied or a constraint is unstressed we can just unmark the tile’s tree or the
constraint’s disconnected subtree. This saves us from continually remarking all the
remaining negative-weight tiles and their trees. To use both a queue and the trees, we
have to update the queue when we unmark a tree or subtree. Simply, we can remove
from the queue any tiles directly above the tree or subtree and then add to the queue any
just dequeued or just unmarked tiles directly above a still marked tile. The worst case
remains O(nz) since it is possible to mark many tiles during each pass even when being

clever about remarkings.

3.2.2. Slack Algorithm

Instead of starting with no stress as in the balance algorithm, the slack algorithm
starts by putting the stress caused by each wire into the constraint directly from the
wire’s lower to upper tile (zero-value artificial constraints are added where needed).
Thus all the tile weights are balanced, but some of the stress may be in slack constraints.
We use a (possibly sorted) list of stressed slack constraints to remove the stress from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 49

one slack constraint at a time. Each stress removal creates a pair of unbalanced
positive-weight and negative-weight tiles. As before, we mark and move the negative
tile up until it cancels with the positive tile. This algorithm has basically the same worst
case times as the balance algorithm: O(wnn) or O(wn+wd) depending on whether or
not a queue is used. Fewer tiles will be moved at once since there is only one negative
tile at a time. A queue to prevent repeated movements is not as necessary and the one
tree to help unmarking is not very useful. This corresponds to the out-of-kilter
algorithm starting with a distributed flow -- the stressed slack constraints are the out-of-
kilter arcs [Fulkerson 61].

Figure 3-10 Two Slack Algorithm Tile Movements

We can improve the slack algorithm by fixing all the stressed slack constraints
simultaneously, much as we moved all the negative weights together in the balance
algorithm. Instead of putting a wire’s stress in a slack constraint, we give a negative
weight to the wire’s lower endpoint and an equal positive weight to its upper endpoint.
The interior endpoints in a series of wires can have both a positive and a negative
weight: wire pulls do not directly cancel as they did in the balance algorithm (see the
right 0 tile in Figure 3-4). Tiles with any negative weight are marked to be moved up.
Thus once tiles start moving, a mixed tile’s positive weight will not be distributed until
after its negative weight is satisfied and it stops moving. The first movement in Figure
3-10 satisfies the middle tile’s negative weight. Then, in the second step, the bottom
tile can move up, hit the middle tile, and satisfy the remaining weight. Again, we use a
queue to prevent repeated movements and trees to help unmarking.

When a tile-marking traversal runs across an old, unmarked tree, instead of
traversing and marking the tree’s tiles one at a time, we can save time by marking large
sections of the tree in a single step -- being careful not to traverse down any of the tree’s
unstressed constraints. This helps, for example, when one of the early traversals finds a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 50

mixed-weight tile. Instead of unmarking the thus satisfied traversal tree and later
remarking it (in a traversal from the mixed-weight tile), we can just immediately merge
the tree with the mixed-weight tile’s tree. Another optimization is to allow the first
traversals (before any tiles are moved) to only go up active constraints, not down
stressed constraints. This will quickly perform the easy stress distributions, the
distributions through the original non-slack constraints. Then the rest of the
distributions are done using the normal tile traversals and movements. Layouts often
have many long series of short wires, such as power busses and clock lines. The slack
algorithm sees separate short wires where the balance algorithm sees long wires with
intervening zero-weight tiles. We will show that this gives the modified slack algorithm
a speed advantage.

3.2.3. Balance and Slack Timings

In this section we take a closer look at the timings for the balance and slack
algorithms. The greatest distance d that a tile can move without increasing the size of a
layout is bounded by the height of the layout. Thus in a roughly square layout, the
maximum effort expended moving tiles is O(nd) = O(n!->) when every tile moves up as
far possible one lambda at a time. In these algorithms, unfortunately, the movements
are not the limiting factor: a weight distribution might not move any tiles. The
maximum effort expended not moving tiles is w passes each fixing one unit of negative
weight after marking at most » tiles for an O(wn) = O(nz) time. This gives an actual
O(nd+wn) = O(n2) total worst case for all these algorithms.

More interesting than the worst case times are the expected times. Let us assume
that to find a path of length p from a iile, we mark about O(p2) tiles: in a two-
dimensional layout there are, in some sense, that many tiles within range. Moving the
marked tiles without using a priority queue might cause O(p) repeated movements for a
total O(p3) movement, while with a queue gives an all at once O(pz) movement (as in
Figure 3-9). Let us also assume that the length of the path for a wire’s stress is
proportional to the final length of the wire. The expected time using a queue and trees
is thus O(sum of the square of the wire lengths). Designers try to minimize the number
of long wire runs in a layout. Let us estimate that the balance algorithm sees about
O(n0'3) wires that reach across most of the layout, length O(no's), with the rest length
O(1). The long wires each take O((n%%)%) = O(n) and the short O(12) for a total
0(n°'3n+(n-n°'3)1) = O(n1'3) expected time -- n times the number of very long wires.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 51

Since the slack algorithm sees a series of wires as separate short wires, we can estimate
that it sees only O(no'z) long wires for an O(nl‘z) expected time.

3.3. Tree Compaction

In the next two algorithms we restrict the graph stress to a directed spanning tree of
active constraints. This corresponds to only looking at the corners of the linear problem
space. Instead of associating stress with constraints, we associate subtree weights with
tiles. This weight is the sum of the wire pulls on all the tiles in the subtree rooted above
cach tile. The only tree path into a subtree goes through its root so our new tree weight
is equal to the old stress in the connecting constraint -- positive if the constraint is
holding the subtree up, negative if holding it down. If we knew the correct spanning
tree we could calculate all the stresses and tile positions with a simple tree traversal and
thus save the effort of finding an initial feasible solution and distributing the individual
stresses. Unfortunately, fixing one part of an estimated tree often breaks other parts of
the tree.

3.3.1. Simplex Algorithm

The simplex [Dantzig 65] algorithm, unlike the others in this chapter, does not start
with an initial graph compaction. It uses the spanning tree to avoid finding an initial
feasible solution. At each step it only ensures that the constraints in the spanning tree
are not violated. The algorithm is run twice: first to create a properly stressed spanning
tree and then to fix any violated constraints. The first run starts with all the constraint
values set to zero, all the negative individual-weight tiles placed at plus one, and all the
other tiles at minus one. Artificial constraints are added to hold the stresses needed to
balance the tile weights. The first run moves all the tiles to the origin to fix the violated
zero constraints and thereby converts the height one tree of artificial constraints to a
legally stressed spanning tree. Then a simple tree traversal calculates, using the correct
constraint values, the correct tile positions ignoring constraints not in the tree. The
second run fixes any of these ignored constraints that are violated.

Each run makes many passes through the list of constraints. When a violated
constraint is found, say the worst violation, it is added to the spanning tree. This creates
a cycle that is broken by circulating enough stress to unstress a constraint so that it can
be removed from the tree. This is actually done by adding weight to the violated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 52

Figure 3-11 Two Simplex Constraint Violation Fixes

constraint’s lower tile and subtracting an equal weight from its upper tile to try to pull
them apart. This weight change is propagated back through the tiles’ ancestors until it
cancels at their highest common one (easily found by storing with each tile its tree
height). The nearest zero-weight subtree is disconnected to form a tree fragment. This
fragment is moved to exactly satisfy the violated constraint, reconnect the fragment, and
rebalance the weights. This fix may create new constraint violations, which may cause
some of the tiles to later be moved back. In Figure 3-11, two tiles are moved up to fix
the top right overlap. This causes a new overlap, on the left, that is fixed by moving
one of the tiles back down. These possible oscillations create an exponential worst

case.

This algorithm corresponds to the simplex algorithm for min-cost max-flow in a
network [Kennington 80]. The first run creates a max-flow spanning tree and the
second run does lots of movements to reduce it to min-cost. Other methods such as
exponentially increasing the weights or constraint values will not help since our weights
and constraint values are small. The expected time, though still not a lot worse than
linear, is not very good. The main problem with the simplex algorithm is that, unlike
the others, it does not make use of the shortest path algorithm to find a good starting
point. Instead, it starts off solving the hard part of the problem, namely, finding a max-
flow, a legal distribution of the stress. Then it has to maintain the distribution while it
moves tiles up and down to find a feasible solution. Even if we were more clever about
creating the max-flow or not over moving tiles, the other algorithms still have the
advantage of getting the final tile positions almost for free while distributing the stress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 53

3.3.2. Tree Weight Algorithm

Instead of using the spanning tree to avoid finding an initial feasible solution, we
could use it to initially distribute the stress. One idea would be to use the dual simplex
algorithm. Starting with a feasible solution, each step only insures that the stress in the
spanning tree is consistent (forces balance weights). Repeated passes are made to find
and fix improper (negative) stresses. This is an improvement over the simplex
algorithm since it starts with a better initial solution, but it still has the drawback of
requiring multiple passes that may over move tiles and then have to move them back.
The tree weight algorithm is far more efficient: it fixes the spanning tree in a single
pass by being careful to never create new improper stresses and never over moving

tiles.

Figure 3-12 Two Tree Weight Negative Subtree Movements

We modify the initial graph compaction so that each tile remembers which tile
stopped its downward movement. We use the thus produced spanning tree as an
estimate of the final tree and calculate the stresses, the tree weights, using a depth-first
tree scan that recursively adds to each tile its children’s weights as they are determined.
Some of these weights may be negative, but by construction all the constraints in the
initial spanning tree hold subtrees up. Since a negative-weight subtree needs to be held
down, not up, we take its erroneous connecting constraint out of the spanning tree. The
subtree, now a tree fragment, is moved up enough to make a constraint active. This
constraint is used to reconnect and hold down the fragment. We have to add the
subtree’s negative weight to any of its new ancestors whose weights have already been
calculated. In Figure 3-12, the first calculated weight (bottom left) is negative so that
tile is moved up and reattached. After calculating +, ++, and 0 subtree weights, another
negative weight is found. The two-tile subtree is moved and the 0, +, and ++ weights

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Seolving Constraints 54

are reduced to -, 0, and +. Note that the directions of some of the parent pointers in a
moved fragment may be reversed. Calculating two more zero weights finishes the

compaction.

If a weight redistribution would drive some of the weights past zero, only enough
weight to zero some subtree is propagated. We disconnect the nearest such subtree and
repeat (moving the newly created fragment) until enough positive weight is found to
stop the upward movement (as in Figure 3-8). Since negative-weight subtrees are fixed
as they are found, it is likely that movements will hit tiles whose weights have not yet
been calculated. We assume that an uncalculated weight will be enough to stop a
movement. When it is, we have fixed the tree without changing any ancestors’ weights.
Otherwise, the stopped tiles will later move again. An alternative would be to first
calculate and cut off all the negative-weight subtrees. Moving all the fragments
upwards as a group would stop these repeated movements but would also force us to
update the weights of all the new ancestors of each moved fragment.

The tree weight algorithm has the same worst case time as the balance and slack
algorithms. We use, as before, a priority queue to stop repeated movements. A tree
fragment is broken off when a negative weight is calculated. As it moves up, it will
accumulate at most » tiles before it either hits a tile with an uncalculated weight and
stops or it hits a tile to which it can redistribute some of its weight (which changes at
most n weights). The first case happens at most n times since there are at most that
many calculated negative weights to stop and the second case at most w times since
there is at most that much stress to redistribute for an O(nn+w(n+n)) = O(nz) total worst

case.

We can get the same order worst case using a one-bin queue. When this bin,
representing the current minimum slack between marked and unmarked tiles, is empty
we make another pass through the marked tiles to find the remaining minimum slack
and fill the bin. Since each extra pass occurs after the marked tiles in effect move to
take up the old minimum slack, the maximum overhead is limited by the maximum
number of tile movements, O(nl's) as before. Instead of filling a bin, entries can be
found on demand; instead of using a bin, a pointer to the last found entry can remember
where to start the search for the next entry. Besides being much simpler, a pointer is

fast since we usually use very few queue entries.

The expected time is again much better than the worst case. The tree weight

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 55

algorithm depends on starting with a good estimate of the final spanning tree. Our
estimate should be good: all the tiles in the critical paths or with positive weights are
correct and many of the rest are close. The tree height should be near the layout height,
O(n'5). Many of the fragment movements will hit tiles with as yet uncalculated weight
and thus spend no time redistributing weight. The tree weight algorithm should perform
as well as, or slightly better than, the balance and slack algorithms. They all perform
approximately the same number of tile movements, but the balance and slack
algorithms have to distribute each individual wire stress -- even for wires that cause
little or no tile movement. The tree weight algorithm only worries about stress caused
by negative-weight subtrees. This savings is partially balanced by the extra overhead of
fixing the estimated spanning tree.

3.3.3. Incremental Compaction

Figure 3-13 Two Subtrees Orphaned by a Tile Deletion

The tree algorithms can be adapted for incremental compactions. The spanning
tree tells us which tiles should be moved and in which direction. To delete a tile we
remove it from the tree. Removing a tile’s constraints will cause its children, if any, to
be broken off into tree fragments. We remove the constraints one at a time and move
and reattach each fragment as in the tree weight algorithm except now fragments have
negative or positive weights and thus move up or down. The tile deletion in Figure
3-13 causes two fragments to move down: first a one tile fragment and then a two tile
fragment that breaks apart. By carefully breaking ties when creating tree fragments, the
incremental compaction can be biased downward so that a subtree will never be left
with a negative-zero weight (say after a wire holding it up is deleted). Negative zeroes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Constraints 56

would slow the worst case time and force us to distinguish between positive and
negative zero. Alternatively, we could remove all the zero-weight arcs from the tree.
This would require maintaining the resulting forest of zero-weight trees but would allow
each tree to float without pressing against other trees.

Figure 3-14 Two Movements Caused by a Tile Insertion

To insert a tile we first find a place to attach it to the spanning tree. Some of the
constraints with the new tile will be violated if there is not enough room for it in the
layout. Violated constraints are fixed as in the simplex algorithm -- by propagating
enough weight back through ancestors to break off tree fragments except now we make
sure that movements do not violate other constraints; when we move a fragment we find
its least-slack constraint and reattach it there. We repeat until enough movement occurs
to exactly satisfy the violated constraint, reattach the fragment, and rebalance the
weights. This insures that tiles are never moved further than necessary and keeps us
from having to search for violated constraints. Some time can be saved by not
reorienting parent pointers in a fragment until its final position is found. The tile
insertion in Figure 3-14 causes one tile to move up; this tile hits and causes another tile

to move.

Incremental changes have an O(m+c+p+d) expected time to move m tiles a
maximum distance 4 while checking ¢ nonmoving tiles and propagating weight changes
through p tiles on paths back to highest common ancestors (to redistribute the weights
of moved subtrees). Even when two tiles are physically close, their highest common
ancestor in the tree could be far away. Because we have to find a possibly O(n) distant
ancestor every time a tree fragment is reattached, we get an O(n%) worst case to
redistribute a unit of weight even when no tiles actually move. There can be at most n
in a row movements that distribute no weight since each such upward or downward

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solving Censtraints 57

movement gains or loses, respectively, at least one tile. If we merged long branches
into balanced binary trees (dynamic trees [Sleator 85]) we could reduce the maximum
amortized height of our tree to O(lgn). While this would reduce the worst case for
multiple changes, individual changes would have the additional overhead of
maintaining the balance. Since the weight redistribution is normally a small part of an
incremental change, the dynamic tree complexity is probably not worth the effort.

Figure 3-15 Three X-Y Steps from One Change

There is an important interaction between the two dimensions. Say that we have a
list of tiles that were moved left-right. We update the adjacency lists for this motion.
This can cause some of the arcs in the up-down spanning tree to no longer correspond to
actual constraints. The invalid parent pointers belong entirely to the moved tiles or their
children (as in tile deletion). We go through a list of these tiles to remove any invalid
parent constraints from the tree and fix each resulting fragment as before. This might
move some tiles up-down. We use a list of these moved tiles to update the adjacency
lists; this time possibly corrupting the left-right spanning tree. We continue
alternatingly updating the adjacency lists and spanning tree for each dimension until we
reach a fixed point. Deleting the dark tile in Figure 3-15 causes a left, a down, and
another left movement. This corresponds to an infinite number of x-y compaction steps
almost for free. The movements will usually quickly stop since each step decreases the
tile heights, the total weighted wire length, or even the size of the layout.

3.4. Summary

Wire-length minimization improves a layout by taking advantage of the range of
possible placements of tiles not on critical paths. Using an initial graph compaction to
place each tile as low as possible reduces wire-length minimization to determining how
far up to move each tile. The balance algorithm moves as a group all the tiles with
more upward than downward wire pull. The slack algorithm moves as a group all the
tiles with any upward wire pull. Starting with the tiles we want to move, we traverse up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selving Constraints 58

active constraints and down stressed constraints to find the tiles that must move with
them and to find tiles to stop the movements. Both algorithms have an O(nz) worst
case: they distribute individual stresses through active constraints to fix tile weight-
force balances or take stress out of slack constraints. We estimate that these algorithms,
when using a priority queue to prevent repeated movements and a forest of trees to help
unmark tiles, have an O(n times the number of very long wires) expected time. This
gives the slack algorithm a speed advantage since the balance algorithm often treats a

series of short wires as one long wire.

The simplex algorithm restricts the wire stress to a directed spanning tree of
constraints and uses the tree to avoid calculating an initial feasible solution. This,
unfortunately, trades a linear-time graph compaction for a possibly exponential number
of movements to fix violated constraints. The tree weight algorithm, on the other hand,
uses the spanning tree to initially distribute the stress. An initial graph compaction
creates a spanning tree. Subtrees with more upward than downward total wire pull are
disconnected from the tree, moved up to find something to hold them down, and
reattached. Since negative-weight subtrees ars moved as the weights are calculated,
relatively few ancestor tree weights have to be updated. Instead of a priority queue, we
use a previous-entry pointer to reduce repeated movements. The tree weight algorithm
should be faster than the other algorithms since it does not have to distribute each

individual stress and it never over moves tiles.

The spanning tree allows us to make incremental changes by telling us which way
to move which tiles. Deleting a tile can disconnect subtrees from the tree; the
fragments, one at a time, are moved up or down depending on their total wire-pull
weight. Inserting a tile may force some subtrees to move to create enough room for the
new tile. Moving tiles in one dimension may cause some of the arcs in the other
dimension’s spanning tree to no longer correspond to actual constraints. Removing
these arcs creates tree fragments whose movements may disturb the first dimension’s
spanning tree. Alternating dimensions to reach a fixed point allows us to incrementally
perform the equivalent of an infinite number of x-y compaction steps almost for free. In
addition to checking possibly many nonmoving tiles, incremental changes with wire-
length minimization also require changing possibly many ancestor tree weights to
redistribute the weights of moved subtrees. The expected case gives fast, efficient
incremental changes -- proportional to the size of the change instead of the size of the

circuit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 59

Chapter 4

Implementation

In the previous chapters we described efficient algorithms to generate and solve the
constraints needed in an incremental compactor. In this chapter we look at how these
algorithms were integrated into a working compaction system. We start with an
overview of the tree compaction system. Then we describe the technology file and the
operations used to convert a stick diagram into a set of tiles and then into mask data.
After we describe the tile data structure, which contains all the fields needed by the
adjacency lists and tree weight algorithms, we give more details on the actual
implementation of the batch and incremental compaction algorithms. The compaction
system was instrumented to record the amount of time spent in the main compaction
steps and the number of times various smaller operations were executed. We finish
with an examination of these results.

4.1. Tcmp

The tree compaction system, Tcmp, starts by reading in a technology data fite.
This file contains the information necessary to translate stick objects into tiles and tiles
into CIF rectangles. It also provides the spacing rules and wire weights needed for
compaction. The spacing distances are used to fill the various arrays of minimum and
maximum spacings and spacing differences needed by the adjacency lists algorithm.
Then we are ready to read in a circuit’s stick file. The stick files are created by Edc, a
stick editor. Temp and Edc are separate systems but they should be merged together.
In Edc, wires and transistors are first-class objects, which can be placed and moved, but
wire endpoints are not: their positions, sizes, and types (single color, contact, or via)
are determined by the wires connected to them. Tcmp, therefore, not only has to
convert wires and transistors into tiles, it also has to create the proper endpoint tiles and
link them with the wires. Edc prevents illegal wire crossings and connections; thus
Temp can assume that a stick file corresponds to a valid stick diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 60

Once the tile data structure is loaded with a circuit, we can start compacting. The
compaction steps are done in a twisted order to minimize the number of constraint
generations required to compare the timings and results of group, graph, tree, and
incremental compactions. We alternately generate and solve constraints: y-constraint,
y-group, x-constraint, x-group, x-graph, y-constraint, y-graph, y-tree, x-constraint, x-tree.
Then we use the incremental routines to alternately fix trees and update adjacencies; we
start with x-fix and continue until a tree fix causes no tile movements. This is a good
test of the incremental routines but, unfortunately, a bad way to batch compact: the
y-graph and y-tree steps between x-graph’s creation of the x spanning tree and x-tree’s
use of the tree so thoroughly damage the tree that the incremental fix takes much longer
than just doing a third batch compaction step.

To test the interactive features of incremental compaction, Tcmp will, optionally,
display the compacted layout and allow the designer to move tiles around. A straight-
forward user interface allows designers to pick a tile and specify which direction (left,
right, up, or down) they want it to move. The compactor adds or subtracts enough
weight, in the proper dimension, to break off a tree fragment containing the tile. The
fragment is moved (possibly zero distance) until a weight is found to stop the
movement. Just modifying tree weights, however, will not move tiles on critical paths.
A more powerful set of commands is needed to create a complete system. Various
layout overlays can be displayed to help the designer: lambda grid, x or y spanning tree,
x and y current critical paths, or a highlight of all tiles on any x or y critical path. When
the designer is finished, Tcmp saves the layout in CIF format.

4.2. Technology File

The technology file describes how to translate between stick, tile, and CIF formats
and it provides the spacing rules and wire weights needed for compaction. It is divided
into two parts: the first describes the colors (pseudo-layers) used in the design and the
second describes the stick objects. The first part uses a triangular array to specify the
minimum spacing rule between each color that belongs in the same plane. Each color
has a list of the CIF rectangles that a tile of that color should generate and the minimum
legal size of these rectangles. There are three types of CIF layers: normal filled
rectangle, arrays of small spaced rectangles for contact cuts, and a filled closed wire
polygon for wells. The second part of the technology file describes the possible objects
and the legal contacts. There is a list of tile descriptors for each object. Simple-object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 61

tiles have just a color and the possible connection directions. Tiles for objects such as
transistors also have size and relative placement (within the object) fields. Sizes have
an absolute component and a component relative to the object’s size attribute. For
example, a transistor with size Width:Height has touching source, gate, and drain tiles
with Wx2, W+4xH, and Wx2 sizes, respectively, and a well tile, size WxH+4. The gate
tile maps to a poly rectangle and the well tile to a diffusion rectangle.

The technology data is processed for use by the compactor. The wire weights and
minimum spacings are stored in arrays. The wire-weight array also stores which color
wire can connect to each non-wire color. For each CIF layer we store its name, type,
minimum size, and a list of the colors that map to it. For each object we store its name,
type, minimum width and height attributes (where appropriate), and a list of its tiles.
For each tile we store its color, possible connection directions, and the absolute and
relative components of its width and height and its horizontal and vertical offsets. An
object’s minimum width and height attributes are derived from the minimum legal sizes
of its tiles. A tile’s offset from the center of its object is derived from the tile size and

stacking information.

The ctop array is set to map from color to plane and is used to load each tile into
the proper adjacency lists plane. The plane divisions are easily derived from the
spacing rules since every pair of colors in the same plane must have a spacing rule but
there cannot be any rules between colors in independent planes. The spacing rules are
also used to calculate the arrays of distances needed by the adjacency lists algorithm.
The maximum spacing rule for each color, used by the load locates, is put in the mspace
array. For every pair of colors, the over array is given the maximum difference of their
spacings to any third color. This gives the minimum overlapping edge to edge spacing
rule. For every color, the fudge array is given the maximum difference of the color’s
and any second color’s spacings to any third color. This is used to decide when tiles are
shadowed and when around-the-corner searches can be cut short. The nudge array is
given the absolute value of the minimum of these spacing differences and is used to
decide which tiles a shrink can safely skip.

So that wires can be distinguished from single color vias, used for right angle
kinks, we split each wire color into two colors: a wire color and a via color. A special
pair of colors that always bloat by zero is created for use in each plane’s surrounding
frame. A frame consists of four unit-size corner tiles connected by four wires. Thus, in
each dimension and plane, the normal tiles are surrounded by horizontal wires to the left

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 62

and right and comer tiles above and below. Finally, the contact definitions are used to
set the via array to map from old object and touching object to new object. For
example, a poly wire object connected to a metal object creates a poly-metal contact
object. This array is needed to determine an endpoint’s proper type from just the

connecting wire information.

After we load the technology data we are ready to load a circuit. We use the
technology data to map each stick object into a set of tiles. Each set’s tiles are linked
together by their alignment pointers and placed at a multiple of their object’s coarse grid
position (to give an initial placement for use by the constraint generation and the group
compaction). Wire endpoint objects are not explicitly given in the stick files -- they are
Jjust numbered. Thus we have to create the proper objects and link them with the wires.
As we create the wires, we summarize the connections to each endpoint by using the via
array and storing the accumulation for the ith endpoint in the ith even tile record’s
height field. After the stick file is completely loaded, a pass is made through the wires
to create the proper endpoint objects and link them with the wires. For multiple-tile
endpoints, each wire must be connected to the proper side of the proper tile (in the
proper plane). To make this possible, each object’s tile(s) are temporarily arranged in
lists corresponding to the four possible wire connection directions (using the as yet

unused adjacency pointers).

Finally, the endpoint tiles are sized to be at least as wide as their widest connected
wire and the wire lengths are adjusted so that wires just touch their endpoints. The
frame is sized to just bound the circuit’s tiles. The circuit’s terminals are located at the
top and bottom of each dimension. To keep all the planes and terminals aligned, the
alignment pointers are used to link together all the lower left frame corners and bottom
terminals and likewise for all the upper right frame corners and top terminals.

After a circuit is compacted, a CIF file is written. The tiles are first sorted by color
into lists. Each CIF layer’s name is written followed by a list of the rectangles needed
in that layer. This is easily done using the list of colors that map to each layer and the
lists of colored tiles. Ordering the rectangles by tile instead of by layer would require a
lot more file space because of the constantly changing current layer attribute.
Rectangles are not generated for nonpositive length wires but we make no effort to
merge the rectangles of overlapped tiles or of any other touching tiles. To create all the
required rectangles, we have to process all the tiles (wire and non-wire) in one

dimension and all the wires in the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 63

4.3. Tile Data Structure

The data fields needed by the adjacency lists and tree weight algorithms are
combined into a single structure. The records in this structure describe the state of each
tile: its position, adjacencies, weight, and location in the spanning tree. For a non-wire
tile, there is an even-numbered tile record for up-down compaction steps and an odd
record for left-right steps. A horizontal or vertical wire has only an even or odd record,
respectively. Each record contains a tile’s color and the current lambda coordinates of
its top, bottom, left, and right edges. Top and bottom edges in one dimension are
equivalent to right and left edges in the other. This allows the same routines to operate
on the tile records in both dimensions. It also allows us to store tiles’ old positions in
one dimension and new positions in the other while we move batches of tiles. A global
variable stores the current compaction direction so that the routines will know whether
to look before or after a non-wire tile record for its companion record.

The adjacency lists algorithm uses seven pointers per tile record. Four pointers
store the clockwise threaded adjacency lists. The left and right pointers point to a tile’s
bottom left and top right adjacent tiles and the down and up pointers continue these
tiles’ right and left adjacency lists, respectively. Two pointers are used to doubly link
wires with endpoints. A wire’s wire-up and wire-down pointers point to its two
endpoints and their wire-down and wire-up pointers, respectively, point back to the
wire. The final pointer, the alignment pointer, is used to circularly link the tiles in each
object’s set of tiles. In a one-tile object, the tile’s alignment pointer just points back to
the tile. The left, right, up, and down pointers give the spacing constraints needed to
space adjacent tiles. The wire-up and wire-down pointers give the wire constraints
needed to keep wires and endpoints fully connected. And the alignment pointers give
the alignment constraints needed to force the tiles in each object to move as a unit.

The tree weight algorithm stores its directed spanning tree in a doubly-linked
depth-first order list of tiles with the aid of a tree height field. The root of each
dimension’s tree, at the frame’s lower left corner, has a height of zero. Starting at a
height i current tile, if the next pointer points to a height i+/ tile then that tile is the
current tile’s first child. Otherwise, the tile is the next child of one of the current leaf
tile’s ancestors. The last leaf tile is linked with the root to make a circular list. This
method of storing a tree makes it easy to scan all of the tiles in a subtree. Starting at a
height i subtree’s root, we just follow next pointers until we find a tile with height i or
less. This will be the first tile that is not a descendant of the subtree’s root. The list is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 64

doubly linked so that we can remove a tile or subtree from the spanning tree without
having to search for the tile whose next pointer needs adjusting. Such searching would
ruin our O(n?) worst case compaction time.

There is also a parent pointer that, combined with the tree height field, makes it
easy to find a pair of tiles’ highest common ancestor. We follow parent pointers from
the higher of the tiles until we have two tiles with the same height. Then we follow
their parent pointers until they meet at the desired ancestor. A tile’s set of children tiles
should be a subset of the tiles to which it has constraints. The parent pointers, therefore,
also allow us to find all of a tile’s valid children without following next pointers: we
just check the tiles in its constraining set for parent pointers pointing back to it.

The tree weight algorithm uses three more fields. Each subtree’s weight is stored
in its root’s weight field. This signed weight is the sum of the direct wire pulls on a tile
and the weights of all its children tiles. A subtree’s tiles must be marked when they are
broken off the spanning tree so that we can check constraints between subtree and main-
tree tiles while ignoring subtree to marked subtree constraints. Instead of a separate
boolean field, we can just encode a temporary mark into the sign bit of a nonnegative
field such as the tree height or top edge coordinate. We can use the same trick to mark
which tiles still need processing during batch compaction. Finally, when non-wire tiles
are moved in one dimension, their positions and adjacencies need to be updated in the
other. The select pointer is used to create a linked list of the moved tiles. There is a
global pointer to the last tile added to this reverse-order list and a dummy trailer record
so that ali listed tiles will have a non-nil select pointer. Consuming one dimension’s list

creates a new list for the other dimension.

In total there are 11 pointers and 7 numeric fields per tile. With 32-bit pointers and
16-bit integers this gives 58 bytes per wire tile and 116 bytes per non-wire tile pair.

4.4. Compaction

To compare the various compactions models, our compactor does group, graph,
tree, and incremental compactions. For the group compaction we use a flattened
recursive algorithm. Compacting leftward, we group the tiles into groups as we recurse
to the left and we place the groups as we recurse back to the right. Starting at the right
edge, we use one pair of pointers: L and R. R steps through the tiles in a group and L
steps through the left adjacencies for each R tile. When L comes across a tile not yet in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 65

a group, it follows (breath-first) the alignment, wire-up, and wire-down pointers to find
and circularly link together all the tiles that belong in the group. This L group must be
placed before the R group can be; a pointer in tile L saves R, R is moved to L, and L
moves leftward. When R finishes stepping through a group, all the group’s left
neighbors will have been placed so a second pass is made to find the group’s left-most
legal position. Then R is moved rightward back to the saved value and finishes
processing that group. We number the groups so that intra-group spacing constraints
(say between parts of a transistor) can be ignored. A dummy, single-tile group is
created just left of the bottom left corner to stop the leftward recursion and the right-
most group saves a pointer to itself to stop the rightward recursion.

The graph compaction is simpler, though slightly slower, because we do not have
to create the groups. Starting with the group solution, we use a shortest path algorithm
to reduce the constraint slacks and produce a smaller layout -- the tiles are moved in a
least-movable-first order. A doubly-linked bin queue with dummy headers is created
with the number of bins equal to the current width (leftward compaction) of the layout.
All the tiles are placed in the maximum bin and the lower left comner tile is moved to the
zero bin. A counter, starting at zero, steps through the bins and a pointer steps through
the entries in each bin. Each entry is moved the counter distance to the left and its
alignment, wire-up, wire-down, and right adjacencies are checked to see if its placement
restricts any tile’s movement. Any tiles thus restricted are requeued into lower bins. A
tile’s current bin value (slack), required for the comparison, is stored in the tile’s height
field. There is no need to remove entries from the queue or worry about which tiles
have moved or not. When a tile is queued we set its parent pointer to remember which
tile restricted its leftward movement and when a tile is finally moved we use this pointer
to set the tree next, previous, and height fields (for use in the tree compaction).

The tree compaction starts with the tree created by the graph compaction. A
weight is added to the upper right comer to keep the wire-length minimization from
enlarging the layout. L and R pointers depth-first step through the tree to calculate the
subtree weights and repair the negative subtrees. L starts at the tree root, R is set to
L.next, and we loop. When R’s parent is not L, L is a tree leaf or an interior node
whose children have all been processed. Thus we can finish calculating L’s weight by
adding its direct wire pulls, if any. If the result is negative and L’s parent constraint is
not an alignment or equal-width wire constraint (constraints that can hold positive or
negative weight), we break off L’s subtree and move it upwards. Otherwise we just add

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 66

L’s weight to its parent. In either case, we set L to its (old) parent and continue
processing parents until L reaches R’s parent. Now R’s weight needs to be calculated
before L’s can be. If R is the root of a subtree that has already been processed (and

. moved and attached at L), we just scan R forward to find the next unprocessed tile.

Otherwise we move L and R to R and R.next. The loop continues until L reaches the

tree root’s nil parent.

The routine to move a negative-weight subtree calls four subroutines. First it calls
snap to disconnect the subtree from the main tree and make it into a separate, circularly-
linked fragment with a nil root parent pointer. Snap also sets the snapped tiles’ mark
bits. The move routine then calls delta, cut, and graft in a tight loop. Delta finds the
remaining minimum constraint slack between the marked fragment and the unmarked
main tree -- the distance the fragment has to move to hit the tree. Delta is passed the old
minimum slack and a pointer to a fragment tile. Starting at the tile, if it finds a tile with
the old minimum, it can immediately return since the new minimum cannot be smaller
than the old minimum. Otherwise, it will scan through the whole circularly-linked
fragment to find the new, larger minimum. The previous-entry pointer is a compromise
between using a full priority queue and constantly checking all the fragment’s
constraints. Delta returns the minimum slack and the (first) corresponding pair of
fragment and hit main-tree tiles. Since semi-merged tiles can produce violated over-
restrictive adjacencies, delta is careful not to return a negative slack, which would move
tiles the wrong way and possibly produce real violated constraints.

Cut determines if the weight needed to stop the fragmeni’s movement can be
distributed along the path through the two hitting tiles without illegally changing the
sign of any subtree weights. Cut makes two scans. First it scans down any processed
parents of the hit main-tree tile to look for the smallest positive weight smaller than the
absolute value of the subtree’s remaining negative weight. Then its scans down the
branch from the fragment’s hit tile to its root’s nil parent looking for the greatest
negative weight greater than this weight (closer to zero). Cut returns the weight that can
be distributed and, if restricted, which tile and branch limited it. In case of ties, the first
scan picks its first found tile, the second scan picks its last found tile, and the second
scan wins over the first. This order prevents negative-zero weights and, as we will shall
see, corresponds to moving as few tiles as possible. Cut can return immediately when a
zero weight is found during the first scan since the second scan, which has priority,
looks at negative weights and thus cannot find a zero. It is important to the O(n2) worst

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 67

case time that we return early and not repeatedly make useless scans through the
fragment.

If cut returns a nonzero weight, the move routine adds the negative weight to the
first branch, subtracts it from the second branch, and reduces the subtree’s remaining
undistributed weight. Then it handles the three possible cut cases. If all the weight has
been distributed, it grafts the fragment back onto the main tree and returns. Otherwise,
it cuts the weak, restrictive branch by setting the returned tile’s parent pointer to nil and
then grafts the cut tiles onto either the fragment or the main tree, depending on the case.
The last-found smallest-weight fragment tile has the highest priority since it cuts off the
most fragment tiles. The last-found main-tree tile has the lowest priority since it adds
the most tiles to the moving fragment.

D3] D (3) [atbrotd]

P (3) [a+btetd]

C (4). [a+bre]

. C(3) [e] ; :c(3.);__[—é+’-5

'B(2) [b+c] B2)5‘;{__: aril

A8 (a] !

A0}

Figure 4-1 Graft Effects on (Height) and [Weight]

Graft is passed two tiles, the weight of the subtree that contains the first tile, and
how far the first tile needs to move to hit the second tile. When cut tiles are grafted to
the fragment, we mark them and move them down so they press against the fragment.
When they are grafted to the main tree, we unmark them and move them up to their
correct, final positions (there is no need to update positions for zero-distance moves).
This prevents the fragment tiles from being repeatedly moved upwards. When the first
tile, F, is not the root of the cut subtree, we have to flip parent pointers in order to graft
tile F onto the second tile, P; we make tile P tile F’s parent, set P and F to F and F’s old
parent, and loop until F becomes nil. At each step, we remove F’s subtree from its
containing subtree, if one, and splice it into P’s subtree. We add i=P.height-F.height+1
to update the heights of the first step’s tiles and i+=2 in subsequent steps. The first F
gets the passed subtree weight and subsequent F’s get the negative of the previous F’s
old weight. Figure 4-1 shows the effects on three cut tile’s (heights) and [weights]:
weight is first redistributed and then the cut is grafted. The individual weights of tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 68

A-D are a-d and are all positive except for a, which satisfies b+c < -a <= b+c+d.

4.4.1. Incremental Compaction

The subroutines to incrementally move subtrees are slightly more complex. Delta
is modified to find the minimum slack for either upward or downward movements.
Graft is modified to create a list of all the non-wire tiles that it moves a nonzero final
distance. We also need a new, more complex cut routine: it scans four spanning-tree
branches instead of just two. One extra branch comes from having to subtract a
subtree’s weight from its old ancestors. In batch compaction, this step was unnecessary
since subtrees were disconnected before their weights had been added to their ancestors.
The other extra branch comes from two-way movements: removing a constraint
between two tiles will unbalance them and may cause both of them to move towards
each other. The first tile’s movement is as before, but when it stops and the second tile
is broken off, this tile might not be the root of its containing fragment. Thus the weight
distribution in a fragment can no longer just go from the hit tile to the root.

Figure 4-2 Cuts: Negative and Positive Fragments

Cut has to search for the highest common ancestor of the hit tile and the
unbalanced tile in both the fragment and the main tree. As it scans these two pairs of
branches, it looks for the tile which most restricts the desired weight distribution.
Figure 4-2 shows two examples: one with a negative-weight fragment and one with a
positive-weight fragment. The dark tiles are the roots of the fragments, which want to
move up or down, respectively. Tile positions in each subtree correspond to tree height,
not reiative tile placement. In the first example, we distribute negative weight W
between tiles 3 and 2 through tile 6 which just hit tile 7. We add negative weight to the
tiles in branches 3-4 and 7-8 and subtract negative weight from the tiles in branches 5-6
and 1-2. The positive example is similar. The tiles are numbered in the priority order
used to break smallest-weight ties. This order corresponds to moving as few tiles up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 69

and as many tiles down as possible as required to prevent negative-zero weights. Figure
4-2 also shows the inclusive range of weight values that have to be checked for each
branch. Cut can again return early when it finds a zero weight; in the negative case the
main tree must be scanned first and in the positive case the fragment must be first.

The incremental move routine has to handle the five possible cut cases,
corresponding to weight distribution restrictions in the four numbered branches in
Figure 4-2 or to a full weight distribution. In the negative example, the no restriction
and the 5-6 and 7-8 branch cases are the same as the batch move’s: a graft and return or
a cut and graft. In the 3-4 case, the weak link is snapped and the rest of the fragment is
grafted to the main tree -- the fragment, with a new root, continues moving. In the 1-2
case, the whole fragment is grafted to the main tree and the weak link in 1-2 is snapped.
The brand new fragment has a positive weight and thus moves in the opposite direction.
While it is moving, any zero weights in the equivalent of the positive example’s 5-6
branch will be negative zeroes. The range of weights checked in that branch includes
(negative) zero so all zeroes will be cut or flipped before the fragment stops moving.
The positive to negative fragment switch is similar, by symmetry, except that zero
cannot occur in the negative 34 branch. The various W and W off-by-one range
boundaries allow zero-weight fragments to continue moving down to find active

constraints but prevent them from moving up.

After a batch of left-right movements, graft will have created a list of other-
dimension non-wire tiles that need moving up-down (wires only exist in one dimension
so do not need such updates). The list is divided into a list for down (left) movements
and a list for up (right) movements -- any tiles whose positive and negative moves
cancel are ignored. The up list is sorted highest-top first and the down list is sorted
lowest-bottom first. Growing and shrinking tiles in this order prevents temporary tile
pass-throughs. Exactly overlapping top and left endpoints are moved up before their
bottom and right endpoints and down after. After fixing the adjacency lists, we fix the
spanning tree. A list of shortened wires (wire-up from moved-up tiles, wire-down from
moved-down tiles) and both their and the moved tiles’ children is made. The tiles in
this and the moved lists are checked to see if their pasent pointers correspond to still
valid constraints. The subtrees with invalid parents are incrementally moved, one at a
time, to find valid parents. While we check the lists in one dimension, graft creates a
new list of moved tiles in the other. We alternate between the dimensions until a

spanning-tree fix does not move any tiles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 70

There is another interaction between graft and tree fix. Graft can flip parent
pointers: tile F and its parent P can be switched to P and its parent F. If F’s parent was
invalid before the switch, P’s parent will be invalid after the switch. Thus, if tile F is in
the list to be checked and tile P is not, graft has to add P to the list. It is easy to modify
the incremental move routine to handle tile insertion. To fix a constraint violated bya
new tile, we tell the move to distribute a very large weight between the illegally
overlapped tiles but put a limit equal to the overlap on the total distance subtrees can be
moved. To insert a wire, we have to add a tile in one dimension (after forcing proper
endpoint alignment) and distribute a weight between the two endpoints in the other.
The weight distribution is like the incremental move except that in the first step there is
no fragment to worry about -- just the two main-tree branches.

4.5. Results

To test the tree compaction system we ran it on a range of examples. To compare
it with other compactors we used circuits from a benchmark suite [Boyer 87b]: a
couple full adders, a channel routing, and various size multipliers. The circuits were
hand converted from virtual-grid plots into sticks and entered using the Edc stick editor.
The topology was unchanged except for slight modifications required because in Edc,
wires are not allowed to cross transistor symbols or run parallel on other wires. Figure
4-3 compares the cpu and memory usages and the resulting layout sizes. The
benchmark areas were converted to lambda units and their run times were doubled to
compensate for cur Micro-Vax 3200 (3 MIPS) and their Vax 8650. We used a slightly
different set of design rules but it should have little effect on the lambda areas. The
benchmark areas included protruding well regions so we similarly bloated our areas.
The Tcmp time is the time actually used by our test compactor; using a better sequence
of compaction steps, as discussed below, would, for example, reduce the time for the
largest circuit, the 8x8 multiplier, from 151 to 99 CPU seconds.

The tree compactor, Tcmp, does very well. It is much faster than most of the
benchmark compactors. The closest in speed are MULGA, a simple virtual-grid
compactor, and DASL, a split-grid compactor. Our compactor uses a reasonable
amount of memory -- about 111K plus the tile array. Symbolic’s virtual-grid compactor
and SPARCS, a graph-based compactor, have similar space requirements for some of
the examples. Our compactor compacts flattened circuits while most of the other’s take
advantage of the hierarchy in the larger circuits. We produce the smallest circuits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation

CELL & AREA CpPU Memeory
System XxY¥=A Lambda Norm Sec Norm KByte Norm
AFAVG 1k
Tcmp 85 x 94 = 7990 1.00 1.8 1.0 166 1.0
DASL 99 x 102 = 10064 1.26 3.2 1.8 379 2.3
MACS 95 x 97 = 9151 1.15 10 5.6 1390 8.4
MULGA 103 x 108 = 11088 1.39 3.2 1.8 243 1.5
SPARCS 105 x 101 = 10536 1.32 16 8.9 372 2.2
Symb. 103 x 103 = 10540 1.32 10 5.6 160 .96
Zorro 86 x 101 = 8624 1.08 1048 582 598 3.6
AFA 1k
Tcmp 96 x 101 = 9696 1.00 1.9 1.0 167 1.0
DASL 102 x 124 = 12648 1.30 2.4 1.3 348 2.1
MACS 95 x 111 = 10550 1.09 18 9.5 1450 8.7
MULGA 115 x 128 = 14763 1.52 2.8 1.5 236 1.4
SPARCS 105 x 120 = 12560 1.30 22 12 356 2.1
Symb. 107 x 126 = 13440 1.39 10 5.3 164 .98
Zorro 94 x 114 = 10678 1.10 860 453 647 3.9
C132 sk
Tcmp 430 x 206 = 88580 1.00 13 1.0 410 1.0
DASL 452 x 222 =100344 1.13 18 1.4 1332 3.2
MACS 418 x 236 = 98648 1.11 82 6.3 3000 7.3
MULGA 567 x 226 =128217 1.45 22 1.7 536 1.3
SPARCS 457 x 226 =103207 1.17 102 7.8 184 .45
Symb. 450 x 220 = 99000 1.12 104 8.0 1040 2.5
Zoxrro 440 x 215 = 94453 1.07 602 46 1413 3.4
Mul2x2 2k
Tcmp 208 x 151 = 31408 1.00 3.7 1.0 218 1.0
DASL 226 x 172 = 38872 1.24 6.0 1.6 615 2.8
MACS 206 x 168 = 34608 1.10 32 8.6 2050 9.4
MULGA 244 x 169 = 41317 1.32 26 7.0 405 1.9
SPARCS 229 x 170 = 38873 1.24 94 25 215 .99
Symb. 247 x 180 = 44400 1.41 20 5.4 512 2.3
Zorro 208 x 168 = 34944 1.11 1676 453 614 2.8
Mul4x4 10k
Tcmp 371 x 347 =128737 1.00 25 1.0 706 1.0
DASL 421 x 402 =169108 1.31 42 1.7 2292 3.2
MULGA 452 x 410 =185320 1.44 38 1.5 406 .58
SPARCS 433 x 401 =173355 1.35 132 5.3 754 1.07
Symb. 436 x 425 =185445 1.44 108 4.3 840 1.2
Zorro 385 x 385 =148097 1.15 3808 152 741 1.05
Mul8x8 49k
Tcmp 735 x 743 =546105 1.00 151 1.0 2863 1.0
SPARCS 857 x 857 =733878 1.34 178 1.2 2066 .72
Symb. 851 x 901 =766734 1.40 490 3.2 3200 1.1
Zorro 759 x 805 =610727 1.12 23476 155 7754 2.7

Figure 4-3 Benchmark Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 72

MACS, with wire-length minimization and jog insertion, and Zorro, with zone
refinement, do almost as well. Tcmp’s advantage comes from performing multiple
wire-length minimization steps.

The data for the plots in this chapter come from 14 test runs: an adder, four
multipliers (2x2 to 8x8), eight arrays of simple static ram cells (2x2 to 16x16), and a
channel routing. Representative CIF plots are given in Appendix C. We define Size s
as (n/1000)" for n-tile circuits -- proportional to the layout width and height. The eight
ram cells are sized evenly from 1 to 7.4 (1k to 52k tiles). The adder and multipliers
have sizes of 1, 1.4, 3.3, 5.2, and 7.1, while the routing has size 2.3. Using arrays of
small cells gives a good indication of the practical worst case effects of circuit size on
run time. Plot sizes and data values are x and y sums unless otherwise stated.

Figure 4-4 shows how the time is divided among the various parts of the
compaction. Temp first loads a stick file. Then it generates constraints and does group,
graph, tree, and incremental compactions before writing a CIF file. The linear

regression of the batch times give (in milliseconds per thousand tiles, k): load
460k+140, constraint generation = 165k1'07, group = 57k, graph = 89k1'°2, tree =
95k!24, and CIF = 450k™%2, In comparison, a four-pass radix sort takes 29%. Most of
the batch time is spent reading and writing files. The graph compaction step is about
60% slower than the less flexible group compaction step. The tree compaction step
takes approximately the same amount of time as the spacing constraint generation, The
tree time will not equal the load time until circuits have over 700k tiles.

After the batch steps, we perform incremental steps to test the incremental features.
The incremental times in Figure 4-4 are for an average of 2.8 tree-fix steps (1.8
adjacency fixes). Almost all the time (msec/ktile) is used during the first incremental
step: tree = 105k1%2 and adj = 175k for all steps, tree = 32k and adj = 105 average
for all but the first steps. The first incremental tree step fixes many invalid parents on
the critical path and each such fix starts by breaking off an O(n) size subtree; thus the
best we could expect is an overall O(n!-) time. Adding all the test compaction steps
together gives 1670k113 total time. Taking out the steps required only to produce the
group results (group and an extra batch constraint generation) gives 146016,
Replacing the first incremental step with a third batch step reduces this time to
15404105 (doing a compaction with just two batch steps (x-y) gives 1290k193 but
produces poorer layouts).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 73

161 '

Seconds
u

Load 1
Batch Cnst

Group

Graph

Batch Tree

Inc Cnst I

Inc Tree ! . 5
CIF Out 1

12+

>PEHOIOGOOD

|
[} 6 12 18 24 30 36 42 a8 54
kTiles

o
2 C Group S
A Graph g
E O Tree © gmu:
T Incremental 2 T'r:f
O Incremental

Size Size

Figure 4-5 Area and Wire Lengths

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 74

Figure 4-5 shows the average area per tile and wire length after the group, graph,
tree, and incremental steps. The large oscillations in the plot occur because the ram
cells are about twice as dense as the other cells. Graph compaction is an improvement
over group compaction: 9.7 to 9 A2ftile and 9.6 to 9.1\/wire. Graph and tree have the
same area since with the test order they use the same critical path, but tree’s wire-length
minimization shortens wires by 9% to 8.3A. The incremental steps improve the layout
by more than 6% to give 8.4 area and 7.8 wire length. The average density does not
decrease and the average wire length does not increase as these circuits get larger.

4.5.1. Translations

e 8T) z 145
s6 P S SN 140l
49+ O Wires 1354
A Implied
421 3 Transistors 130
38 ot P s 1254~
8+ 1200~ 0 TileRecs/Object
ol 1sl- 4 CIF Recta/TileRec
141+ 1.104
7 eSS —=F =z 1.05 5
! l | | l | | | | 1 | ! 1]
(] 1.00
1 2 3 4 5] 7 8 1 2 3 4 - 6 7 8
Size Size

Figure 4-6 Object Types and Translations

About 70% of the single x-y tree compaction time is spent in file I/O. The stick
file is in a fairly compact form; the only extraneous information concerns wire crossings
(used by the stick editor display routines). It contains, on average, 58% wire objects,
7.5% transistor objects, and 34% implied objects. The implied objects are wire
endpoints: single color points, contacts, and vias. Not explicitly describing the implied
objects speeds up the load: while 80% of the time is spent on fscanf and 12% on
translating that information into the tile records, only 8% is spent on creating and
linking the implied objects. An average object is translated to 1.35 pairs of tile records
(from 0.5 per wire to 4 per transistor). Writing the CIF file is even more 1/O bound:
98% of the time is spent in fprinf. An average pair of tile records creates 1.1 CIF
rectangles (from zero per duplicated diffusion tile to many per large cuts). There is a
per tile average of 6.7 bytes in the stick file and 8.3 bytes in the CIF file. And there are
7.5%/(1.35*2) = 28 transistors per thousand tiles -- 2.8%(4*2) = 22% of the tiles belong

to transistors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 75

%
%

£ 88382

5
R\
(]
U
ip
i
i
i
i)
i
I
t

0 Non-Wire
O Wire

26 g% 6F

-]]] 0 | | | I]]
5

2 3 4
Size Size

Figure 4-7 Tile Types and Planes

Using only one tile per wire allows the tile array to be 21% smaller -- 27% of the
tiles are wires (the percentage of wire tiles is much smaller than the percentage of wire
objects since non-wire objects create many more tiles per object). On the other hand,
creating an extra layer of diffusion tiles to handle the well spacing rules makes the array
33% larger -- the well layer holds 25% of the tiles, compared to 48% in the active layer
and 21 and 6% in the first and second metal layers, respectively. This is a fairly heavy
penalty just to keep p- and n-diffusion tiles separate.

4.5.2. Adjacency Lists

K] 401 ¥ ° 21—
354 3 Locate f 4
2 © Final Above X ' 18-
o 3.0+ & Final Below ;.(’ A 1
% Around the Corner 1 vy 154 v
o !
A 124 ¢ Final Above
A Final Below

% Around the Corner

Figure 4-8 Quick Load Search Distances and Successes

Figure 4-8 shows the average number of tiles searched through to quick load a tile
and the percentage of loaded tiles for which these searches find adjacencies. An
average locate searches through 1.7 tiles and each of the left and left-up around-the-
corner searches go through 0.45+0.35 tiles. This around-the-corner nonlinearity is
caused by searches going along the edges of longer and longer busses in larger and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 76

larger arrays of cells. The final above and below searches are much shorter (0.3 and
0.45 tiles, respectively); the values are small since final searches are not made for wires
or for tiles shadowed by other adjacencies. The above searches find adjacencies more
often (for 17% of the tiles) than the below searches (5.8% successful) since the above
searches are done last and thus always find an adjacency for tiles with no prior
adjacencies. The around-the-corner searches find a problem in well under 0.1% of the
cases. The total of all the searches for a quick load is 800k!+3150k tiles. In a 2500-
tile circuit, half the searches are around-the-comer searches.

@ 110
o

90

70

50

& GrSimple Sh Simple

A GrOverlap Sh UnOverlap
30 7 B GrNoCp Sh NoOp

Figure 4-9 Tiles Grown/Shrunk and Types

Figure 4-9 shows that, during the incremental steps, about 37% of the tiles are
grown and 44% are shrunk. More tiles are shrunk than grown (6:5) since shrinks that
split a semi-merged set sometimes do an extra, zero shrink to properly split the set’s
adjacencies. The routing cell’s movement value (at s=2.3) is large because it is the sum
of two large sets of x-y incremental movements. Since only non-wire tiles are moved,
at most 73% of the tiles could move per set. The figure also shows the percentages of
movements that cause wires to grow or shrink. We save a lot of time by not separately
growing and shrinking wires. There are three endpoint grow and shrink cases. In the
simple case, adjacencies are just moved from the wire to the endpoint or back (19 and
32% of total grows and shrinks). The overlap/imoverlap case moves adjacencies and
also merges/unmerges two semi-merged sets (24 and 16%). In the no-op case, only the
amount of overlap within a semi-merged set changes (6 and 4%). This leaves 51 and
48% of tile grows and shrinks using the normal, more expensive loops and searches.

Figure 4-10 gives some statistics for an average grow and shrink. The incremental
movements decrease the layout size; thus the average distance a tile is grown or shrunk
(4s-1) and 3.25-0.6A) depends on the layout’s width and height. The grow loop count is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 77

nr Gr A Distance/16 et
Gr Loop Count Lo p
Gr Wire Adjs ? oo
Sh A Distance/16 t_ R
Shloop Counts @ Le 1
ShWireAds -~} !

N/Gr-Sh
&
]
Tiles/Set

154+

*
n
A
<
]
A

G Tiles

1201 © RMSTiles

’ 12 ¥ = 116§
03F o AN 3~ \\g‘_. 112

0.0 1 ! ! | | | | 1.08

Size
Figure 4-10 Grow/Shrink Stats and Semi-Merges

the number of counter-clockwise grow scans per grow (0.8) and the shrink loop count is
the number of dropped adjacencies per shrink (0.5). These counts are small since only
about half the movements perform loops (see previous paragraph). The other half of the
movements just cause an average (per all moves) of 0.15 and 0.25 adjacencies to move
from or to the stretching wire. Thus an average movement changes 0.95 and 0.75 of the
moving tile’s adjacencies. Also shown in the figure is that, after compaction, the
average semi-merged set contains only 1.15 tiles and that the RMS size is a slightly
larger 1.3. Thus our assumption that there are not large numbers of large sets was
justified. The RMS value is important since two adjacent semi-merged sets containing i
and j tiles will produce i*j constraints. Too large a value would give layouts more than

2 spacing constraints per tile.

ﬁ A Gr Scan Out R*
g 18 ® Gr Scan Back 80
2]
22 15 701
= &0
1.2
30
& O - -6 -
08 4 o T ShNew" ~¢ ’
30 ¢ ShDrop
0.8 4 ShMissing

% Around the Corner
-l o e | P R |

4 5 6 7 8
Size Size

| ol R
2 3

Figure 4-11 Grow/Shrink Search Distances and Successes

Figure 4-11 shows the average number of tiles searched through for grows and
shrinks and the percentage of these searches that find adjacencies. Grow scans search
out 1.6 tiles to find a non-nil up or down pointer before scanning back 1 tile (the larger,
out value includes the up or down tile). An average grow’s final left and right searches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 78

together examine 1.3 tiles. When dropping an adjacency from a shrinking a tile, the
searches for new adjacencies for the dropped tile and the shrinking tile go through 0.4
and 1.4 tiles, respectively. The first search is shorter since it starts one tile away from
the shrinking tile while the second search starts at the dropped tile. The search for
missing around-the-corner adjacencies to cache during shrinks is a rare (.15 tiles per
drop and the pair of around-the-corner searches after a grow or shrink together examine
0.9 tiles.

Multiplying the searches by their frequencies gives 4.4 and 2.1 checked tiles per
grow and shrink -- 27% of these are around-the-corner searches. Since an average tile
move causes 1 grow and 1.2 shrinks, this totals 6.9 searched tiles per move. Even
though the grows examine about twice as many tiles as shrinks, grows do not take twice
as long since the grow scans are simpler. 80% of the grow scans find a new adjacency
and the grow final searches find an adjacency for 15% of the grown tiles. During
grows, 45% of the new adjacencies shadow old adjacencies. During shrinks, 63% of
the dropped adjacencies are replaced by new adjacencies and 43% of these dropped tiles
get replacement adjacencies. Roughly 0.24% of the searches for a temporarily missing
constraint to cache and 0.06% of the around-the-comer searches find problems. Almost
all the cached constraints are quickly added to the adjacency lists. All together, this
means an average grow and shrink actually gains and loses 55%(80%(0.8)+15%)+0.15
= 0.58 and 37%(0.5)+0.25 = 0.44 adjacencies (ignoring semi-merge effects).

L All Tiles
Non-Wire Tiles
Wire Tiles

No Merges

B rmsAl
¢ rmsNW

®

21

oo

18

15

==t

12

(-] w o ©

Figure 4-12 Shrink Skip Reasons and Adjacencies

Figure 4-12 shows how well the global position and the shadow array do in
skipping the extra shrink adjacency drops caused by multiple colors. When a shrink
lengthens a wire, the wire shadows the tiles on the left and the right of the shrinking
endpoint from each other. This blocks the fuzziness problem for 1.15+12% of the tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 79

searched through for new adjacencies for the shrinking tile. The global value that tells
when all colors can be skipped allows 1.35+6% of the searched tiles to be skipped and
the shadow array with an entry for each color allows another 4% to be skipped. This
leaves 5% of the searched tiles causing extra drops; the rest of the tiles stop searches in
any case. Even though the shadow array prevents about 20% of the extra drops, not
having it would cause only 4%(1.4*0.5) = 0.028 extra drops per shrink. The shadow
array is initialized for the 48% of the shrinks that use the shrink loop and each extra
drop would search through about 0.4+0.15 tiles for new adjacencies for the dropped tile.
All together, this gives a savings of (0.028*0.55)/48% = 0.032 tiles per array
initialization -- we would have done better without the shadow array. In tests, the array

slowed the incremental adjacency times by a couple percent.

Figure 4-12 also shows various final average adjacency counts. There are 1.2
adjacencies per tile -- 0.35 per wire and 1.5 per non-wire tile. The RMS values are
0.15+1.9 per tile, 0.235+2 per wire, and 1.9 per non-wire tile. Many of the short wires
have no adjacencies but many of the long ones have many; thus the relatively small
average and large RMS wire values. The frame wires, with their O(n'5) length lists,
have a large effect on the RMS values. If we count adjacencies by the number of non-
nil adjacency pointers, we get 0.9 per tile. The ratio 1.2/0.9 is equal to the RMS size of
the semi-merged sets, as expected. In any case, our adjacency lists produce a very good
set of constraints to use during compaction. Since the average list length is 1.2,
searches do not have to lock far to find top left or bottom right adjacencies. And since
the RMS list length is about 2.2, repeatedly removing the last adjacency in a list does
not cause much trouble either.

4.5.3. Compaction

The group compaction groups together an average of 9.6 tiles per group and
examines 8.9 spacing constraints per group. There are only 0.93 constraints per tile
since intra-group spacing constraints are ignored and at first there are no semi-merged
sets. The graph compaction examines each graph constraint exactly once: 1.17 spacing
constraints, 1.07 wire constraints, and 0.78 alignment constraints per tile. Each wire
(27% of the tiles) generates four wire constraints, two with each endpoint. One
alignment constraint is checked per tile contained in multiple-tile objects; thus 22% of
the tiles belong to single-tile objects. The graph compaction routine keeps the as yet
unmoved tiles in a priority queue. When it finds a constraint that further restricts a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 80

o 153 F
E1MpS - Puga o Cg o - G0
g ias)-
o
1.26 +~
147 W\/— S~ ~"
1.08 W“‘r —
O Spacing
099 - O Wire
0.90 +— A Aignment
O Total Queued)
0.81 +— - s\f
0.72 =
| os I ! J !]]]
8 1 2 3 4 5 6 7 8
Size Size

Figure 4-13 Group and Graph Constraints
tile’s movement, it requeues that tile into a smaller movement bin. Of the 3 constraints
checked per tile, 48% of them are more restrictive than previous constraints: an average
tile is queued 1.44 times.

* O Negative SubTrees R S4r ;!
4 Unique Moved/2 480 B $
A Unigue Not Moved A 1
& A 7\ 416 4— 1
N aE - T \ -]
o as2 - © Initial Cut-Off Total ,‘

¢ Other Cut-Off Total . -

13

10£

P N TN
5 6 7 8
Size

Figure 4-14 Tiles Affected Batch

10

%
%

A Unique Moved

Orphans A Unique Not Moved)

initial Cut-Off Average
Other Cut-Off Average

¢ o0

A
i
n

A

4 et ,74:\

p 1o ,I Vo4 A

\} 1 \ ; l,,
23 ». ’ ~¢ ~ 1 ! A

N — —_ » - y
e e
oh ¥ } L } | I -+ A,) | ! | |
1 2 3 s 5 3 7 8 3 4 5 7 8
Size Size

Figure 4-15 Tiles Affected Incremental

Figures 4-14 and 4-15 show the overall effects of the tree compaction. During
batch compaction, 11% of the calculated subtree weights are negative and need fixing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 81

During these fixes, 74% of the tiles are affected: 51% actually move while the other
23% only move a zero distance (counting each tile at most once). In the larger circuits,
unfortunately, many of the tiles are cut off (and moved or not) many times. This is the
reason the batch compaction has a nonlinear run time. Multiple moves occur when a
moving subtree hits and breaks off some already processed tiles or when a subtree is
attached to an unprocessed tile that is later moved. Disconnecting the negative-weight
subtrees from the main tree cuts off 335+63% of the tiles (total). While moving, the
fragments hit and cut off another 745-52% of the tiles. During the incremental steps,
only 1.4% of the tiles have invalid parent constraints. Disconnecting and moving a
subtree to fix a parent cuts off 9.8-1.15% and then 1.7% of the tiles (average) -- the
number of tiles initially cut-off grows slower than n while the other cut-offs are
proportional to n. Counting unique cut-off tiles gives 52% moved and 38% not moved.
In both batch and incremental steps, the percentage of moved tiles is fairly constant
regardless of the circuit being compacted but the percentage of not moved tiles is more

erratic.

N/SubTree
N/SubTree

Waeight2
A Distance
Move Count

Size

Figure 4-16 Batch and Incremental Stats

Figure 4-16 gives some statistics for an average subtree repair. The average batch
repair calculates a negative weight of 3 and moves the subtree up 1.5A in 2 steps. The
average incremental repair moves a weight 16.5 subtree 1.5A in 6.3 steps. Metal, poly,
and diffusion wires have weight 1, 2, and 4, respectively. The average incremental
weight is near the 16 units added to the critical path to insure minimum layout height (a
small weight was added so it would not swamp out the averages). Thus most of the
incremental repairs change the critical path. Dividing by the number of steps shows
that average batch and incremental fragment movements move 0.75 and 0.24A and
redistribute weight 1.5 and 2.6 (to either break a branch or stop the fragment),
respectively. Thus at least 25 and 76% of the movement steps move a zero distance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 82
2 ® mr n
b3 $]
< < O Checked
2 9 280}~ & Ancestors
E = A Waight Changed

2401 © Cut-ofir2

¢ Moved

200

160

120

80

40

o 2
1 2 3 4 5 [7 8

Figure 4-17 Batch and Incremental Moves

Figure 4-17 gives data on the average costs per fragment movement. An average
batch step checks the constraints of 0.9s+4.8 tiles to find the minimum slack and
examines 0.65+3.6 ancestors to find the most restrictive weight. Since the ancestor
search quits early when a zero weight is found, about 96% of the examined ancestors
have their weight changed (0.55+3.8). Of the 8.25-1.6 tiles that are then cut off, about
40% are moved a nonzero distance (3s+0.6). The incremental steps work on much
larger fragments. They check the constraints of 36s-14 tiles and the weights of 4.25+3.8
ancestors, but only about 70% of these weights are changed (2.65+4.2). 78s-65 tiles are
cut off and about 50% of these are actually moved (25s5-18). Note that the incremental
steps check the constraints of a relatively large number of tiles and that following the
adjacency lists to read the constraints is the most expensive of the movement

operations.
e 3201 71 Batch Current Pointer ’ 4
& s
B Inc Current Pointer 7 b
2801 O Batch Repeated Moves/2 _-®
¢ inc Repeated Moves ,”"’
2401 e--=

© Maximum Height/32s
O Average Height/32s
A A Average Weight/2

18 "
X sl

B

o

Size Size

Figure 4-18 Tree Queue Effects and Stats

Finally, Figure 4-18 shows the effects of our improvements to reduce repeatedly
checking and moving fragments. Using a current-pointer allows us to perform only 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 83

and 44% of the constraint checks that would have been required to fill a priority queue,
batch and incremental respectively. The current-pointer allows the minimum-slack
search to return as soon as the first zero (the minimum possible slack) is found instead
of checking the whole fragment. This gain over queuing all the tiles overcomes the loss
rechecking fragments during the rare, repeated nonzero moves.

Unfortunately, preventing repeated movements by moving tiles only as they are
being marked or unmarked causes 785+68% and 75+83% of the moves that would have
occurred just repeatedly moving the whole fragment. The repeated-move fix makes no
difference when a subtree moves exactly once but loses, for example, when a single tile
moves up one lambda, hits a big subtree, and then does a zero lambda movement.
Repeatedly moving tiles would just move the single tile, but our fix also moves the big
subtree down and then back up. The fix is not quite as bad as it looks since it only
moves tiles that have to be scanned anyway (to mark/unmark and adjust tree heights)
while the repeated moves would require extra whole-fragment scans. Thus our fix helps
incremental movements but hurts batch compactions. Figure 4-18 also shows that the
final average absolute tree weight is 3.3 and that the average and maximum tree height
is proportional to the layout height as expected: 0.957° and 2.91°,

4.6. Summary

Tree compaction can quickly produce small layouts without using too much
memory (58 bytes per tile). Although the batch tree step has an O(n1'24) time, the
overall time for the test cases, assuming three batch steps followed by the needed
number of incremental steps, is about 1.5495 Micro-Vax 3200 CPU seconds
(k=n/1000) since most of the time is spent in file I/O. Graph compaction takes slightly
longer than group compaction but produces better layouts. Wire-length minimization
reduces the wire length by another 9% and the final, incremental steps reduce the area
and wire length by over 6% more. Using implied endpoints makes the load faster by
allowing smaller stick files. Wires reduce the number of required tiles, but duplicating
diffusion tiles to allow enforcement of the well spacing rules requires extra space.

The adjacency quick load works well: all of its searches are short on average
except for the around-the-comner searches, which grow longer as the layout size
increases. The semi-merges do not cause too much trouble. Wires help the incremental
grows and shrinks: wires are never separately moved and only about half the non-wire
moves need grow and shrink loops. About seven tiles are examined and about half an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation 84

adjacency is gained and lost per tile move. We used a shadow array to help skip the
extra shrink adjacency drops caused by muitiple colors. Although this reduces the
theoretical worst case, it makes the expected case slightly worse. The adjacency lists
algorithm produces a very good set of constraints: about 1.2 adjacencies per tile.

There are almost as many wire and alignment constraints as there are spacing
constraints: about 1.1 and 0.8 per tile, respectively. During batch tree compaction,
11% of the calculated weights are negative and need fixing. The average batch repair
fixes a negative weight of 3 by moving a subtree up 1.5A in 2 steps. Many of the
incremental repairs change the critical path; they cut off much larger and heavier
subtrees and require many steps to redistribute the weight. Thus, even though in our
test compactor only 1.4% of the parent pointers are incrementally repaired, it is faster to
perform a third batch compaction step before starting the incremental steps. When
moving fragments, most of the checked ancestors have their weight changed, but only
about half the cut-off tiles are actually moved. Using a current-pointer requires fewer
constraint checks than filling a priority queue since all the constraints do not have to be
checked in the common, zero movement case. The fix to prevent repeated fragment
movements helps the incremental case but, unfortunately, because of the very small
number of repeated batch movements, it slows down the batch compaction.

The combination of wire-length minimization and multiple x-y compaction steps
allows Temp to produce high quality layouts. Using the adjacency lists and tree weight
algorithms allows it to perform batch compactions very quickly -- in near linear time.
While the time and effort spent in incremental compaction by our test compactor
appears large, one has to remember that the results were given for O(n) parent fixes,
most of which changed the critical path. Even in the largest benchmark circuit, the 8x8
multiplier with 49k tiles, the average time required to fix one parent pointer is only 0.09
seconds and most interactive changes will break very few pointers. By comparison, it
would take 43 seconds to recompact the whole circuit and it takes about 24 seconds to

draw the entire stick diagram or CIF layout on the screen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conclusions 85

Chapter 5

Conclusions

Compaction allows designers to work at the stick level and not worry about all the
detailed design rules. A major problem with one-dimensional compactors is the lack of
control over the interaction between the two dimensions. An incremental compactor
can quickly update a layout to reflect changes in the stick diagram or layout constraints.
Since an incremental compactor efficiently propagates changes between the two
dimensions, it cap quickly perform multiple one-dimensional steps and it makes an
ideal basis for two-dimensional compaction.

This dissertation has presented two algorithms to handle the two main tasks in an
incremental compactor: generating and solving constraints. The adjacency lists
algorithm quickly generates and incrementally updates a minimal complete set of the
spacing constraints needed for compaction. The clockwise threaded lists allow us to
move, insert, and delete tiles by growing and shrinking them. The algorithm takes
advantage of the special properties of wires to reduce the required time and memory and
to reduce the number of constraints generated. Not allowing tiles to pass through each
other is a small price to pay to prevent the many pass-through problems. Using a direct-
connect definition of electrically connected allows most of the legal tile overlaps.
Unfortunately, it can prevent constructs such as L-shape wires from being compacted to
their minimum legal size. Overlaps have little effect on the run time but require
routines to merge and unmerge the semi-merged sets needed to keep from creating
adjacencies that cannot be included in the planar adjacency lists. The semi-merged sets
have the drawback of restricting the freedom of movement of tiles within sets since

each set of tiles shares a single pair of adjacency lists.

Multiple colors have a much greater effect on the adjacency lists algorithm. When
spacing rules can bleed through tiles (violate transitivity), we have to duplicate some of
the tiles to put in an extra plane to handle the offending rules. The extra tiles require
extra memory and extra time for processing. Within a plane, the varying tile bloats

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conclusions 86

caused by multiple spacing rules can create crossed constraints that cannot be included
in the adjacency lists. Extra, around-the-corner searches are required to avoid missing
these constraints. In large circuits, these searches make up a sizable fraction of the
searches required to quick load the adjacency lists. The extra searches have a smalier
effect on the incremental changes. In fact, the overhead of a simple shadow array to
prevent extra shrink adjacency drops was far greater then the savings from preventing
about 20% of the extra drops.

The second main algorithm, the tree weight algorithm, solves the constraints to
produce a layout. It minimizes wire length by calculating the sum of the wire-pull
weights on each subtree of a directed spanning tree of active constraints. The spanning
tree allows us to perform the two basic operations needed for incremental changes:
improving a layout to take advantage of the empty space created when tiles are moved
or deleted, and creating enough room to legally insert new tiles. It tells us which way to
move which tiles. To initialize the spanning tree, we first perform a simple graph
compaction to create an estimate of the desired tree. The downward compaction
reduces batch wire-length minimization to determining how far up to move each tile. A
depth-first scan through the spanning tree finds subtrees with more upward than
downward total wire pull, disconnects them from the tree, and moves them up to find

something to hold them down.

A three-step loop is used to move subtree fragments. First, the distance the
fragment must move to hit the main tree is calculated. Then the path through the hitting
tiles is checked to see if it can hold the full weight of the fragment. If it cannot, then
part of the fragment will break off and stop moving or part of the main tree will break
off and start moving. Incremental fragment movements are more complicated than
batch movements since they may go up or down and there are four branches (instead of

two) that could be broken by the weight distribution.

A compactor has to handle the interaction between the adjacency lists and tree
weight algorithms. When a compaction step moves tiles in one dimension, the
adjacencies have to be updated in the other. This may cause some of the arcs in that
dimension’s spanning tree to no longer correspond to valid constraints. Incrementally
moving subtrees to fix the invalid parent pointers will cause the first dimension’s
adjacency lists to need updating. This propagation of changes from one dimension to
the other, until a fixed point is reached, allows the equivalent of an infinite number of

x-y compaction steps almost for free.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conclusions 87

5.1. Future Work

The major problem with the adjacency lists algorithm is its current dependence on
the direct-connect definition of electrically connected. The only practical improvement
is to use full netlists. Besides the simple problem of creating and updating the netlists,
the algorithm has to be modified to merge and unmerge sets of tiles that, locally, seem
to be unrelated. This is more difficult than semi-merging tiles that are directly
connected by wires. It also makes it much harder to break left-right or top-bottom
position ties when tiles exactly overlap. Such decisions are required to properly load or
move a batch of tiles. A lot of time is spent handling multiple colors, but the current
compromise between handling all the problems in one plane and eliminating all the
problems by creating many extra planes seems to be optimal.

Much work remains to be done on integrating the stick editor and the tree
compactor. Much of this involves devising a user interface that allows designers to
easily make desired changes. The current compaction system allows one to move tiles
by having the system add enough weight to break off a tree fragment. This has several
problems. The first, which cannot be eliminated, is that movements cannot just move a
single tile a certain distance: they have to move whole subtrees far enough to hit
something. The second, related problem occurs when one wants to separate two tiles
that are tightly held together in the spanning tree: moving one tile will cause the other
to follow. This can be fixed by creating a command to add weight to one tile and
subtract an equal weight from the other. The final problem is that the layout cannot be
enlarged by just modifying weights: one dimension cannot be reduced at the expense of
the other. If the top edge began moving upwards, there would be nothing to stop its
movement. One fix would be to let the designer sweep out an area to fill with a dummy
tile in order to push tiles apart. A better fix would be to add a command to change a
pair of tiles’ current x spacing constraint to a y constraint or vice versa.

Another integration problem concerns the mapping from stick diagram to layout
(and back). Deleting the proper tiles from a layout when a stick object is deleted is
easy. But determining where to insert tiles into a layout when a stick object is created is
not as trivial. The problem is especially bad when existing tiles have to be moved to
route a straight wire. One also has to decide which commands should be specified on
the stick diagram and which on the layout. Since screen refreshes can be very slow,
some way to batch layout changes is needed. Otherwise, every small change to a stick
diagram might cause half the layout tiles to move a few lambda across the screen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 88

Appendix A
Semi-Merged Tiles

This appendix gives more details on how we semi-merge overlapping tiles to
prevent adjacency pointer conflicts. Left and right overlaps in one dimension appear as
up and down overlaps in the other. When the top of one tile overlaps the bottom of
another tile, the two tiles rhay have to share parts of their left and right adjacency lists.
In Figure A-1 for example, moving the tiles up and down creates two sets of three
overlapping tiles. Spacing constraints should be generated from each of the left tiles to
each of the right tiles. These nine constraints cannot be represented in the planar
adjacency lists. To handle this we force top-to-bottom overlapping tiles to share all of

their adjacencies.

Figure A-1 Semi-Merging Tiles

We semi-merge the tiles so that an overlapped set has one left and one right
adjacency list. The bottom-most tile’s left pointer points to the start of the set’s left
adjacency list and the top-most tile’s right pointer points to start of the right list. All of
the rest of the set’s left and right pointers are nil. This makes it easy to determine if a
tile is in a merged set and, if so, if it is the set’s top or bottom tile. A tile’s up and down
pointers point to the tiles that it overlaps, above and below. The top tile’s up pointer
and the bottom tile’s down pointer are used to continue any adjacency lists which
contain the set. All the right and down pointers pointing at the set point to the set’s top
tile and, likewise, left and up pointers point to the set’s bottom tile. Thus, when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 89

searching for turnarounds we can follow left or right pointers to find non-nil down or up
pointers just as before. Figure A-1 shows the left and right pointers before and after the
merges are performed.

Figure A-2 Tile L’s Four Right Adjacencies

Semi-merged tiles make it slightly harder to read the adjacency lists. To find all of
a set’s right adjacencies we first follow up pointers within the set to find a non-nil right
pointer, the pointer to the first right adjacency. We also follow down pointers to find
the set’s bottom tile, the first tile with a non-nil left pointer. Starting at the first right
adjacency, we follow down pointers until we find a tile with a non-nil left pointer that
does not point to the set’s bottom tile or we find a nil down pointer. If a tile’s left
pointer points to the set’s bottom then, just as always, the tile’s down pointer continues
the right adjacency list. If a tile has a nil left pointer, it is in a set and the down pointers
lead to the set’s bottom. Starting at tile L in Figure A-2, we go up and down one to find
the set’s top and bottom tiles T and B. Tile T’s right pointer gives us the first right
adjacency, tile 1. It has a nil left pointer so we go down to tile 2. This tile’s left pointer
points to tile B so we go down to tile 3 and then, likewise, down to tile 4. Its left
pointer does not point to tile B so its down pointer is not part of the list and we have
found all four of tile L’s right adjacencies.

A.1. Growing and Shrinking

It is not very hard to modify the grow and shrink routines to handle the semi-
merged sets. Growing up a tile that is not the top tile in a set only changes the amount
of overlap. Growing the top tile requires finding the set’s bottom since pointers
pointing to or from that tile may have to be modified. If a wire’s bottom endpoint
grows up far enough to overlap its top endpoint, the two endpoint sets will merge.
Three adjacency lists on each side must be combined: one from each set and one from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 90

o

PR

Figure A-3 Vanishing Comers: 8 to 4

the connecting wire. Pointers to and from the wire and its top and bottom endpoints
must be modified to account for the combined set’s single top and bottom. Adjacencies
from each side may be shadowed. This occurs because the two individual sets had the
equivalent of eight comers while the one combined set has only four. It is possible that
a tile that would have caught on one of these vanished comners cannot hit the combined
set because of intervening tiles. In Figure A-3, the relevant corners are circled. Tile R
is adjacent to the top set before tile G is grown but is not adjacent to the resulting
merged set. Tile L is adjacent to the top and bottom sets before their adjacency lists are
merged with the wire’s, but afterwards it too is not adjacent to the merged set.

The modifications to the shrink routine are similar. Shrinking up the bottom tile in
a set is the same as before except for also modifying pointers to or from the set’s top
tile. Shrinking any other tile in a set only changes the amount of overlap unless it
unoverlaps two tiles. Breaking a set is the reverse of merging two sets: each adjacency
list is divided into possibly three lists (the connecting wire’s lists may be empty) and
then searches are made from the four new cormners for possibly unshadowed adjacencies.
The lists are divided by splitting them between the two new sets and then shrinking the
top of the lower set down zero to transfer the proper adjacencies, if any, from it to the
wire. We have to watch for the strange cases where inserting a wire makes the layout
smaller by allowing two tiles to overlap and deleting a wire makes the layout larger by
forcing two tiles to not overlap. Since a tile adjacent to a wire and its endpoint only
gets the adjacency to the endpoint, we also have to make sure that a tile overlaping an
endpoint does not also overlap and pass through the endpoint’s wire and cause a
spacing-constraint violation with a tile on the far side of the wire.

This method of semi-merging tiles can create over-restrictive adjacencies. Each
tile in a string of barely overlapping tiles inherits all the set’s adjacencies. If the tiles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 91

- _:.Bvi ‘.: G

Figure A-4 Violated Over-Restrictive Adjacencies

are offset horizontally, some of the adjacencies created by a merge may be violated.
When the three overlapping tiles in Figure A-4 are viewed as one big tile, that tile
illegally overlaps tiles L and R. This does not cause much of a problem: we ignore the
violations except to make sure that movements do not make them worse. Just throwing
out these constraints would be equivalent to breaking a set into two sets without
searching from corners for possibly unshadowed adjacencies. Completely ignoring the
constraint between tiles L and B in Figure A-4 would allow tile B to slide leftwards and
illegally overlap the far left tile -- likewise for tile T and the far right tile. We also have
to make sure that the far left and right tiles do not move in to overlap tiles B and
T. Note that overlapping tiles can still move independently: they are not glued to each
other. In the example, tile B can safely move to the right and tile T to the left.

A.2. Quick Load

The quick load also has to be modified to handle overlapping and semi-merged
tiles. Using the direct-connect definition of electrically connected allows us to follow
wire connections to make sure that tiles are added in the correct order. We saw before
that a vertical wire’s addition may have to be delayed until after its upper endpoint’s
addition. In the case where a horizontal wire’s left and right endpoints’ left edges
exactly overlap, the right endpoint’s addition may likewise have to be delayed until
after the left’s addition to ensure that the right endpoint is properly placed on the right.
A left endpoint is found, if there is one, by following two non-nil other-dimension wire-
down pointers from the right endpoint. If the left endpoint is also a bottom or top
endpoint, its up and down wires also have to be added before the right endpoint.
Otherwise, wire additions would have to worry about breaking adjacencies between
endpoints on their right and tiles on their left. Adding wires before adding right
endpoints will shadow all the left tiles and prevent such adjacencies.

Figure A-5A gives an example of calculating the proper load order. The sort order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 92

LWT
RWT
WRT
RTW

o oy o
H H B W

o
o)
H
=
w

Figure A-5 A. Proper Load Order B. Shadowed Endpoints

would add ARLWT. This would put left endpoint L on the right of right endpoint
R. Moving R to after L in the list fixes this problem and gives ALRWT. After adding
ALR, tiles A and R would be adjacent and wire W could not be added without
somehow breaking this adjacency. By moving R to after W we get ALWRT and keep
the A-R adjacency from ever forming. Wire W cannot be added before its top endpoint
T is added, so W is moved to after T to get ALRTW. Once again we have the ALR
problem and move R to after W to get ALTWR, the correct order.

Overlapping tiles can also cause a wire’s endpoint to be partially shadowed before
the wire is added. When adding such a wire, we have to follow right or right-down
pointers from the lower or upper endpoints, respectively, to find a tile adjacent to the
right edge. Then the wire’s left adjacencies, if any, can be found. In Figure A-5B, both
endpoint sets are partially shadowed. Short searches (the dark arrows) reach the right
edge and find the one dark tile to move from the edge’s to the wire’s left adjacency list.

P/j A5 | o] Eﬂj

==

—# —P» Before Addition = —P After Addition

Figure A-6 Four Double Merge Cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semi-Merged Tiles 93

Finally, the tiles that should be semi-merged into a set are not added in any
particular order. Thus we have to be prepared for an added tile to merge into a set its
bottom overlaps, or into a set its top overlaps, or to cause above and below sets to be
merged into one, or even to merge into the middle of an existing set. Besides the
problems caused by vanishing corners, this is further complicated by the fact that the
effect on the right edge’s left adjacency list depends on whether the set(s) the new tile
overlaps are in that left list or not. Figure A-6 shows the effects for the four possible
cases of merging two sets into one. The dark arrows show the lists before the addition
and the light after. There is one case of two adjacencies being merged into one, two
cases of one adjacency being shadowed, and one case with no change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adjacency Lists 94

Appendix B
Adjacency Lists

The chapter on generating spacing constraints gave a fairly detailed description of
the adjacency lists algorithm. In this appendix we describe the variables used to
efficiently store the current state in the top and bottom edge up routines. The two main
incremental routines move tile tops or bottoms up. Their parameters are the tile to
change and the new edge coordinate. The two routines to move edges down are copies
of the up routines with up and right switched with down and left. These edge routines
call simple corner routines to check for around-the-corner constraints in each of the four
diagonal directions. The corner routines use a shadow height to cut short most searches.
They search for a turnaround to bypass and, if not shadowed, search until a constraint or
a second turnaround is found. If they find a missing constraint, they add it to a list for
later processing. The edge routines are called by the routines which move, delete, or

insert tiles.

B.1. Top Edge Up

Figure B-1 Four L and U Nil/Non-Nil Cases

The main effect of the top edge up routine is to change the growing tile’s left and
right adjacencies. Left adjacency changes are more complex since they occur at the
ends of adjacency lists. Two pointers are used to store this side’s state: L points to the
top left adjacency that cannot be shadowed as the tile grows up and U points to the tile
whose down pointer points to the growing tile. The four nil/non-nil cases are shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adjacency Lists 95

Figure B-1. If the growing tile is a wire’s top right adjacency then both pointers are nil.
If it is not the first tile in its only left adjacency’s right list then only L is nil. If it is the
first tile in its top left adjacency’s right list then U is nil and L points to this top left
adjacency. Otherwise, U is non-nil and L points to the growing tile’s second from top
left adjacency. In every case, L and U point to the tiles whose pointers change when
new left adjacencies are added. Because of semi-merged sets, two bottom pointers are
needed to handle the right side: one for the growing tile’s set and one for its top right

adjacency’s set.

When a growing tile gains a new left adjacency, either the growing tile’s left
pointer or the L tile’s up pointer is pointed at the new adjacency, depending on whether
L is nil or not. If U is nil and L is not, this simply adds a new adjacency. Otherwise,
we have replaced an old left adjacency with a new one and have to remove the growing
tile from the beginning, middle, or end of that old adjacency’s right list (in the L and U
nil, L nil and U not, or L and U non-nil cases, respectively). The new left adjacency’s
bottom right adjacency will always be shadowed. We remove the left tile from the end
of this right tile’s left list, point U at the left tile’s second from bottom right adjacency
and point that tile’s down pointer at the growing tile. If the left tile had only one right
adjacency, we instead remove the left tile from the middle of that adjacency’s left list,
point L at the left tile and point that tile’s right pointer at the growing tile.

Right adjacency changes are simpler since they occur at the beginnings of
adjacency lists. When a growing tile gains a new right adjacency we first check to see
if the growing tile’s up pointer is non-nil or if its right pointer points to a wire. If so, the
growing tile’s old top right adjacency will be shadowed and we have to remove the
growing tile from the beginning or middle of this old adjacency’s left list. Likewise, we
also check if the new right adjacent tile’s down pointer is non-nil or if its left pointer
points to a wire. If so, the right tile’s bottom left adjacency will be shadowed and we
have to remove the right tile from the beginning or middle of this left tile’s right list. If
U is non-nil when we do this, U is pointing at the right tile which no longer points down
to the growing tile. We point U at the tile above the right tile in the left tile’s right list if
there was such a tile. Otherwise, we nil U and if the left tile is not a wire, we point L at
it (it is the growing tile’s top left adjacency). In any case, we finish by adding the
growing tile and the right tile at the head of each other’s left and right adjacency lists.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adjacency Lists 96

B.2. Bottom Edge Up

The bottom edge up routine drops bottom adjacencies one at a time from the
shrinking tile. The left adjacency list is in the correct drop order but we have to reverse
the part of the right list that will be dropped. We change it so that following the down
pointers from the second from lowest dropping right adjacency will lead to the second
from lowest not dropping right adjacency -- properly handling the cases where there are
not that many dropping or not dropping tiles. We use four pointers to keep track of the
current bottom adjacencies. L and R point to the about to be dropped tiles and LU and
RU point to the next tiles. When L. moves to LU, LU moves to its up tile. When R
moves to RU, RU moves to its down tile (the one above it). Because of semi-merged
sets, two pointers are actually used, one top and one bottom, for each of the shrinking,
L, and R tile sets. L’s up pointer is kept pointing at LU so that when finished shrinking,
the shrunk tile’s left pointer can just be pointed at L. On the right side, when finished,
either the shrunk tile’s right pointer or RU’s down pointer is pointed at R, depending on
whether RU is nil or nnt.

We use six variables and two arrays to stc > the shrinking state. LT and RT give
the coordinates the shrinking tile’s bottom has to shrink past before the current L and R
tiles will drop. One coordinate is updated after each drop. LM and RM mark whether
there are any more tiles to drop from each side. They become false when LT or RT
move above the final bottom of the shrinking tile or when the shrinking tile’s only
adjacency on a side is a turnaround tile or wire. LB and RB give the coordinates at or
below which any color tile can safely be skipped by (not made adjacent to) the
shrinking tile. One coordinate may move upwards after each drop -- depending on the
dropped tile’s least shadowing effect. LC and RC are arrays of skippable coordinates
indexed by tile color. When a tile is dropped, the entry corresponding to its side and
color is updated. During searches, an entry is checked only for tiles above LB or RB.
LB, RB, and the LC and RC arrays are initialized to zero.

A right search from a dropped right tile has five possible outcomes. The search
finds a new adjacency for the shrinking tile if it finds a non-wire tile high enough to be
unskippable or if it finds a wire and RU is nil. In these two cases, R is pointed at the
new adjacent tile and the shrinking tile is added to the end of this tile’s left list.
Otherwise, if RU is non-nil, R moves to it, RU and RM are updated, and a cached right
around-the-comer constraint can be added to the adjacency lists. Otherwise the
shrinking tile is down to a final right adjacency; RM is set false, R is pointed at the wire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adjacency Lists 97

or non-wire turnaround tile that stopped the right search, and the shrinking tile is added
to the beginning of the wire’s or middle of the non-wire’s left adjacency list. The left-
side search cases are similar except that at a wire turnaround, the shrinking tile is either
added to the end of a wire’s right list or becomes the only tile in a previously empty list.
When we change L or R we also have to find the corresponding top or bottom tile in
their semi-merged sets.

B.3. Quick Load

The quick load starts with a list of positioned colored tiles and creates the
adjacency lists needed for compaction. It sets the tiles’ left, right, up, and down
pointers. The load first sorts the tiles on the (x,y) coordinates of their lower left corners.
With 16-bit coordinates, this takes a four-pass, 256-bin radix sort. Each plane’s frame
is modified so that during the load, the two left corners will be adjacent to the right-
edge wire. This allows these wires to be used as the load right edges without any first
and last adjacency special cases. The sorted tiles are marked not added. Then we scan
through the list adding tiles and marking them added. Before adding a wire, we check if
its upper endpoint has been added. If not, we move the wire from its current place at
the head of the list to directly after that endpoint. Before adding a non-wire tile, we
check if its corresponding left endpoint and that endpoint’s up and down wires have
already been added. If one has not, we move the tile to after it in the list.

The routine to add non-wire tiles is broken into two parts. The first part checks if
the tile’s bottom overlaps an already added tile and then either merges the new tile into
that set or locates the tile just below the new tile in the right edge’s left adjacency list.
The locate starts from an upper endpoint’s already added lower endpoint or, if not one,
the cached previously located below tile or, if it is too high, the right edge’s first left
adjacency. The locate continues upwards in two phases: first using a worst case bloat
to get close and then using the actual bloats. From the located tile, a left-up search is
done for a possible bottom left adjacency for the new tile. The second part of the add
similarly checks if the new tile’s top overlaps an already added tile and does the final,
left from above adjacency search. It also repairs the right edge’s left adjacency list after
transferring the proper adjacencies to the new tile’s left list. The quick load does not
modify the wire-up and wire-down pointers since they are properly set before hand.
This means, however, that during the load, wire-up and wire-down pointers pointing to
not yet added wires must be treated as nil pointers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Examples

Appendix C

Examples

|r|!1 ‘|"' | £
e

G

AR

- '@:"——;E}_@"—“@*— .. {#]-

0
&

)

W)

H: @

o
(r‘}}..:. y
w

=

d } 12 i 4'
RN T W IR

Figure C-1 4x4 Multiplier: 344x336A, 10.5k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Examples

SPTLOI Yoy
:322::

Figure C-2 4x4 Ram: 127x160A, 3.5k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Examples

:I

H

%

Wh ieed

AN

1k

-3 Full Adder (afavg): 79x94A,

C

igure

F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Examples

-Right Spanning Tree

4 Adder with Left

Figure C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Examples

WOy

BY AN INORARRAROS

-Down Spanning Tree

Figure C-5 Adder with Up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Examples 103

z 1 : 3
- t F = B
["—A'j‘“ 2
el o=
£ O Bt
E e i
i 5 G 2
2 H
é'- T 5 £
24 G 2 FHhE A I
; 1k
‘ji SH <- e
LET AR
vl -

Figure C-7 O(n2) Worst Case Compaction

Figure C-7 shows an O(n%) worst case compaction example. The tree compaction
converts a two pronged, height m/2 tree to a one pronged, height m tree (shown), one

tile at a time, without moving a single tile.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[Aho 83]

[Akers 70]

[Baird 77]

[Boyer 87a]

[Boyer 87b]

[Burns 87]

[Carpenter 87]

{Cho 77]

[Crocker 87]

[Dantzig 65]

[Dial 69]

104

References

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. Data
Structures and Algorithms. Addison-Wesley, Reading MA, 1983.

S.B.Akers, J.M.Geyer, D.L.Roberts. IC Mask Layout With a Single
Conductor Layer. In 7th Annual Design Automation Workshop,
pages 7-16, ACM/IEEE, San Fransico CA, June, 1970.

H.Baird. Fast Algorithms for LSI Artwork Analysis. In Proceedings
14th Design Automation Conference, pages 303-311, ACM/IEEE,
New Orleans LA, June, 1977.

David G. Boyer. Split Grid Compaction for a Virtual Grid Symbolic
Design System. In Proceedings International Conference on
Computer-Aided Design, pages 134-137, ACM/IEEE, Santa Clara
CA, November, 1987.

David G. Boyer. Symbolic Layout Compaction Benchmarks --
Results. In Proceedings International Conference on Computer
Design, pages 209-217, IEEE, October, 1987.

J.L.Burns, A.R.Newton. Efficient Constraint Generation for
Hierarchical Compaction. In Proceedings International Conference
on Computer Design, pages 197-200, IEEE, October, 1987.

Clyde W. Carpenter. Generating Incremental VLSI Compaction
Spacing Constraints. In Proceedings 24th Design Automation
Conference, pages 291-297, ACM/IEEE, Miami Beach FL, June,
1987.

Y.E.Cho, A.J.Korenjak, D.E.Stockton. FLOSS: An Approach to
Automated Layout for High-Volume Designs. In Proceedings 14th
Design Automation Conference, pages 138-141, ACM/IEEE, New
Orleans LA, June, 1977.

W.H.Crocker, C.Y.Lo, R.Varadarahan. MACS: A Module Assembly
and Compaction System. In Proceedings International Conference
on Computer Design, pages 205-208, IEEE, October, 1987.

George B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1965.

Robert B. Dial. Algorithm 360: Shortest Path Forest with
Topological Ordering. Communications ACM 12(11), November,

1969.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 105

[Dijkstra 59] E.W.Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik 1:269-271, 1959,

[Dunlop 78] A.E.Dunlop. SLIP: Symbolic Layout of Integrated Circuits With
Compaction. Computer Aided-Design 10(6):387-391, November,
1978.

[Dunlop 80] A.E.Dunlop. SLIM: The Translation of Symbolic Layouts into Mask
Data. In Proceedings 17th Design Automation Conference, pages
595-602, ACM/IEEE, June, 1980.

(Edmonds 72] ~ Jack Edmonds, Richard M. Karp. Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems. Journal ACM
19(4):248-264, April, 1972.

[Eichenberger 86] Peter A. Eichenberger. Fast Symbolic Layout Translation for
Custom VLS: Integrated Circuits. PhD Thesis, Stanford University,
April, 1986.

[Fulkerson 61] D.R.Fulkerson. An Out-of-Kilter Method for Minimal-Cost Flow
Problems. SIAM Journal Applied Math 9(1):18-27, March, 1961.

[Gibson 76] Dave Gibson, Scott Nance. SLIC - Symbolic Layout of Integrated
Circuits. In Proceedings 13th Design Automation Conference, pages
434-440, ACM/IEEE, San Fransico CA, June, 1976.

[Hedges 85] Thomas Hedges, William Dawson, Y. Eric Cho. Bitmap Graph
Build Algorithm for Compaction. In Proceedings International
Conference on Computer-Aided Design, pages 340-342, ACM/IEEE,
Santa Clara CA, November, 1985.

[Hsueh 79a] Min-Yu Hsueh. Symbolic Layout and Compaction of Integrated
Circuits. PhD Thesis, UC Berkeley, December, 1979.

[Hsueh 79b] Min-Yu Hsueh, D.O.Pederson. Computer-Aided Layout of LSI
Circuit Building-Blocks. In Proceedings International Symposium
on Circuits and Systems, pages 474-477, Tokyo Japan, 1979.

[Johnson 77] Donald B. Johnson. Efficient Algorithms for Shortest Paths in
Sparse Networks. Journal ACM 24(1):1-13, January, 1977.

[Kedem 84] Gershon Kedem, Hiroyuki Watanabe. Graph-Optimization
Techniques for IC-Layout. IEEE Transactions on Computer-Aided
Design CAD-3(1):12-20, January, 1984,

[Kennington 80] Jeff L. Kennington, Richard V. Helgason. Algorithms for Network
Programming. John Wiley & Sons, New York, 1980.

[Kingsley 84] Christopher Kingsley. A Hierarchical, Error-Tolerant Compactor. In
Proceedings 21st Design Automation Conference, pages 126-132,
ACM/IEEE, Albuquerque NM, June, 1984.

(Knuth 73] Donald E. Knuth. The Art of Computer Programming Vol. I:
Fundamental Algorithms. Addison-Wesley, Reading MA, 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 106

[Lakhani 87] G.Lakhani, R.Varadarajan. A Wire-Length Minimization Algorithm
for Circuit Layout Compaction. In Proceedings International
Symposium on Circuits and Systems, pages 276-279, Philadelphia
PA, 1987.

{Lengauer 83] T.Lengauer. Efficient Algorithms for the Constraint Generation for
Integrated Circuit Layout Compaction. In Proceedings 9th
Workshop on Graphtheoretic Concepts in Computer Science, pages
219-230, June, 1983.

[Liao 83} Y.Z Liao, CK.Wong. An Algorithm to Compact a VLSI Symbolic
Layout With Mixed Constraints. IEEE Transactions on Computer-
Aided Design CAD-2(2):62-69, April, 1983.

[Marple 88] David Marple, Michiel Smulders, Henk Hegen. An Efficient
Compactor for 45 Degree Layout. In Proceedings 25th Design
Automation Conference, pages 396-402, ACM/IEEE, Anaheim CA,
June, 1988.

[Mosteller 81] ~ R.C.Mosteller. REST: Leaf Cell Design System. In VLSI 81: Very
Large Scale Integration, pages 163-172, Academic Press, New
York, 1981.

[Mosteller 87] R.C.Mosteller, A.H.Frey, R.Suaya. 2-D Compaction, a Monte Carlo
Method. In Advanced Research in VLSI, pages 173-197, Stanford,
1987.

[Nyland 87] L.S.Nyland, S.W.Daniel, D.Rodgers. Improving Virtual Grid
Compaction Through Grouping. In Proceedings 24th Design
Automation Conference, pages 305-310, ACM/IEEE, Miami Beach
FL, June, 1987.

[Ousterhout 84] J.Ousterhout. Comer Stitching: A Data-Structuring Technique for
VLSI Layout Tools. IEEE Transactions on Computer-Aided Design
CAD-3(1):87-100, January, 1984.

[Sastry 82] S.Sastry, A.Parker. The Complexity of Two-Dimensional
Compaction of VLSI Layouts. In Proceedings International
Conference on Circuits and Computers, pages 402-406, September,
1982.

[Schiele 83] W.L.Schiele. Improved Compaction by Minimized Length of Wires.
In Proceedings 20th Design Automation Conference, pages 121-127,
ACM/IEEE, Miami Beach FL, June, 1983.

[Schlag 82] M.Schlag, F.Luccio, P.Maestrini, D.T.Lee, CK.Wong. A Visibility
Problem in VLSI Layout Compaction. Technical Report RC9896,
IBM T.J.Watson Research Center, 1982.

[Schlag 83] M.Schlag, Y.Z.Liao, CK.Wong. An Algorithm for Optimal Two-
Dimensional Compaction of VLSI Layouts. Integration
1(2&3):179-209, October, 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[Shin 87]

[Sleator 85]

[Tarjan 72]

[Taylor 84]

[Watanabe 84]

[Weste 81]

[Williams 64]

[Williams 78]

[Wolf 88]

107

H.Shin, A.L.Sangiovani-Vincentelli, C.H.Sequin. Two-Dimensional
Module Compactor Based on Zone-Refining. In Proceedings
International Conference on Computer Design, pages 201-204,
IEEE, October, 1987.

Danjel Dominic Sleator, Robert Endre Tarjan. Self-Adjusting Binary
Search Trees. Journal ACM 32(3):652-686, July, 1985.

Robert Endre Tarjan. Depth First Search and Linear Graph
Algorithms. SIAM Journal Computing 1(2):146-160, June, 1972.

G.S.Taylor, J.Qusterhout. Magic’s Incremental Design-Rule
Checker. In Proceedings 21st Design Automation Conference, pages
160-165, ACM/IEEE, Albuquerque NM, June, 1984.

Hiroyuki Watanabe. IC Layout Generation and Compaction Using
Mathematical Optimization. PhD Thesis, University of Rochester,
1984,

N.H.E.-Weste. Virtual Grid Symbolic Layout. In Proceedings 18th
Design Automation Conference, pages 225-233, ACM/IEEE,
Nashville TN, June, 1981.

J.W.J. Williams. Algorithm 232: Heapsort. Communications ACM
7(6):347-348, June, 1964.

John D. Williams. STICKS - A Graphical Compiler for High Level
LSI Design. In AFIPS National Computer Conference Proceedings,
pages 289-295, 1978.

Wayne H. Wolf, Robert G. Mathews, John A. Newkirk, Robert
W. Dutton. Algorithms for Optimizing, Two-Dimensional Symbolic
Layout Compaction. IEEE Transactions on Computer-Aided Design
CAD-7(4):451-466, April, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

