
SUPPORT FOR SPECULATIVE EXECUTION

IN HIGH-PERFORMANCE PROCESSORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Michael David Smith

November 1992

ii

© Copyright by Michael David Smith 1992
All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Mark A. Horowitz (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Monica S. Lam

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Teresa H. Meng

Approved for the University Committee on Graduate Studies:

iv

Abstract

Superscalar and superpipelining techniques increase the overlap between the instructions

in a pipelined processor, and thus these techniques have the potential to improve processor

performance by decreasing the average number of cycles between the execution of adja-

cent instructions. Yet, to obtain this potential performance benefit, an instruction scheduler

for this high-performance processor must find the independent instructions within the

instruction stream of an application to execute in parallel. For non-numerical applications,

there is an insufficient number of independent instructions within a basic block, and con-

sequently the instruction scheduler must search across the basic block boundaries for the

extra instruction-level parallelism required by the superscalar and superpipelining tech-

niques. To exploit instruction-level parallelism across a conditional branch, the instruction

scheduler must support the movement of instructions above a conditional branch, and the

processor must support the speculative execution of these instructions.

We define boosting, an architectural mechanism for speculative execution, that allows us

to uncover the instruction-level parallelism across conditional branches without adversely

affecting the instruction count of the application or the cycle time of the processor. Under

boosting, the compiler is responsible for analyzing and scheduling instructions, while the

hardware is responsible for ensuring that the effects of a speculatively-executed instruc-

tion do not corrupt the program state when the compiler is incorrect in its speculation. To

experiment with boosting, we built a global instruction scheduler, which is specifically tai-

lored for the non-numerical environment, and a simulator, which determines the cycle-

count performance of our globally-scheduled programs. We also analyzed the hardware

requirements for boosting in a typical load/store architecture. Through the cycle-count

simulations and an understanding of the cycle-time impact of the hardware support for

boosting, we found that only a small amount of hardware support for speculative execu-

tion is necessary to achieve good performance in a small-issue, superscalar processor.

v

This dissertation is dedicated to

the loving memory of my brother

Andrew Fairman Smith.

vi

Acknowledgments

Six and a half years at Stanford. Nine thousand hours in front of a workstation. Eleven

million keystrokes and mouse clicks. Is this toughening of the fingertips the essence of a

graduate career? Fortunately not. I can honestly say that I enjoyed my graduate career

because of the people I met between those keystrokes and mouse clicks.

Certainly, the one person who has the biggest influence on any graduate career is the prin-

ciple thesis advisor. I consider myself lucky to have had Mark Horowitz as my advisor for

he is a truly unique individual. As a principle thesis advisor, I guess that Mark is obligated

to listen to the crazy ideas of his students, but he always listened to the craziest of my

ideas with genuine interest and unfaltering patience. Of course, he never listened for long

because he has this uncanny ability to understand your entire idea, the ramifications of

your idea, and the problems with your idea from the first two sentences out of your mouth.

I thank him for all that he has taught me and for the time that he has spent with me.

Actually, I am one of those fortunate individuals with more than one interested advisor.

Monica Lam graciously acted as my alternate advisor, answering whatever compiler ques-

tions I had. I am not sure that Monica realized just how little I knew of compiler technol-

ogy when she first agreed to support my research, but in a short period of time, she helped

me learn more about compilers than I would have ever imagined possible.

I would also like to particularly acknowledge the support and guidance of three other

Stanford professors. The first of these professors is John Hennessy. John helped get me

started at Stanford, he sat on my orals committee, and he basically kept me sharp through-

out my graduate career. John continually referred his external visitors to my cubicle, and

he often stopped by to suggest that I volunteer for yet another talk. Though I first viewed

these activities as an unwelcome distraction, I later realized that they were opportunities

which had an immeasurable effect on my research and on my development. I also wish to

thank Professor Anoop Gupta for treating me as a colleague from my very first hour at

Stanford. I hope that our discussions were as helpful to him as they were to me. Finally, I

want to thank Professor Teresa Meng who chaired my orals committee and acted as a

reader for this dissertation.

vii

Besides my professors, I wish to acknowledge the support of the staff of the Center for

Integrated Systems and the help and friendship of my fellow students in the DASH, SUIF,

and TORCH research groups. Without their aid, none of the research in this thesis would

have been possible. I should especially thank the original members of the TORCH group

(Tom Chanak, Phil Lacroute, John Maneatis, Don Ramsey, and Drew Wingard) for believ-

ing in my work long enough to make it a reality. Also, I need to particularly thank Wolf

Weber and Kourosh Gharachorloo for so honestly reviewing my papers and talks.

Like many projects at Stanford, my research was also supported by many generous indi-

viduals outside the university. Of all of these individuals, four desire special recognition. I

want to thank Peter Davies, Mike Johnson, and Earl Killian who each in some way con-

tributed to the simulation environment used in this research. I also want to thank Neil Wil-

helm for his understanding and guidance during those difficult years when I was searching

for a research topic.

My final thanks must go to my family. My family has grown enormously since my first

days at Stanford, and I cherish the understanding and compassion that they all showed me

throughout the years. Of course, my deepest thanks must go to my wife Chris, who more

than anyone else has supported me both financially and emotionally. Chris never once

questioned me as to when I would be done, and she did a wonderful job of filling in those

few hours that I was away from my workstation.

This work was supported by the Defense Advanced Projects Research Agency (DARPA)

under contract N00039-91-C-0138. The author’s support by Digital Equipment Corpora-

tion through the CIS Fellow-Mentor-Advisor program is also gratefully acknowledged.

viii

Table of Contents

 Chapter 1 Introduction ...1

1.1 Constraints on ILP ..2
1.2 Background...5

1.2.1 Current approaches to instruction scheduling..5
1.2.2 Instruction scheduling with speculative execution ..7

1.3 An integrated approach...9

 Chapter 2 Opportunistic Instruction Scheduling ...12

2.1 Branch speculation..13
2.1.1 Achieving branch speculation..14
2.1.2 Boosting ...16
2.1.3 Handling exceptions ..19

2.1.3.1 Restart from a speculative exception ..19
2.1.3.2 Restart from a non-speculative exception...24

2.1.4 Existing mechanisms ...24
2.2 Building mechanisms for speculation...26
2.3 Speculative memory disambiguation..28
2.4 Summary...31

 Chapter 3 Global Instruction Scheduling..33

3.1 Background...33
3.1.1 Issues in basic block scheduling ..34
3.1.2 Issues in global scheduling ..37
3.1.3 Existing global schedulers ...41

3.2 Issues in our global scheduling algorithm ..44
3.3 A trace-scheduling framework..46

3.3.1 Building and scheduling a trace...48
3.3.2 Building the EDAG ...51
3.3.3 Choosing the next basic block ...53

3.3.3.1 Scheduling from already-scheduled basic blocks...............................54
3.3.3.2 Dynamic completion of the EDAG ..57

3.4 Availability and bookkeeping...58
3.4.1 Transformations to support upward code motion ..58
3.4.2 Bookkeeping ..61

ix

3.4.2.1 Support for duplication and speculation ...62
3.4.2.2 Our structures for bookkeeping ..66
3.4.2.3 Building the bookkeeping information ...67
3.4.2.4 Updating the bookkeeping information ..73

3.5 Scheduling support for boosting ...76
3.6 Summary...81

 Chapter 4 Evaluating Hardware Support for Scheduling ...82

4.1 Background...82
4.1.1 Environment...82
4.1.2 Specifics of scheduler implementation ..85
4.1.3 Simulation methodology..86

4.2 Boosting hardware ..87
4.2.1 Basic support..88
4.2.2 Full support ..89
4.2.3 Partial support ..91
4.2.4 Exceptions and the commit process...93

4.3 Performance evaluation ..95
4.3.1 Superscalar base model..95
4.3.2 Superscalar models with boosting ...98
4.3.3 Comparison with a dynamically-scheduled model....................................101

4.4 Summary...103

 Chapter 5 Conclusion ..104

5.1 Areas of future research..105

 Appendix A Scheduling a Basic Block ...109

A.1 Instruction lists...110
A.2 Scheduling a packet ...111
A.3 Overlapping branch delays ..115

 Appendix B Secondary Issues...116

B.1 Code compaction..116
B.2 Code compatibility ...119

References...122

x

List of Tables

Table 1-1: Comparison of recent pipelined processors. ..6

Table 4-1: Benchmark programs and their simulation information.83
Table 4-2: Superscalar speedups achievable without hardware support

for boosting. ...97
Table 4-3: Improvements in cycle-count speedup for various degrees

of boosting support over post-pass global scheduling
(machine model 2i.L)...98

Table 4-4: Summary of hardware requirements and cycle-count speedups
for the different speculative execution schemes.101

Table 4-5: Cycle-count speedup comparison of MinBoost3
with a dynamic scheduler. ...102

Table 5-1: Summary of performance evaluation (machine model 2i.L).105

xi

List of Figures

Figure 1-1: Examples of data dependence..3
Figure 1-2: Example of control dependence...4

Figure 2-1: Types of speculative movement. ...14
Figure 2-2: Boosting example. ...17
Figure 2-3: Pseudo-assembly-code for speculative exception handler.........................22
Figure 2-4: Speculative exception handling in TORCH...23
Figure 2-5: Example of speculative memory disambiguation......................................29

Figure 3-1: Example basic block and its DAG...35
Figure 3-2: Example of availability. ...40
Figure 3-3: Examples of a global code motion...43
Figure 3-4: Overview of the trace-scheduling framework. ..47
Figure 3-5: Algorithm for building and scheduling a trace. ...49
Figure 3-6: Algorithm for simple alias analysis. ..53
Figure 3-7: Algorithm for choosing the next basic block in the trace.54
Figure 3-8: Example of a backward-flowing anti-dependence edge.56
Figure 3-9: Algorithm for upward code motion. ..62
Figure 3-10: Example for availability constraints. ...63
Figure 3-11: Examples of each duplication scheme. ..65
Figure 3-12: Code for determining the type of duplication required..............................65
Figure 3-13: Summary of global constraints. ...67
Figure 3-14: Example of GCL construction. ..69
Figure 3-15: Transforming control-equivalent blocks into ideally

control-equivalent blocks...71
Figure 3-16: Algorithm for building and initializing the GCL.......................................72
Figure 3-17: Example of GCL update. ...75
Figure 3-18: Example of GCL and trace update...76
Figure 3-19: Bookkeeping specifics for building and scheduling a trace.77
Figure 3-20: Example of boosting-initiated duplication...79

Figure 4-1: Example schedules for different levels of hardware support.....................90
Figure 4-2: Hardware functionality of the Option 2...92
Figure 4-3: Smearing of the commit point onto a MIPS R2000 pipeline.....................93

Figure 5-1: Example of a peephole optimization on boosted code.107

xii

Figure A-1: Algorithm for scheduling the first basic block in the trace......................110
Figure A-2: Basic algorithm for cycle scheduling an instruction packet.112
Figure A-3: Example of overlapped CTI scheduling. ...115

Figure B-1: Examples of compaction with a single timing bit per instruction.118
Figure B-2: Algorithm for compacting a software schedule for hardware

with timing bits. ...118
Figure B-3: Example of instruction encodings in TORCH...120

Chapter 1 Introduction

1

Chapter 1

Introduction

Reducing the run time of a program is the foremost goal of processor design, and in this

thesis, we are particularly interested in reducing the run time of non-numerical applica-

tions. The run time of a program consists of three factors: the cycle time of the processor,

the average number of cycles per instruction (CPI) for a program, and the total number of

instructions executed by that program. The product of these three factors not only equals

the run time of the program, but it also represents the performance of the processor. This

thesis investigates an architectural technique for high-performance processor design

which decreases the average CPI of a program while minimally affecting the instruction

count of that program and the cycle time of the processor.

During the RISC revolution of the past decade, one way computer architects improved

processor performance was through the use of pipelining and instruction scheduling. Pipe-

lining decomposes the steps needed to execute an instruction into independent stages and

then overlaps the processing of these stages. Pipelining increases performance by reducing

the average time between the execution of adjacent instructions (i.e. by reducing the aver-

age CPI). Pipelining works best when the processing of an instruction in one stage is inde-

pendent of the instruction processing in the other stages. To optimize the advantage of

pipelining in RISC processors, an instruction scheduler attempts to arrange the instruction

stream to guarantee that the execution of an instruction is independent of the previous

instructions still in execution. This independence in the instruction stream is called

instruction-level parallelism (ILP), and by exploiting ILP, existing instruction schedulers

for RISC machines nearly achieve an average CPI of one.

To further decrease the average CPI, computer architects are designing pipelines with an

even greater overlap in the execution of adjacent instructions. Asuperscalar or superpipe-

lined processor is an example of processor with this type of enhanced pipeline [Jouppi and

Wall 1989]. To take advantage of superscalar and superpipelining techniques, an

1.1 Constraints on ILP

2

instruction scheduler must extract and exploit a larger amount of the ILP within an appli-

cation. Recent studies on the amount of exploitable ILP within applications have shown

that speculative execution is required to appreciably increase the amount of ILP in non-

numerical applications [Wall 1991, Lam and Wilson 1992]. As a result, this thesis investi-

gates a mechanism for speculative execution that increases the amount of exploitable ILP

within non-numerical applications. Yet, increasing the amount of exploitable ILP is not

enough to guarantee faster run times, this thesis also shows that it is possible for an imple-

mentation of the speculative mechanism and for an implementation of the instruction

scheduler that uses this mechanism to minimally impact the cycle time of the processor

and the instruction count of the application. The rest of this chapter further motivates the

need for speculative execution, and it introduces our approach to handling speculative

execution and instruction scheduling within the domain of non-numerical applications.

1.1 Constraints on ILP

The dependence constraints within an application define the amount ofexploitable ILP

within that application. By removing or reducing the severity of some of these dependence

constraints, one can increase the amount of exploitable ILP within the application. This

section overviews the dependence constraints on ILP, and it describes a number of impor-

tant techniques which reduce or remove some of these dependence constraints. In other

words, this section describes the techniques required for an instruction scheduler to extract

a large amount of the ILP within an application.

Data dependence and control dependence are the two types of program constraints that

enforce an ordering on the instructions in an application and therefore limit the amount of

exploitable ILP within the application. Data dependence is manifested in three forms: true

(Read-After-Write) dependences, anti- (Write-After-Read) dependences, and output

(Write-After-Write) dependences. Figure 1-1 lists a small code segment which contains an

example of each of these types of data dependence. There exists a true data dependence

between instructioni1 and instructioni2 of Figure 1-1 sincei1 is producing a result

which i2 needs. True dependences represent the flow of data through the program, and

thus, they are difficult to remove without rewriting the algorithm.

Anti- and output dependences, on the other hand, are simply due to the reuse of storage

resources in the machine, and because of this fact, we refer to these two types of data

dependence asstorage conflicts. Figure 1-1 contains storage conflicts due to the reuse of

1.1 Constraints on ILP

3

register resources. For example, there exists an anti-dependence between instructioni1

and instructioni2 sincei2 needs to write its result to registerr3 , and it cannot perform

this write until i1 reads the previous value fromr3 . There exists an output dependence

betweeni1 and i3 since both instructions write their results into registerr1 , and i1

must write its result first.

Like the earlier studies on ILP, recent studies on RISC object files show that storage con-

flicts due to registers can severely limit the amount of exploitable ILP within an applica-

tion [MDSmith et al. 1989, Wall 1991]. There are techniques, such asregister renaming,

that an instruction scheduler can use to remove these anti- and output dependences. For

instance, if the destination register ofi3 is changed fromr1 to r5 , the first and third

instructions are now independent and can execute in parallel. Thus, register renaming

increases the amount of exploitable ILP by removing register conflicts. Yet, register

renaming does not remove all of the storage conflicts within an application because data

dependences also occur between memory locations.

Obviously, a data dependence can flow through a memory location in the same manner

that it flowed through a register. For instance, a true data dependence exists between a

store instruction and a load instruction if the store writes a value to a memory location that

the load later reads. Similarly, an anti-dependence can exist between a load and a store,

and an output dependence can exist between two stores. The determination of a data

dependence between two memory operands (calledalias analysis) is more difficult than

the determination of a data dependence between two register operands because, unlike a

register operand, a single memory operand can address many different memory locations

during the execution of the application. In other words, two memory operations may be

data dependent during one instance of their execution and not data dependent during the

next instance. Wall [1991] shows that alias analysis can increase the amount of exploitable

ILP within an application.

Control dependence, like data dependence, also limits the amount of exploitable ILP

within an application. Control dependence is due to the existence of conditional branches

in the program, and these branches impose a dependence upon the instructions that follow

i1: r1 = r2 + r3
i2: r3 = r1 + 1
i3: r1 = r4 + 2

Figure 1-1: Examples of data dependence.

1.1 Constraints on ILP

4

them. Figure 1-2 contains a simple code segment in which instructionsi2 and i4 are

control dependent upon the conditional branch instructioni1 . That is, a processor must

first evaluate the branch condition before it can determine whether registerr1 should be

incremented or decremented.

Again like the earlier studies on ILP, the recent studies on RISC object files show that the

amount of exploitable ILP within a basic block is quite small [MDSmith et al. 1989, Wall

1991, Lam and Wilson 1992]. Yet, these same studies show that the removal of the control

dependence constraints (i.e. the a priori knowledge of the direction of every branch in an

application) greatly increases the amount of exploitable ILP. Unfortunately, it is impossi-

ble to have a priori knowledge about every branch in an application because some condi-

tional branches depend upon information available only at run time. Even so, one can

minimize the effects of control dependence by speculating on the direction of a branch.

Speculative execution is the execution of an instruction before it is known whether the

instruction execution is necessary or correct.Branch speculation involves the prediction

of a conditional branch direction and then the speculative execution of the instructions

dependent upon that branch. Branch speculation increases the amount of exploitable ILP

by removing control dependence constraints. For example, if the condition in Figure 1-2

usually evaluates so that instructioni2 is executed, branch speculation provides a mecha-

nism for scheduling and executing instructioni2 before i1 . The resulting speculative

execution increases the exploitable ILP of the example code segment if the instruction

scheduler can schedule the speculative execution of instructioni2 in parallel with the

instructions that occur in the block beforei1 .

Finally, numerous studies show that the severity of the data and control dependence con-

straints varies with the type of application [Nicolau and Fisher 1984, Wall 1991, Lam and

Wilson 1992]. Thus, the relative importance of the techniques which increase the amount

of exploitable ILP within an application depends upon the domain of the application. Reg-

ister renaming is important in all applications, but even with register renaming, numerical

applications, especially vectorizable applications, contain significantly more exploitable

ILP than non-numerical applications, applications such as compilers and text editors. In

i1: if (cond) then
i2: r3 = r1 + 1
i3: else
i4: r3 = r1 - 1

Figure 1-2: Example of control dependence.

1.2 Background

5

fact, non-numerical object codes exhibit very little exploitable ILP because of their high

frequency of conditional branches which depend upon run-time information. Thus, an

instruction scheduler for non-numerical applications must take advantage of speculative

execution in order to increase the amount of exploitable ILP within these applications.

1.2 Background

This thesis follows an approach to high-speed processor design where we distribute the

functionality for instruction scheduling with speculative execution between the compiler

and the hardware. To understand why this type of an approach is necessary, Section 1.2.1

overviews the strengths and shortcomings of a pure hardware and a pure software instruc-

tion scheduler. Section 1.2.2 then describes how each pure approach supports the potential

of speculative execution.

1.2.1 Current approaches to instruction scheduling

In general, an instruction scheduler rearranges the instruction stream to maximize proces-

sor performance. More specifically, the instruction scheduler first analyzes a set of instruc-

tions to determine the dependences between the instructions and the processor resources

required by the instructions. The analysis of resource needs is important because there are

only a finite number of resources in any given processor. The instruction scheduler then

defines an ordering on the instructions that satisfies the instruction dependences and the

resource constraints. ILP allows the instruction scheduler to avoid pipeline stalls which

result from the instruction dependences and resource constraints. These pipeline stalls

decrease processor performance by increasing the average CPI.

Either the compiler or the hardware (or both) can perform instruction scheduling. Static

instruction scheduling is instruction scheduling where the compiler performs dependence

analysis and instruction ordering. Static instruction schedulers that look beyond basic

block boundaries are calledglobal instruction schedulers. Chapter 3 overviews the com-

ponents of a global instruction scheduler, and it reviews a large number of existing algo-

rithms. Dynamic instruction scheduling is instruction scheduling where the hardware

performs dependence analysis and instruction ordering. A number of dynamic instruction

scheduling techniques have been proposed [Thornton 1964, Tomasulo 1967, JESmith

1982]. Johnson [1990] provides a good survey of these techniques. If the hardware in a

dynamic instruction scheduler can reorder the instructions in the instruction stream, the

hardware supportsout-of-order execution; if the hardware cannot reorder the instructions

1.2.1 Current approaches to instruction scheduling

6

in the instruction stream, the hardware supportsin-order execution [Johnson 1990]. Even

though the compiler and the hardware can both perform instruction scheduling, there are

strengths and shortcomings to each approach.

The biggest advantage that static instruction scheduling has over dynamic instruction

scheduling is that static instruction scheduling is done without any overhead on the hard-

ware; the hardware remains as simple and as fast as possible. In other words, improve-

ments in a static instruction scheduler only affect the compile time of the application and

not the cycle time of the processor. Improvements in a dynamic instruction scheduler, on

the other hand, directly affect the complexity of the processor design, and this extra hard-

ware complexity can impact both the design time and the cycle time of the processor. For

instance, dynamic instruction schedulers with support for out-of-order execution generate

instruction schedules with much better cycle counts than dynamic instruction schedulers

with support for in-order execution. The cost of this improvement is increased hardware

complexity because out-of-order execution requires significantly more hardware resources

than in-order execution. In fact, Table 1-1 illustrates that good performance depends upon

more than just a sophisticated hardware instruction scheduler.

Since the amount of sophistication in the instruction scheduler directly impacts the com-

plexity of the hardware in a dynamic instruction scheduler, people often implement

dynamic schedulers with relatively simple scheduling algorithms. As a result of this sim-

plicity, one advantage that a static instruction scheduler exhibits over a dynamic instruc-

tion scheduler is that the compiler often analyzes a much larger portion of the instruction

Clock
rate

SPEC
int92

SPEC
fp92

SPEC89

RISC HP Snake* 66 MHz 48.1 75.0 —

In
-

O
rd

er

Sun SuperSparc* 40 MHz 52.6 64.7 —

MIPS R4000* 100 MHz 61.7 63.4 —

DEC Alpha** 150 MHz — — ~110

O
ut

-o
f-

O
rd

er IBM RS/6000* 50 MHz 42.0 85.6 —

Motorola 88110*** 50 MHz ~51.0 ~73.9 ~63.7

* Data taken fromMicroprocessor Report, Vol. 6, No. 7, May 27, 1992.
** Estimated data taken fromIEEE Spectrum, Vol. 29, No. 7, July 1992.
*** Estimated data taken fromMicroprocessor Report, Vol. 5, No. 22, Dec. 4, 1991.

Table 1-1: Comparison of recent pipelined processors.

1.2.2 Instruction scheduling with speculative execution

7

stream. The size of the “window” into the instruction stream is important because it

impacts the instruction scheduler’s ability to find ILP. Bigger windows improve the poten-

tial for finding ILP. A dynamic instruction scheduler cannot match the analysis range of a

static instruction scheduler because dependence analysis on a window of instructions

grows super-linearly in the number of instructions. This super-linear factor impacts the

complexity of the hardware faster than it impacts the complexity of the compiler.

Another advantage of a static instruction scheduler over a dynamic instruction scheduler is

that the compiler can use more sophisticated heuristics for instruction ordering than the

hardware can. Instruction schedulers use heuristics to choose the ordering of the instruc-

tions because the construction of an optimal schedule (one with the minimal cycle count)

on a machine with a limited number of resources is an NP-complete problem [Gross

1983]. Compilers often use complex heuristics (such as the critical path through the appli-

cation) to improve the instruction schedule. Because of hardware complexity, hardware

schedulers often use simplistic heuristics to choose among the instructions that are ready

for execution. For example, a recent implementation of the HPS processor, a dynamically-

scheduled superscalar processor with out-of-order execution, simply chooses the oldest

instruction in the set of ready instructions [Uvieghara et al. 1992]. The implementation

shows that even this simple heuristic requires a significant amount of hardware resources.

Even with all these advantages, a static instruction scheduler is not an ideal solution to the

problem of instruction scheduling. The biggest advantage of hardware scheduling over

compiler scheduling is that the hardware can get exact information about the dependences

between instructions and the resources required by the execution of an instruction. In other

words, a dynamic instruction scheduler has access to run-time information that a static

instruction scheduler cannot know, and this exactness in analysis information can improve

the quality of the instruction schedule produced. Knowledge that a load operation causes a

cache miss or that two memory operations do not access the same memory location are

two examples of exact information which are difficult for a compiler to determine.Without

exact information about the resources needed by an instruction or about the interaction

between two instructions, a compiler makes a conservative decision and schedules for the

worse-case situation.

1.2.2 Instruction scheduling with speculative execution

With speculative execution, one can build instruction scheduling techniques (such as

branch speculation) which remove some of the program constraints and thus increase the

1.2.2 Instruction scheduling with speculative execution

8

ILP in the program. The execution of a speculative instruction (i.e. speculative execution)

is identical to the execution of a non-speculative instruction except that the effects of a

speculatively-executed instruction should not corrupt the program state if the speculation

is incorrect. For example in branch speculation, a speculatively-executed instruction

should not corrupt the program state if its dependent branch condition is incorrectly pre-

dicted (Chapter 2 describes all of the cases of branch speculation in detail). Though the

maintaining the correct program semantics independent of the outcome of the speculation

can be the responsibility of the compiler or the hardware, the hardware is much better

suited for dealing with the effects of a speculative operation that should not have occurred.

Specifically, the speculative execution of any instruction requires a buffer-and-undo mech-

anism to guarantee that the effects of a speculatively-executed instruction do not corrupt

the program semantics when the speculation is incorrect. To achieve this buffer-and-undo

mechanism, researchers have proposed a number of schemes for supporting speculative

execution in hardware [JESmith and Pleszkun 1985, Hwu and Patt 1987, Sohi and Vajap-

eyam 1987, Johnson 1990]. Basically, these schemes involve the addition of extra buffer-

ing in the processor to hold the effects of speculatively-executed instructions until the

hardware can determine whether the effects are useful or not. An incorrect speculation

flushes the buffered effects while a correct speculation causes a transfer of the effects in

the buffers into the user-visible program state.

The researchers usually couple this hardware-assisted speculative execution with a

dynamic instruction scheduler because hardware-assisted speculative execution requires

more information than is in a typical RISC instruction stream. That is, hardware-assisted

speculative execution requires the instruction scheduler to indicate which instructions are

speculative instructions (i.e. instructions requiring speculative execution), and it requires

the instruction scheduler to indicate the speculative condition (e.g. the speculative instruc-

tions depend upon this conditional branch going this direction). By implementing both the

instruction scheduler and the mechanism for speculative execution in the hardware, a

designer can ensure that the instruction scheduler generates the information that the spec-

ulative execution hardware needs, and that the instruction scheduler can schedule any

instruction for speculative execution.

Without hardware assistance to buffer-and-undo the effects of a speculatively-executed

instruction, a static instruction scheduler is severely limited in its ability to schedule an

instruction for speculative execution. Since a speculative instruction looks like any other

instruction to the hardware, the compiler is entirely responsible for checking the

1.3 An integrated approach

9

speculative condition and undoing the effects of the speculative operations on an incorrect

speculation. Yet, it is impossible for the compiler to prevent or undo exception processing

(a side effect of some instructions). Even for the cases where the compiler can prevent or

undo the effects of a speculative operation, it is often too expensive (in terms of run-time

performance) for the compiler to insert extra code to check the speculative condition and

undo the speculative effects. As a result of these limitations, a compiler usually settles for

the conservative approach and only schedules an instruction for speculative execution if

the effects of this instruction are harmless after an incorrect speculation.

Unfortunately, this conservative approach by the compiler greatly reduces the advantage

of speculative execution. For instance, the one of the important advantages to branch spec-

ulation is the early execution of load operations since load operations often have longer

latencies than the other instructions in the processor. However, the compiler cannot sched-

ule a load before its dependent branch because the load is capable of causing an address-

ing exception which could halt the program.

In summary, the speculative execution of some instructions requires hardware assistance,

and thus a pure software approach to instruction scheduling with speculative execution is

unacceptable. A pure hardware approach is also unacceptable because the hardware com-

plexity of a dynamic scheduler limits the sophistication of that instruction scheduler and

thus the incremental benefit of speculative execution. For example, though the hardware

can execute a load operation before its dependent branch, the hardware can only move the

load up past the small number of instructions in its instruction window. Thus, neither a

compiler-centric approach nor a hardware-centric approach are adequate solutions to the

problem of instruction scheduling with speculative execution.

1.3 An integrated approach

To effectively support instruction scheduling with speculative execution, we require an

integrated approach which considers the capabilities of both the compiler and the hard-

ware. An integrated approach defines an architectural mechanism which bridges the gap

between the compiler and the hardware so that the hardware can differentiate between a

speculative and a non-speculative instruction. By considering the hardware and the com-

piler together, we can design an instruction scheduler with speculative execution that

achieves the advantages of each of the pure approaches.

1.3 An integrated approach

10

One way to build the instruction scheduler in this integrated approach is to actually build

two full instruction schedulers—one in the compiler and one in the hardware. Melvin and

Patt [1991] propose an architecture that follows this type of an integrated approach, and

their study shows that the cycle-count performance (i.e. performance measured only as the

product of CPI and instruction count) of this integrated approach does exceed the cycle-

count performance of either pure approach. Though this type of integrated approach does

produce solutions which extract and exploit the largest amount of ILP possible, this type

of approach does so with a large amount of hardware complexity. In other words, this type

of integrated approach attains the advantages of each of the pure approaches, but it also

retains some of the shortcomings of dynamic instruction scheduling.

To reduce the hardware complexity, we need to focus the functionality of the instruction

scheduler in the compiler and try to limit as much as possible the amount of hardware

functionality. We should only include hardware complexity where absolutely necessary,

i.e. where it provides functionality that the software cannot and where this functionality

improves performance. Similarly, we want to develop an architectural mechanism which

supports compile-time speculation with a small amount of hardware complexity. Guarding

[Hsu and Davidson 1986] and non-excepting instructions [Colwell et al. 1987, Ebcio˘glu

1988, Chang et al. 1991b] are examples of this type of an architectural mechanism. Over-

all, this integrated approach provides the scheduling range, heuristic sophistication, and

hardware simplicity of a static instruction scheduler with the exact information and specu-

lative freedom of a dynamic instruction scheduler. The instruction scheduler in this type of

approach extracts and exploits more of the available ILP without necessarily impacting

the instruction count of the application or the cycle time of the processor.

We also subscribe to this type of an integrated approach. Yet, instead of simply proposing

another architectural mechanism to support instruction scheduling with speculative execu-

tion, this thesis describes a framework which facilitates the development of instruction

scheduling techniques which exploit speculative execution. The framework for this inte-

grated approach to instruction scheduling with speculative execution is calledopportunis-

tic instruction scheduling. This framework provides a straightforward method for creating

a mechanism to speculate on any program constraint that is determined at run-time. This

framework also allows us to think about speculative execution as an abstract mechanism

available to the compiler. Thinking about speculative execution in this manner has an

important consequence: it separates functionality from implementation considerations.

This separation facilitates the evaluation of a range of cost/performance tradeoffs for a

particular technique requiring speculative execution. That is, we rely on simulation and

1.3 An integrated approach

11

hardware analysis to determine the extent of the hardware support necessary in an archi-

tectural mechanism to achieve good processor performance at a low hardware cost. As an

example of this approach, this thesis uses the opportunistic instruction scheduling frame-

work to answer the question of how much branch speculation is necessary to achieve good

performance in a simple superscalar processor.

The thesis is organized as follows. Chapter 2 contains a discussion of opportunistic

instruction scheduling and a detailed description ofboosting—our implementation of

hardware-assisted speculative execution. The later chapters then focus on the development

and evaluation of a specific implementation of boosting which supports branch specula-

tion in a superscalar processor. Branch speculation is important because, as Section 1.1

mentioned, control dependence severely limits the amount of exploitable ILP in non-

numerical applications. Specifically, we add boosting to a superscalar implementation of

the MIPS R2000 architecture [Kane 1987], which we call TORCH.1 Since opportunistic

instruction scheduling relies heavily on the compiler for the scheduling of instructions and

the exploiting of ILP, Chapter 3 describes our global scheduling algorithm for TORCH,

and it discusses how boosting affects this algorithm. Chapter 4 then describes and evalu-

ates a range of hardware support for boosting, and it shows that very little hardware sup-

port is necessary in the TORCH CPU to achieve good performance on non-numerical

applications. Chapter 5 presents the conclusions of this research.

1. This thesis subsumes our earlier research on boosting and TORCH. MDSmith et al. [1990] and MDSmith
et al. [1992] present the results of these early investigations.

Chapter 2 Opportunistic Instruction Scheduling

12

Chapter 2

Opportunistic Instruction Scheduling

The biggest shortcoming of static instruction scheduling is that the compiler must remain

conservative in its scheduling decisions. Whenever run-time information is needed to

determine the dependences between instructions or the side effects of an instruction, the

compiler must assume that the instructions are dependent or that the worst-case side

effects will occur. In other words, the compiler assumes the existence of a program con-

straint where one may not actually exist at run time. This pessimism decreases the exploit-

able ILP, and thus it leads to lost opportunities for improved performance.

Opportunistic instruction scheduling is a framework which employs speculation to over-

come this pessimism in the compiler. Speculation increases the exploitable ILP and it

allows the compiler to take advantage of the potential opportunities for improving proces-

sor performance. Under opportunistic instruction scheduling, the compiler makes assump-

tions about the run-time information, and it then schedules the code under these

assumptions. In other words, the compiler speculates on the value of the run-time informa-

tion, and it relies on the hardware to guarantee that the program semantics are correctly

maintained.

Of course, the framework is only useful if there exists an architectural mechanism which

efficiently communicates the speculation information between the compiler and the hard-

ware. Boosting is our implementation of speculative execution, and Section 2.1 motivates

the usefulness of boosting by describing how boosting supports branch speculation. With

this description as background, Section 2.2 discusses the general method for building

compile-time techniques which rely on speculative execution and specifically boosting.

Finally in Section 2.3, we show the versatility of this framework by constructing a specu-

lative technique which allows the compiler to speculate on the data dependence constraint

between two memory operations.

2.1 Branch speculation

13

2.1 Branch speculation

Branch speculation increases the amount of exploitable ILP in an application by removing

the control dependence constraints imposed by conditional branches. Without branch

speculation, the instructions in the THEN and ELSE portions of an IF construct can only

execute after the evaluation of the IF condition. Branch speculation involves the move-

ment of the instructions in the THEN block or the ELSE block (or both blocks) above the

IF condition and then the speculative execution of the moved instructions. Through branch

speculation, the compiler can take advantage of any possible overlap between the execu-

tion of the instructions determining the branch condition and the instructions in the THEN

or ELSE blocks.

As discussed in Section 1.1, branch speculation greatly increases the amount of exploit-

able ILP within non-numerical applications because these applications contain a high fre-

quency of conditional branches which depend upon run-time information. Two recent

studies on the limits of ILP illustrate the severity of the control dependence constraints

within non-numerical applications compiled for RISC machines. In the limit, Wall [1991]

found that his non-numerical applications contained less than 2 independent instructions

per cycle (IPC) without branch speculation and approximately 4–6 independent IPC with

branch speculation. Lam and Wilson [1992] found that their non-numerical applications

contained a harmonic average of 2.1 independent IPC without branch speculation and a

harmonic average of 6.8 independent IPC with branch speculation.1 Both studies gener-

ated the ILP results with branch speculation by speculating on only one direction of each

branch. Without branch speculation, the ILP results are especially discouraging consider-

ing that both studies completely removed storage conflicts, both studies assumed perfect

memory disambiguation, both studies allowed for the parallel execution of (at least) 256

instructions, and both studies assumed a machine model where all instructions execute in a

single cycle. Obviously, even in this ideal world, non-numerical applications require

branch speculation to achieve any sizeable improvement in the amount of exploitable ILP.

The studies by Wall [1991] and by Lam and Wilson [1992] allowed for the movement of

any instruction above its control dependent branch. Boosting is an architectural mecha-

nism which fully supports this unrestricted model of speculative execution. This section

describes how boosting fully supports branch speculation. First though, Section 2.1.1

1. Though the studies contained some of the same applications, Lam and Wilson’s numbers are slightly
higher because they removed some of the true data dependences in the applications (for example, they
employed loop unrolling to remove the dependence chain caused by the induction variable update).

2.1.1 Achieving branch speculation

14

presents the requirements for the buffer-and-undo mechanism in branch speculation.

Section 2.1.2 and Section 2.1.3 use the elements of this presentation to describe the specif-

ics of boosting for branch speculation. Section 2.1.4 concludes this section with a compar-

ison between boosting and other published approaches which reduce the control

dependence constraints on instruction scheduling.

2.1.1 Achieving branch speculation

To fully understand why we require a buffer-and-undo mechanism in hardware, we

describe what happens to the program semantics if we do not have this buffer-and-undo

mechanism. Even if we assume that the movement of an instruction from below to above

its control dependent branch preserves the correctness of the operands of the moving

instruction, the execution of this instruction can still violate the program semantics in two

ways. The combination of these two possible violations results in the four types of specu-

lative movement which are graphically illustrated in Figure 2-1.

We say that a conditional branch iscorrectly predicted for a speculative operation if the

basic block from which the speculative operation was moved is executed after the branch

is executed; otherwise, we say that the branch isincorrectly predicted. Now, we say that a

speculative movement isillegal if the speculative operation writes to a location whose

previous value is needed by some instruction when the branch is incorrectly predicted.

Illegal speculative movement can be thought of as violating a true data dependence

Figure 2-1: Types of speculative movement.

r1 = load A

(c) unsafe

r1 = …

r1 = r2 & r3

(b) illegal

r2 = r1 …

r1 = load A

(d) unsafe and illegal

r2 = r1 …

r1 = r2 & r3

(a) safe and legal

r1 = …

2.1.1 Achieving branch speculation

15

constraint along the incorrectly-predicted path of the branch. Figure 2-1b is an example of

an illegal speculative movement. We say that a speculative movement isunsafe if the exe-

cution of the speculative operation can cause an exception to occur. The exception sig-

nalled by an unsafe speculative execution should only occur if the branch is correctly

predicted. Figure 2-1c is an example of an unsafe speculative movement since the load

operation can cause a memory fault. A speculative movement can obviously be both

unsafe and illegal as in Figure 2-1d. To preserve program semantics though, a speculative

movement should only result in execution that issafe and legal as in Figure 2-1a.

Without hardware support to guarantee program correctness under speculative move-

ments, the compiler takes all the responsibility for ensuring that the semantics of the pro-

gram are maintained, independent of the run-time conditions. In other words, the compiler

ensures that the worst-case effects of the speculative instructions do not adversely affect

the program state when the branch is incorrectly predicted. This requirement constrains

the code motions available to the compiler. The compiler, of course, can perform any spec-

ulative movement that is safe and legal. The compiler may overcome some speculative

movements that are illegal by renaming the destination register of a speculative operation

so that it does not conflict with the set of registers that are needed (i.e. the set of register

that arelive) on the incorrectly-predicted path of the branch. This renaming can require

extra instructions later to select between multiple reaching values [Ebcio˘glu and Nakatani

1989]. Register renaming, however, does not overcome speculative movements that are

illegal due to a dependence through a memory location. Furthermore, a compiler can

never transform an unsafe speculative movement into safe speculative execution, and thus

a compiler alone cannot support the general movement of instructions above their control

dependent branch.

One simple way to guarantee program correctness for all speculative movements is to

include extra buffering in the hardware which either holds the effects of the speculative

operations or backs up the state that was displaced by the speculative operations. This is

how the dynamic instruction scheduling solutions discussed in Section 1.2.2 support all

speculative movements. Hardware buffering can postpone the effects of a speculative

operation (including any speculative exception) until the hardware resolves the specula-

tive condition. If all branches that a speculative operation depends on are correctly pre-

dicted, the hardware updates the non-speculative state of the machine with the buffered

effects of that speculative operation.

2.1.2 Boosting

16

A commit of a speculative operation is the updating of the non-speculative state with the

state and side effects of the speculative operation. If any dependent branch for a specula-

tive operation is incorrectly predicted, the machine simply discards the state and side

effects of that speculative operation. Asquash or nullify of a speculative operation is the

throwing away of the state and side effects of the speculative operation. We say that the

hardware performs the commit action at thecommit point. From an architectural point of

view, this commit point in branch speculation occurs immediately before the machine exe-

cutes any instructions in the predicted target basic block of the last dependent branch. The

hardware performs the squash action at any incorrectly-predicted branch.

2.1.2 Boosting

Boosting is our architectural mechanism for unrestricted, hardware-assisted speculative

execution. Boosting reserves bits in the instruction word so that the compiler can indicate

which instructions are speculative. Thus, whenever the compiler moves an instruction

above a control dependent branch, the compiler maylabel this speculative instruction as a

boosted instruction (by correctly setting the reserved bits). This labelling encodes all the

control dependence information needed by the hardware so that the hardware can deter-

mine when the effects of the boosted instruction are no longer speculative. For branch

speculation, the labelling indicates which branch or branches the boosted instruction are

the control dependent upon, and the labelling indicates the predicted direction of each of

these branches.

The hardware support for boosting consists of extra buffering in the processor which holds

the effects of a speculative operation. The compiler relies on the hardware to track the

speculative condition for this operation and to properly manage the speculative and non-

speculative state. This hardware support ensures that the semantics of a program is not

violated by a boosted operation when that operation’s speculative condition is incorrect.

With boosting, we convert all of the types of speculative movement in Figure 2-1 into safe

and legal speculative execution.

An instruction that has been speculatively moved aboven branches and labelled with the

control dependence information for thesen branches is referred to as an instruction that is

boostedn levels. Figure 2-2 contains an example of the most general form of boosting

(which is not necessarily the best form to implement). The instructioni2 in Figure 2-2 is

an example of an instruction that is boosted two levels; this is indicated by adding a

“.BRR” suffix to the instruction destination. A labelling of “.BRR” indicates that the

2.1.2 Boosting

17

instruction is dependent upon the next two branches going RIGHT. In this example, the

number of Rs or Ls that follow the B indicate the level of boosting while each R (RIGHT)

or L (LEFT) indicates the direction of the dependent branch. In general, an independent

branch can be included in the sequence by inserting an X (DON’T CARE). A boosting

suffix on a destination register implies that a future value has been generated for that regis-

ter. A boosting suffix on the destination of a memory store operation implies that a future

value has been generated for that memory location. In general, a boosting suffix names a

readable and writable location for future values, and thus the sources of a boosted instruc-

tion may also have boosting-level suffixes as in the base register of instructioni2 .

Even though the effects of a boosted instruction are accessible by other instructions

boosted along the same path, the speculative effects do not update the non-speculative

state until after the execution of the last branch upon which the instruction depends. In

other words, the result of instructioni1 in Figure 2-2 is accessible to instructioni2 , but

the result returned by the load instruction is not committed to the non-speculative state

(i.e. the value inr1.BRR is not accessible by the namer1) unless both branches in Fig-

ure 2-2 are correctly predicted. If either branch is incorrectly predicted, the effects of the

load operation are prevented from affecting the non-speculative state. With these seman-

tics, the effects (including the side effects) of the boosted operations only affect the non-

speculative state if the flow of control would have executed those instructions anyway.

In terms of the types of speculative movement discussed in Figure 2-1, boosting effec-

tively renames registers (r1.BR is different fromr1) so that speculative movements that

would have been illegal are now legal. Since the hardware is responsible for the commit

action, there is no explicit instruction that transfers the value in the speculative register

name (e.g. r1.B1) into the non-speculative register name (e.g. r1), and thus, boosting is

Figure 2-2: Boosting example.

r1 = load 4(r1)

r2 = r1 … r1 = r2 & r3

r1.BR = r2 & r3

r1.BRR = load 4(r1.BR)

i1

i2

i3

2.1.2 Boosting

18

more efficient than software renaming from an instruction count perspective. In addition

to postponing the writing of the non-speculative register file, boosting postpones all of the

speculative side effects so that speculative movements that would have been unsafe are

now safe. That is, it postpones the writing of memory and the signalling of exceptions

until the commit point. At the commit point, all the boosted side effects update the non-

speculative state.

The most general form of boosting described above requires hardware exponential in the

boosting level since speculative state is needed for each possible branch prediction path.

To limit the hardware to a more reasonable level, the compiler should boost instructions so

that they are speculative only on the most-frequently taken direction of a branch. This

restriction is reasonable because the ILP studies discussed in Section 2.1 show that specu-

lation on one direction of each branch has the potential to greatly increase the amount of

exploitable ILP within a non-numerical application (we use this restriction throughout the

rest of the thesis). Since boosting now applies to the most-frequently taken direction of

each branch, the branch instructions can encode the prediction information (i.e. predicted-

as-taken which is indicated by a “.t” suffix on the branch opcode or predicted-as-not-taken

which is indicated by a “.n” suffix), and each boosted instruction can simply indicate that

it is dependent upon the nextn conditional branches (e.g. the labelling of the destination

register of instructioni2 in Figure 2-2 is simplified from “.BRR” to “.B2”). To simplify

matters further, once an instruction is boosted to indicate dependence upon a conditional

branch, that boosted instruction is assumed to be control dependent upon all subsequent

branches it is moved above. By encoding the boosting level as a count of the number of

these control dependent branches, the hardware can easily reconstruct the control depen-

dence information. That is, a boosted instruction of leveln is control dependent upon the

execution of the nextn conditional branches, and this boosted instruction is committed

only if all of the nextn conditional branches are correctly predicted. This constraint makes

the boosting information easier to encode, and the hardware simpler to build.

The interaction of these boosting semantics with the global instruction scheduler is dis-

cussed in Chapter 3, while the implementation of the hardware mechanisms that support

these boosting semantics and the smearing of the architectural commit point onto a pipe-

lined processor are discussed in Chapter 4. Basically, this hardware consists of extra regis-

ter file space, extra store buffering, and a mechanism to postpone speculative exceptions.

The extra register file space and store buffering are relatively straightforward, though their

implementation is somewhat complicated by a pipelined processor design. Exception pro-

cessing, on the other hand, is tricky even in a simple, non-pipelined world.

2.1.3 Handling exceptions

19

2.1.3 Handling exceptions

In general, there are two types of exceptions: those that require handling and restart of the

program (non-fatal exceptions) and those that terminate a program (fatal exceptions).

Exception processing for non-fatal exceptions involves three basic mechanisms:signal-

ling that the exception occurred;handling of the exception to correct the problem; and

restart of the process after proper handling. Exception processing for fatal exceptions

involves only the first two of these mechanisms: signalling that the exception occurred;

and handling of the exception to kill the program. Obviously, exception processing for

fatal exceptions is a special case of the processing of non-fatal exceptions. This subsection

describes our approach which handles both of these types of exceptions in a processor that

supports branch speculation. Our approach incurs very little overhead on the hardware, the

software, and the running time of the application.

Since exception processing is quite disruptive to a program’s execution, the ideal situation

is to only do that exception processing which is necessary and to do that necessary pro-

cessing as fast as possible. This implies the following two observations for a processor

with branch speculation. First, the processor should only signal those speculative excep-

tions that will commit. In this way, the execution time of a program is never increased

because of unnecessary speculative exceptions. Second, the exception handler in this pro-

cessor should have access to the branch speculation mechanism. Branch speculation can

improve the performance of the exception handler in the same way that it improves the

performance of the application code.

Ensuring that a processor with branch speculation only invokes exception processing

when absolutely necessary is straightforward. Just as the hardware can buffer the other

side effects of speculative instructions, the hardware can suppress and buffer the signalling

of a speculative exception until the commit point. In fact, a one bit queue is sufficient to

guarantee the signalling of a speculative exception (a queue is necessary to support multi-

ple levels of boosting). As long as the exception is fatal, this one bit queue is a complete

solution. Unfortunately, this solution is not adequate for non-fatal exceptions where we

need to restart the program after the handling of the exception.

2.1.3.1 Restart from a speculative exception

There are two general classes of solutions for solving this restart problem. The first type of

solution signals and handles the speculative exception immediately, before it is deter-

mined whether the exception should occur. In this way, the restart problem is identical to

2.1.3 Handling exceptions

20

the problem of restarting after a non-speculative exception. Speculative exceptions requir-

ing restart are handled immediately, while those requiring program termination are post-

poned as in the one-bit solution. Regrettably, this solution is not ideal in that it possibly

increases the run time of the program due to the signalling of speculative exceptions that

should have never occurred. Furthermore, the exception handler cannot use the branch

speculation mechanism since it cannot inadvertently (or even intentionally) destroy any of

the speculative state. To ensure that the processor does not inadvertently destroy some

speculative state, the processor must include a mechanism to inhibit the speculation hard-

ware during the exception handler.

The second type of solution postpones the handling of all speculative exceptions until the

commit point. By waiting till the commit point, an approach of this type ensures that no

extra speculative exceptions are signalled; yet by waiting, the approach runs the risk of

corrupting a large portion of the speculative state. For instance, assume that the compiler

boosts two load instructions above a conditional branch, and the second load depends

upon the result of the first load (e.g. pointer chasing). If the first load instruction causes a

page fault and this speculative exception is postponed, then the result of second specula-

tive load is trash. Any approach based on the postponement of the speculative exception

must therefore not only re-execute the speculative instruction that caused the exception,

but it must re-execute all subsequent instructions that depended upon the excepting

instruction. Furthermore, this type of an approach must guarantee that the operands for

these instructions are still available so that processor can re-execute them, and it must not

re-execute any non-speculative instructions between the excepting instruction and the

commit point since these non-speculative instructions might not be idempotent.

Our approach to handling speculative exceptions does postpone the handling of all specu-

lative exceptions until the commit point. Our approach is based on the belief that the han-

dling of a speculative exception will only occur infrequently (no more often than a non-

speculative exception), and thus it is acceptable to slightly increase the time it takes to

handle a speculative exception if this penalty greatly simplifies the mechanism for specu-

lative exceptions. The key observation in our approach is that though the hardware is very

good at postponing the signalling of a speculative exception, it is very bad at determining

what instructions need to be re-executed and at ensuring that their operands are still avail-

able. The compiler on the other hand is very adept at analyzing dependences and schedul-

ing for operand availability. In general, our approach relies on the compiler to ensure the

operand availability of any instruction that might need re-execution and to generate a

2.1.3 Handling exceptions

21

block of code that rebuilds the corrupted state. The hardware in our approach simply post-

pones the signalling of the speculative exception until the commit point.

The hardware in our solution consists solely of the one-bit queue mentioned earlier. At a

commit point, any outstanding speculative exceptions are signalled, and the speculative

state is discarded. Discarding the entire speculative state simplifies the determination of

what instructions the processor needs to re-execute.2 That is, the processor must re-exe-

cute any boosted instruction that was speculative upon the conditional branch which sig-

nalled the speculative exception. To simplify the re-execution of these instructions, the

compiler (during scheduling) squirrels away a compact copy of the boosted instructions to

re-execute. This block of instructions is called therecovery code since it recovers the

speculative state that should have been committed. Since the compiler knows exactly

which boosted instructions depend upon a conditional branch, the compiler can easily gen-

erate recovery code for each conditional branch. Furthermore, the compiler can monitor

anti-dependences during instruction scheduling to ensure that the operands for the instruc-

tions in the recovery block are still available during the restart process. Section 3.5 dis-

cusses this scheduling constraint in more detail.

In parallel with the discarding of the speculative state, the processor invokes an exception

handler that was generated by the compiler (it exists in the program’s text segment). Every

type of speculative exception invokes the same single exception handler at this point, and

thus the single bit queue in hardware is sufficient to indicate an outstanding speculative

exception. The pseudo-assembly-code for this handler is listed in Figure 2-3. The handler

simply uses the address of the commit point as an index into a jump table (also created by

the compiler). The indexed jump table entry points to the recovery code for the branch that

just tried to perform a commit. The speculative exception handler completes by jumping

to the indicated block of recovery code.

So far, the cause for the original exception has not been handled, and thus the exception

will reoccur when the copy of the boosted instruction is re-executed in the recovery code.

Yet, this copy of the boosted instruction is now a non-speculative instruction (i.e. the pro-

cessor “committed” the speculative state), and so, the processor handles this exception in

2. Discarding all of the speculative state on an exception has another important advantage; it allows the
exception handler to use the branch speculation mechanism since there is no outstanding speculative state to
worry about. This advantage shows that our approach can achieve both of the goals that were put forth under
the ideal situation.

2.1.3 Handling exceptions

22

the normal manner. The recovery code completes by unconditionally jumping to the pre-

dicted target of the original conditional branch.

Figure 2-4 illustrates the handling of a speculative exception on a boosted instruction

using our recovery-code approach. In Figure 2-4, the boosted instructions are indicated

through a “.Bn” suffix (e.g. instructioni7.B2 is boosted two levels). The instruction

i3.t is the branch instruction. The branch is predicted to be taken, and labelL2 is the

target of the branch. For this example, assume that the architecture has no branch delay

slots and that instructioni8.B1 is a load instruction which causes a page fault. Once the

branch instructioni3.t is executed and found to be correctly predicted, a generic

boosted exception is signaled, and the machine vectors to the speculative exception han-

dler at the top of the program text segment. This handler uses the address of the exception

program counter (@i3) to find the address of the recovery code (L.i3). Now, the cause of

the speculative exception was not yet handled, but it will be when the instruction that

caused the exception is re-executed in the recovery basic block (wheni8 in Figure 2-4 is

executed). This instruction is now a non-speculative instruction (since the earlier branch

was correctly predicted), and the exception can be handled like any other non-speculative

exception. The recovery basic block ends in an unconditional jump to the predicted target

of the earlier branch (L2), and execution continues. As the example in Figure 2-4 illus-

trates, this solution works for multiple levels of boosting.

The major cost of our recovery-code approach is that the size of the object file has

increased in order to accommodate the jump table and the recovery code. The size of the

increase depends upon the amount of speculative code in the program text segment and on

the size of the parallel issue, but in the worst case, the increase is only about 100%. To

understand this reasons for this increase, let us consider a very aggressive scheduling tech-

nique in which every other instruction in the program segment is a speculative instruction.

The recovery code thus adds a 50% overhead to the size of the original code. For non-

numerical code with branches every 4 to 5 instructions, it is not cost-effective to build a

hash table for the jump table. Consequently, the jump table has an entry for every packet

Figure 2-3: Pseudo-assembly-code for speculative exception handler.

load $r1,$expPC # get address of commit point
subi $r1,$r1,start # translate addr to offset
srl $r1,$r1,n # translate word addr into packet addr
addi $r1,$r1,jtable # calculate index into jump table
load r1,0($r1) # get address of recovery code
jump $r1 # jump to recovery code

2.1.3 Handling exceptions

23

of parallel instructions, and the smaller the issue size, the larger the jump table overhead.

For a 2-issue superscalar processor, the jump table adds another 50% overhead to the size

of the original code.

The increase in object code size requires more disk space to hold the program, but the pro-

gram’s instruction cache miss rate does not change significantly. This is because the

majority of the execution time is spent in the program text segment, and the size of this

segment is unaffected by our solution. The recovery code only enters the instruction cache

during exception processing. The other cost is the overhead of the speculative exception

handler. This handler takes approximately 10–12 cycles to execute, and thus adds minimal

overhead to the cost of an exception.

Most exception processing routines, like a page fault handler, occur infrequently, and

when they do occur, they run for a long time. Because of these facts, the overhead of our

recovery-code approach is quite acceptable. In some systems though, there are exception

handlers which are performance sensitive. In MIPS systems for example, TLB misses are

handled in software, and the MIPS designers have taken great care in optimizing the per-

formance of this exception handler. If the overhead of our solution is deemed too great for

these performance-sensitive handlers, one could always special case these speculative

exceptions and handle them immediately, as in the first class of solutions.

Figure 2-4: Speculative exception handling in TORCH.

Object Code

program

recovery code

speculative exception
jump table

L.i3:

text segment

i1 i2

i7.B2 i8.B1

i3.t i9.B1

i7.B1 i8

j L2 i9

@i3: L.i3

speculative exception handler

2.1.4 Existing mechanisms

24

2.1.3.2 Restart from a non-speculative exception

Up to this point, we have focused on the handling of and restart after a speculative excep-

tion. This covers only half the problem though. The inclusion of speculative state and the

adoption of hardware mechanisms such as boosting also impact the handling of and restart

after a non-speculative exception. In an ideal world, the addition of the speculative tech-

niques should not affect the coding of the non-speculative exception handlers; yet, the

non-speculative exception handlers should have access to the speculative techniques so

that their performance can also improve. What these goals imply is that the speculative

state is non-essential state—state that is not saved across process switches. The machine

discards the speculative state at every exception. By discarding the speculative state, the

non-speculative exception handlers do not have to worry about maintaining the existing

speculative state (e.g. no saving and restoring of speculative registers), and these handlers

are free to use the speculative mechanism.

An unfortunate consequence of this scheme is that the non-speculative exception handler

has destroyed the program’s speculative state, and the program might need this speculative

state. The solution to this problem is simple: the return-from-exception instruction for a

non-speculative exception sets the speculative exception bit. If the program then tries to

commit some discarded speculative state, the machine will simply go back and rebuild the

speculative state using the speculative exception mechanism discussed above. A designer

can minimize the overhead to a non-speculative exception by only setting of this specula-

tive exception bit if some speculative state existed at the point of the non-speculative

exception.

In summary, our recovery-code approach provides a very simple and efficient mechanism

to handle both speculative and non-speculative exceptions. This approach also provides

the architecture with precise exceptions [Hennessy and Patterson 1990]. That is, at any

non-speculative exception, all the non-speculative instructions before the faulting instruc-

tion have completed, and all the instructions after the faulting instruction (including the

instructions that were speculatively executed) can be restarted.

2.1.4 Existing mechanisms

Boosting is just one example of an architectural mechanism for speculative execution

which supports branch speculation. The rest of this section compares boosting with two

other architectural techniques for removing control dependence constraints: guarding [Hsu

2.1.4 Existing mechanisms

25

and Davidson 1986] and non-excepting instructions [Colwell et al. 1987, Ebcio˘glu 1988,

Chang et al. 1991b].

Guarding predicates a control dependent operation with its dependent branch condition,

and this predicated operation is called a guarded (or conditional) instruction. If the predi-

cate on a guarded instruction evaluates to true, the execution of the guarded instruction is

allowed to complete; if the predicate evaluates to false, the execution of the guarded

instruction is squashed. The guarding predicates can be quite complex and can encode the

control dependence information for multiple branches. Guarding also allows for the possi-

ble elimination of branch instructions by guarding the instructions from both paths of the

branch. Another advantage of this technique is that the required speculative state is very

small, and it is held in the pipeline bypass registers that are already in the machine. Yet,

guarding does not support unrestricted speculative execution since the scheduling of

guarded operations is constrained by the availability of the dependent branch condition.

Non-excepting instruction architectures rely on hardware mechanisms to handle unsafe

speculative movements and on software renaming to handle illegal speculative move-

ments. Non-excepting instruction architectures label unsafe speculative movements as

non-excepting instructions. The semantics of a non-excepting instruction is that this

instruction never signals an exception. If it causes an exception, it simply generates a pol-

luted result. Eventually, some later (regular) instruction may try to use this polluted value,

and it is at this time that the exception is signalled. In this way, non-excepting instruction

architectures can detect exceptions on speculative operations. These polluted values are

often implemented by building a tagged-data architecture, and by carrying the address of

the “excepting” non-excepting operation in the data field of the polluted operand, these

architectures can indicate which instruction originally caused the exception.

Mahlke et al. [1992] describe one example of a tagged, non-excepting architecture which

uses an instruction scheduling technique called sentinel scheduling. In their architecture, a

bit in the instruction word differentiates the non-excepting version of an instruction from

the excepting version, and an extra bit is placed on every register to indicate the presence

of an outstanding speculative exception. When a non-excepting instruction causes an

exception, the processor places the address of this non-excepting instruction in the result

register of the instruction, and it sets the tag bit of that register to indicate an outstanding

speculative exception. Any later non-excepting instruction that uses this result will simply

pass on the exception in their tagged result register. For the machine to signal this specula-

tive exception, some non-speculative instruction must try to use one of these excepting

2.2 Building mechanisms for speculation

26

results. This non-speculative instruction is the sentinel in sentinel scheduling. Without this

sentinel, detection of the original speculative exception is impossible.

Sentinel scheduling works quite well as long as the program does not need to restart after

the handling of the postponed exception. For non-fatal exceptions, sentinel scheduling has

the same restart problems that we discussed in Section 2.1.3.1 (i.e. how does one deter-

mine which instructions to re-execute and how does one ensure that the operands for these

instructions are still available). Sentinel scheduling partially solves the restart problem by

restricting the compiler’s anti-dependence distance, i.e. the compiler cannot schedule two

anti-dependent operations withinn cycles of each other. This restriction ensures that an

operand will be available for restart if the exception is signalled withinn cycles, but it also

limits the compiler’s freedom in rearranging the code. For the unrestricted movement of

non-excepting instructions, sentinel scheduling could rely on our recovery-code approach

to exception processing described in Section 2.1.3.

In summary, guarding and non-excepting instructions are restricted forms of speculative

execution. Guarding is basically a restricted form of general boosting where the compiler

only boosts instructions into the pipeline “shadow” of the evaluation of the dependent

branch condition. Non-excepting architectures are similar to boosting architectures in that

they rely on hardware mechanisms to overcome unsafe speculative movements. Yet, they

are different from boosting architectures because they rely on software renaming to over-

come illegal speculative movements. Overall, boosting represents an approach which can

fully support an unrestricted model of speculative execution through the addition of gen-

eral buffering in the processor, while the other mechanisms opt for a restricted approach

which adds only a small amount of specialized buffering (e.g. exception bits).

2.2 Building mechanisms for speculation

Branch speculation with boosting is one example of an opportunistic instruction

scheduling technique because it allows the compiler to safely speculate on the run-time

direction of a conditional branch. The general idea behind opportunistic instruction

scheduling is to speculate on any piece of run-time information. The zeroth step in this

process is to determine what run-time question is important enough to warrant a

speculative technique. This step, though straightforward, encompasses all the design steps

listed in the next paragraph. A designer must formulate a run-time question, design the

technique and the mechanism for speculative execution, and then evaluate the cost of the

2.2 Building mechanisms for speculation

27

implementation against its performance benefits. Thus, this step is more than just picking

another compiler constraint to overcome; a designer must complete and analyze the

opportunistic instruction scheduling technique to fully answer the question posed by this

step. Chapter 4 presents the data necessary to answer this question for branch speculation

with boosting.

With the implications of this initial step understood, the development of the speculative

technique consists of support for the following four steps:

(1) compile-time determination of where speculation is needed;

(2) complete separation of speculative and non-speculative state;

(3) run-time determination of whether the speculation was correct; and

(4) run-time determination of correct program state after completion of specula-

tive operation and run-time check.

In the first step, the compiler determines whether the current instruction scheduling situa-

tion will benefit from speculation. To analyze the situation, the compiler must approximate

the potential performance benefit available through speculation, and it must compare this

against the probable performance penalty incurred from incorrect speculation. If the bene-

fits outweigh the penalties, then the compiler goes ahead with the speculation.

Once the compiler has determined where to apply speculation, the compiler encodes these

assumptions and passes this information to the hardware. The most important aspect of

this speculation is expressed in step two: the speculative state is kept separate from the

non-speculative state. This separation provides an easy way to recover the non-speculative

state at any time. This separation is the key to fast state recovery after an incorrect specu-

lation, and it is the key to the simple handling of all exception processing.

Step three involves the run-time checking of the compile-time assumptions against the

run-time information. Though some run-time checking can be accomplished through soft-

ware checks [Nicolau 1989], the most comprehensive and efficient method of performing

run-time checks is in hardware. As discussed in Section 1.2, only the hardware can effec-

tively capture and efficiently check every operational side effect.

As long as the compile-time assumptions match the run-time information, the speculation

is correct, and step four only consists of the update of the non-speculative state by the

speculative state. If however the assumptions do not match the run-time information,

2.3 Speculative memory disambiguation

28

either the speculation was incorrect or an exception occurred which corrupted the specula-

tive state. In both cases, the speculative state is useless and therefore discarded. For the

case of incorrect speculation, step four usually consists of the discarding of the speculative

state and continuing with execution. For the case of an exception or in the case where the

incorrect speculation requires recovery, step four requires the inclusion of a method for

rebuilding the discarded state.

For example in branch speculation with boosting, step one requires the compiler to deter-

mine which conditional branches it wishes to move code across. Once the compiler creates

a speculative operation through this upward code motion, the compiler marks this specula-

tive operation as a boosted instruction. The marking consists of extra information included

in the boosted instruction’s encoding which passes control dependence information to the

hardware. Step two is accomplished through extra buffering for the speculative values and

speculative side effects so they do not interfere with the existing non-speculative state. In

step three, the hardware checks to see if the static branch prediction matches the dynamic

action of the branch. On a correct prediction, step four requires the hardware to commit

the speculative values into the non-speculative state. On an incorrect prediction, the hard-

ware squashes the speculative state.

The proper handling of exceptions is also included in step four. Section 2.1.3.1 described

how we handle exceptions on boosted instructions. The basis of this method is the ability

to rebuild the discarded state; the machine must recover this state because the branch was

correctly predicted. This ability also provides a simple method for minimizing the impact

of speculation on non-speculative exceptions. As explained in Section 2.1.3.2, a non-spec-

ulative exception destroys the existing speculative state so that the speculative state does

not add overhead to the handling of the non-speculative exception and so that the excep-

tion handlers can use the speculative mechanisms. A consequence of this decision is that

all mechanisms for speculation execution that adhere to this opportunistic instruction

scheduling framework can support precise exceptions.

2.3 Speculative memory disambiguation

Static memory disambiguation determines when the compiler is able to reorder a set of

memory operations to improve the instruction schedule. An ideal memory disambiguator

either returns the answer YES (the memory addresses alias) or NO (the memory addresses

never alias). Often in pointer-intensive code however, static memory disambiguation fails

2.3 Speculative memory disambiguation

29

and the disambiguator returns the answer UNKNOWN. That is, the disambiguator is

unable to statically determine whether two memory operations will ever access the same

memory location. When this occurs, the compiler assumes that it cannot reorder the two

memory operations; in other words, the compiler is conservative during instruction sched-

uling whenever static memory disambiguation fails.

In this section, we use the opportunistic instruction scheduling framework of the last sec-

tion to develop a technique for speculative memory disambiguation. This technique allows

the compiler to assume that two memory addresses do not alias3 when the disambiguator

fails. Under speculative memory disambiguation, the compiler is free to reorder the mem-

ory operations to extract more ILP. To simplify this discussion, we describe a mechanism

for speculative execution that only supports the reordering of memory operations within a

basic block. This base mechanism is easily extended, and it can be coupled with the boost-

ing mechanism which supports branch speculation. In fact, speculative memory disambig-

uation relies on a mechanism for speculative execution that is very similar to the boosting

mechanism of Section 2.1.2, except that this implementation of our mechanism for hard-

ware-assisted speculative execution describes the compile-time assumptions for specula-

tive memory disambiguation instead of those for branch speculation.

Figure 2-5a contains a basic block of instructions where the disambiguator cannot deter-

mine the relationship between the addressB in instructioni2 and the addressA in instruc-

tion i3 . Without speculative memory disambiguation, the compiler is forced to assume

that the addresses could alias. If the loads in this architecture are delayed by one cycle, the

best schedule for this block takes five cycles to execute. If the compiler was sure that the

memory addresses were always different, then the compiler could reorder the instructions

in the basic block as in Figure 2-5b and save one cycle per execution of the basic block.

3. One could also assume that the memory references do alias and optimize for that occurrence.

Figure 2-5: Example of speculative memory disambiguation.

i1 r2 = r3 + r4
i2 store B = r2
i3 r1 = load A

<stall>
i4 r2 = r1 + r2

i3 r1.S = load A
i1 r2 = r3 + r4
i4 r2.S = r1.S + r2
i2 store B = r2

i3’ r1 = r2
i4’ r2 = r1 + r2

jmp (@(i2)+1)

(a) without speculation (b) with speculation (c) recovery code

2.3 Speculative memory disambiguation

30

In opportunistic instruction scheduling, the compiler labels the speculative operations with

the dependence information that the hardware needs to perform a run-time check of the

compile-time assumption. In the case of speculative memory disambiguation, the

compiler assumes that two memory operations are not dependent, and it creates

speculative operations by moving the later memory operation and its dependent

successors before the earlier memory operation. In Figure 2-5b, instructionsi3 possibly

depends on instructioni2 , but the compiler assumes that they are independent. The

compiler has moved instructionsi3 andi4 above instructioni2 , and it has labeledi3

and i4 as speculative operations. These operations are dependent upon a run-time

comparison of the load address in instructioni3 and the store address in instructioni2 .

The labelling is indicated by adding a ‘.S’ suffix onto the destination register of the specu-

lative operations (e.g.r1.S of instructioni3 in Figure 2-5b). This is analogous to the

labelling used in branch speculation, and as before, the labelling indicates that the instruc-

tion is generating a future or speculative value. Opportunistic instruction scheduling sepa-

rates this speculative state from the non-speculative state so that the non-speculative state

is easy to recover.

Unlike the run-time check in branch speculation, the run-time check in speculative mem-

ory disambiguation is slightly more complicated. It requires the hardware to keep track of

the address used in the initial speculative load or store operation, and it requires the hard-

ware to compare this address against the address used in the later (possibly dependent)

store operation. Returning to the example in Figure 2-5, the hardware compares the load

address it remembered from instructioni3 against the store address in instructioni2 . If

the addresses are different, the speculation was correct, and the non-speculative state is

updated with the speculative state (Chapter 4 discusses the specifics of the hardware

implementation to satisfy the commit operation which is used by both branch speculation

and speculative memory disambiguation). If the addresses are equal, the speculative state

is wrong, and the correct non-speculative state must be generated. Notice that this correc-

tive action is different from the squashing mechanism in branch speculation. In this case,

the program wanted to do the load, the machine just did the load at the wrong time. Thus,

the machine must re-execute the load to obtain the correct datum.

The machine can fix the non-speculative state by using the same recovery-code approach

that fixes the state after a speculative exception. The compiler generates some recovery

code which re-executes the previously-speculative load or store and any of its dependent

operations that were also affected. Figure 2-5c shows the recovery code for the example.

2.4 Summary

31

In this recovery code, the compiler has optimized the code sequence by replacing the load

instruction (instructioni3) with a move instruction (instructioni3’). This optimization

is possible since the addressesA andB are identical when the machine is executing in the

recovery code.

Up to this point, we have explained the specifics of steps (2) through (4) of Section 2.2 for

the development of a speculative memory disambiguation mechanism. Steps (0) and (1),

the determination of when and where speculative memory disambiguation is needed, are

equally as important as the other steps. For branch speculation, an incorrect speculation

simply discards the speculative state. Thus, if the hardware for supporting speculative exe-

cution exists, a compiler should always attempt to take advantage of branch speculation

because the cost of an incorrect speculation is effectively zero. In speculative memory dis-

ambiguation, this cost/benefit tradeoff is not as obvious.

Let us first assume that the hardware already exists to support speculative memory disam-

biguation. The cost of an incorrect speculation under speculative memory disambiguation

is the time it takes to fix the non-speculative state. This time is made up of the time it takes

to vector to the recovery code handler plus the time it takes to execute the handler and the

recovery code. Though this time is small (on the order of 10–20 cycles), the total cost is

significant if the prediction accuracy is low. If the potential benefit is also low (e.g. 1 cycle

per execution of the code as in Figure 2-5), the compiler should be fairly certain that the

memory operations do not alias. For instance, if the average recovery cost is 15 cycles and

the benefit is 1 cycle per execution, then the compiler should speculate if it believes that

the memory operations dynamically alias less than 6% (≈ 1/15) of the time. In general, the

more expensive the recovery cost, the less opportunities exist for speculation; conversely,

the less expensive the recovery cost, the more often the compiler should speculate.

2.4 Summary

Opportunistic instruction scheduling is a framework for developing techniques which

keep the compiler from making conservative scheduling decisions when it lacks exact

dependence information, information that is only available at run time. The basis of

opportunistic instruction scheduling is speculation. The compiler speculates on the value

of some run-time information and then schedules the code to take advantage of this oppor-

tunity. This chapter described two opportunistic instruction scheduling techniques, branch

speculation and speculative memory disambiguation. Because control dependence is such

2.4 Summary

32

a large constraint on the amount of exploitable ILP in non-numerical applications, branch

speculation is the more important of these two opportunistic instruction scheduling tech-

niques, and thus the later chapters of this thesis focus specifically on branch speculation.

Each opportunistic instruction scheduling technique relies on an architectural mechanism

which implements speculative execution with safe and legal semantics. This chapter

described boosting, an unrestricted implementation of hardware-assisted speculative exe-

cution. Boosting contains three important ideas which ensure a complete and an efficient

implementation: information transfer, separation of state, and partitioning of functionality.

Information transfer refers to the fact that the compiler informs the hardware of its

assumptions so that the hardware can easily check the run-time conditions against the

compile-time assumptions. Until the hardware verifies that the compile-time assumptions

are correct, the speculative and non-speculative states are kept separate. This separation of

state simplifies the recovery process without complicating the commit process. The com-

mit process is handled in the hardware so that the machine state is updated quickly and

efficiently on a correct speculation. The commit process is the desired and expected oper-

ation so that the cost of a hardware method is justified. The recovery process, on the other

hand, is an infrequent occurrence (hopefully). This process, which occurs after an excep-

tion (and sometimes after an incorrect speculation as in speculative memory disambigua-

tion), is handled through a combination of hardware and software methods. That is, the

hardware captures the exception signal, while the compiler generates and compacts the

recovery code. The next chapters focus on the compiler support, hardware costs, and per-

formance benefit of boosting for branch speculation.

Chapter 3 Global Instruction Scheduling

33

Chapter 3

Global Instruction Scheduling

In our approach to instruction scheduling with speculative execution, the compiler is

responsible for analyzing the program dependences to uncover ILP and for scheduling the

code to take advantage of that exploitable ILP. The overriding goal of this compilation

system is to exploit the available ILP within an application without adversely affecting the

instruction count of that application. In order to effectively exploit ILP, we developed a

new global instruction scheduling algorithm. A global instruction scheduler searches for

and takes advantage of ILP across basic block boundaries, and thus a global instruction

scheduler will benefit from an inter-block mechanism such as boosting. This chapter pro-

vides an overview of our global scheduling algorithm (more details of the algorithm can

be found in the appendices). The emphasis of the overview is on the routines which

uncover the exploitable ILP and which perform the code motions across basic block

boundaries. These routines are the ones that benefit from boosting, and these are the ones

that affect the instruction count of the scheduled application.

3.1 Background

Before we discuss the topic of global instruction scheduling, this section begins with a

brief discussion of the issues and existing techniques for the scheduling instructions

within a basic block. Basic block schedulers are simpler to understand than global sched-

ulers because basic block schedulers do not deal with control dependence. Furthermore, a

review of the prevalent approaches to global instruction scheduling show that a basic

block scheduler usually lies at the heart of an effective global scheduler. Thus, an under-

standing of the tradeoffs in a basic block scheduler will aid us in the understanding of the

important tradeoffs in our global scheduler.

3.1.1 Issues in basic block scheduling

34

3.1.1 Issues in basic block scheduling

A basic block scheduler only considers the interactions between instructions within a

basic block, and because of this restriction, a basic block scheduler need only consider the

effects of data dependence constraints and resource constraints. Since every instruction

within a basic block is executed once a basic block is entered, a basic block scheduler

never considers the effects of control dependence. Gross [1983] and Gibbons and Much-

nick [1986] present a broad survey of the early techniques for basic block scheduling. This

subsection reviews the important issues in a basic block scheduler, and it presents the

choices we made for our basic block scheduler.

The data dependence relationship between instructions within a basic block is often repre-

sented by a directed acyclic graph (DAG). There is a node in this graph for each instruc-

tion in the basic block. A directed edge leads from noden1 (start of the directed edge) to

noden2 (end of the directed edge) if and only if instructioni2 (represented by noden2)

is data dependent upon instructioni1 . That is, instructioni2 cannot execute earlier than

instruction i1 . The edges in the DAG indicate all of the ordering constraints between

instructions in the basic block (independent of whether those orderings are due to depen-

dences through registers, memory, or special structures such as condition code registers).

DAGs are constructed either by scanning backward (as done by Gibbons and Muchnick

[1986]) or by scanning forward (as done by our scheduling algorithm) across the instruc-

tions in the basic block.

During construction of the DAG, each directed edge is labelled with a number. This num-

ber indicates the delay (in cycles) associated with the ordering constraint. The delay on

each edge can be different, and the number depends upon the type of data dependence

constraint that the edge represents. The delay associated with a true dependence edge is

simply equal to the latency of the operation at the start of the directed edge. The delays

associated with an anti-dependence or output dependence edge are characterized by the

structure of the pipeline in the processor. For the pipeline organizations in this thesis, each

pipeline reads all of the operands for the instructions issued in the same cycle before it

writes any of their results. Thus, the delay associated with an anti-dependence edge is

zero. That is, an anti-dependent operation can issue in the same cycle as its dependent

partner, but never earlier. The integer pipeline in this thesis is a fixed-length pipeline

where all integer instructions flow through the same number and type of pipeline stages.

The floating-point pipeline, on the other hand, is a variable-length pipeline where different

floating-point instructions execute in a possibly different number of stages. Because of the

3.1.1 Issues in basic block scheduling

35

variable length of the floating-point pipeline, the delay associated with an output depen-

dence edge is the maximum of 1 and (l1 - l2 + 1), wherel1 is the result latency of the

instruction at the start of the output dependence edge andl2 is the result latency of the

instruction at the end of the output dependence edge. This equation ensures that the over-

lapped execution of two floating-point instructions still updates the register file in the cor-

rect order. As an illustration of these concepts, Figure 3-1 contains a small basic block and

its corresponding DAG. In this example, the latency of a load operation is two cycles

while the latency of all other integer instructions is a single cycle. The floating-point mul-

tiply executes in six cycle while the floating-point add executes in three cycles.1

Given a DAG for the instructions in a basic block, an instruction isready if all of its data-

dependent predecessor instructions in the DAG have been scheduled and their latencies

fulfilled. Instruction scheduling on the basic block is performed by repeatedly finding the

ready instructions, and then placing those ready instructions as early in the schedule as

possible.

Given a machine with infinite resources, it is trivial to construct an optimal schedule for a

basic block. One need only perform a topological sort of the DAG. For real machines with

limited resources, the construction of an optimal schedule is an NP-complete problem

[Gross 1983]. Because of this, instruction scheduling follows some type of heuristic algo-

rithm. Instructions in the DAG are given a priority which heuristically indicates the rela-

tive importance of scheduling one instruction before another (Smotherman et al. [1991]

describes 26 different proposed priority functions). This priority is used by a heuristic

scheduling algorithm to choose among the ready instructions. Davidson et al. [1981] com-

pared a number of heuristic algorithms, and they recommended list scheduling as the best

1. Notice that the delays on the output dependence edges in this single basic block example are covered by
the true and anti-dependence edge delays. For DAGs containing a sequence of basic blocks, the use of a reg-
ister definition may not be in the sequence of basic blocks, and thus we must know the output dependence
delay.

Figure 3-1: Example basic block and its DAG.

i1: r1 = load A
i2: r3 = r1 + 1
i3: r1 = r4 + 2
i4: f5 = fmult(f2,f4)
i5: store B = f5
i6: f5 = fadd(f6,f7)

i2

i3

2

1

0

i1

i5

i6

6

4

0

i4

3.1.1 Issues in basic block scheduling

36

compromise. List scheduling generates reasonably short schedules within a reasonable

amount of compile time. We use list scheduling to schedule our dependence graphs.

There are many variations on the basic list scheduling algorithm. For instance, one can

vary the sophistication of the priority function, but usually some simple function like the

maximum number of cycles from the node to the end of the DAG is sufficient. One can

also vary the scheduling direction that the list scheduler takes over the DAG. So far, we

have describedtop-down scheduling where predecessors in the DAG are scheduled before

successors. Top-down scheduling is good for pulling an operation as early in the schedule

as possible, leaving holes at the bottom of the schedule. The opposite of top-down sched-

uling isbottom-up scheduling. In bottom-up scheduling, an instruction is considered ready

if all its successor instructions have been scheduled and the latency for the candidate

instruction is satisfied for all scheduled successors. Bottom-up scheduling tries to push an

operation as late in the schedule as possible, leaving holes at the top of the schedule. We

use a combination of top-down and bottom-up scheduling to capture the advantages of

both approaches (see Appendix A).

Another decision for list scheduling is whether scheduling proceeds on a cycle-by-cycle

basis (often calledcycle scheduling) or on an operation-by-operation basis (often called

operation scheduling). In cycle scheduling, the scheduler fills instruction cycles in chro-

nological order, from the first cycle to the last for top-down scheduling or from the last

cycle to the first for bottom-up scheduling. On each cycle, ready operations are considered

for scheduling in priority order, and an ready operation is scheduled only if its required

resources are still available in the current cycle. In operation scheduling, the algorithm

schedules ready operations in strict priority order; a ready operation at a lower priority is

scheduled only after those at the higher priority. For each ready operation, the scheduler

finds the earliest cycle for which all data-dependent predecessor results are available (or

the last cycle so that its result is available to all data-dependent successors). This cycle is

the bound, and the scheduler searches forward (or backward) from this point until a cycle

is found with the necessary resources available. For machine models with all instructions

having a single cycle latency, cycle scheduling and operation scheduling are equivalent

approaches. As instruction latencies become longer and lower priority instructions are

able to monopolize resources, operation scheduling will outperform cycle scheduling.

Cycle scheduling is easier to code, and it simplifies the integration of register allocation

and instruction scheduling. In cycle scheduling, registers are either free or not at the cur-

rent cycle. Since the large majority of instructions for the machine model considered in

this thesis have a single cycle latency, we use a cycle scheduling approach.

3.1.2 Issues in global scheduling

37

The last area of concern in basic block scheduling is how it interacts with register alloca-

tion. Traditional register allocation attempts to minimize the number of registers allocated

by reusing a register as soon as its previous value is no longer needed [Aho et al. 1986].

Unfortunately, this approach maximizes the number of storage conflicts in the code, and

thus reduces parallelism. A better approach for instruction schedulers that are run after

register allocation (often calledpostpass code scheduling [Goodman and Hsu 1988]) is to

use a round robin approach to assign registers. Our scheduling algorithm is based on a

postpass scheduling approach with round robin register allocation.

Alternatively, some compilers employ prepass code scheduling. Prepass code scheduling

performs code scheduling before register allocation, and it gives the scheduler the maxi-

mum freedom to generate a good schedule. Yet, prepass scheduling can create instances in

the code where more registers are needed than there are registers available. Consequently,

the register allocator adds spill instructions into the schedule which could possibly destroy

advantages of prepass scheduling. Chang et al. [1991b] describe an instruction scheduler

that runs before and after register allocation to attempt to get the advantages of both pre-

and postpass code scheduling. As a more sophisticated alternative, Goodman and Hsu

[1988] and Bradlee et al. [1991] have suggested an integrated approach to this phase-

ordering problem. In this thesis, we separate the actions of register allocator and instruc-

tion scheduler. However, the implementation of our instruction scheduler is capable of

scheduling instructions for an infinite register model. In this way, we can bound the per-

formance advantage of an integrated register allocator and instruction scheduler.

3.1.2 Issues in global scheduling

Since a global instruction scheduler moves instructions across basic block boundaries, it

must deal with control dependence. The flow of control between basic blocks in a program

can be summarized using acontrol flow graph (CFG) [Aho et al. 1986]. A CFG is a

directed graph where each basic block in the program is represented by a single node. An

edge is drawn from block b1 to block b2 if program execution can proceed from b1 to b2.

The gathering of dependence information for a CFG is known asglobal dataflow analysis

[Aho et al. 1986]. Global dataflow information is used, as data dependence information is

used in basic block scheduling, to ensure that the semantic correctness of the program is

maintained during the movement of an instruction across a basic block boundary.

A global code motion is any type of inter-basic-block movement. Global code motion

relies on a set of rules (ortransformations [Nicolau 1985]) that govern the movement of

3.1.2 Issues in global scheduling

38

instructions across the edges of a CFG. These transformations must always maintain cor-

rectness. The transformations define the set of allowable global code motions, and thus,

the completeness of these transformations is one indicator of the sophistication of the glo-

bal instruction scheduler. Architectural mechanisms such as boosting augment the capabil-

ities of the transformations and thus increase the sophistication (and decrease the

complexity) of the transformations.

A global code motion often requires the insertion of extra copies of the moving instruction

to maintain the semantics of the program. Gross and Ward [1991] refer to these copies as

compensation code. The amount of compensation code produced during a global code

motion is another indication of the sophistication of the transformations. We refer to this

attribute as thespatial efficiency of the global transformations. Spatial efficiency is a sepa-

rate issue from the correctness and completeness of the transformations, and as we will

see, spatial efficiency can sometimes impact the performance.

Several different global scheduling algorithms have been proposed. The earliest work on

global instruction scheduling grew out of the work done on local microcode compaction

techniques of the 1970s and early 1980s (see Tokoro et al. [1981] for a comprehensive ref-

erence list). The early attempts at global scheduling first scheduled each basic block indi-

vidually, and then they optimized the program by repeatedly moving instructions between

pairs of basic blocks to improve the basic block schedules. The culmination of these itera-

tive scheduling algorithms is Percolation Scheduling [Nicolau 1985] which describes a

complete set of semantics-preserving transformations for moving any operation between

adjacent blocks. Ebcio˘glu and Nakatani [1989] describe an enhanced implementation of

percolation scheduling for VLIW machines with conditional evaluation capabilities.

Under this iterative approach to global scheduling, a global code motion across a large

number of basic blocks will only occur if each of the pair-wise transformations is benefi-

cial. Fisher [1981] shows that this type of an incremental scheme does not always lead to a

good global schedule.

As a result of the finding by Fisher, research into global instruction scheduling has shifted

toward global scheduling algorithms that consider the benefit of the entire global motion

during instruction scheduling. The structure of the recent global schedulers is similar to

the structure of the basic block scheduler discussed in the previous subsection. A global

scheduler, like a basic block scheduler, repeatedly finds the set of ready instructions and

then heuristically chooses the best of those ready instructions to schedule. The scope of

the ready set in the global scheduler is simply larger than the scope of the ready set in the

3.1.2 Issues in global scheduling

39

basic block scheduler. A global scheduler searches for ready instructions in a portion of

the CFG, instead of just in a single basic block. The size of the scope of the CFG from

which the scheduler can search for available instructions defines another key characteristic

of a global instruction scheduler.

To generate the pool of ready instructions, a global scheduler finds all the instructions that

areavailable for scheduling at a point in the CFG by determining if there is someset of

global transformations which result in a ready instance of each of the instructions. In other

words, the application of some number of global transformations results in an instance (or

copy) of the original instruction, and this instance has all of its data-dependent predeces-

sor2 instructions scheduled and latencies fulfilled. For example, instructioni4 in Figure

3-2a is available for scheduling in the instruction sloti3 (the branch delay slot) because

we can generate an equivalent instruction schedule (Figure 3-2b) through a particular glo-

bal transformation along the pathAB. Because of another set of global transformations

along the pathACD, instructioni5 is also available for scheduling in the instruction slot

i3 (Figure 3-2c). Notice that both of these transformations create compensation code in

block B. Instructioni6 is not currently available for scheduling in instruction sloti3

because it is data dependent upon the unscheduled instructioni5 on all paths between

blockA and blockD. (The specifics of when an unscheduled instruction is and is not avail-

able will become clearer when we later talk about our specific global transformations.)

To review, at every point in the generation of an instruction schedule, a global scheduler

first finds the available instructions, then uses heuristics to choose which of the available

instructions will produce the best schedule, and finally invokes the global transformations

to safely move the requested instructions to the current scheduling point. We can catego-

rize the different algorithms for global instruction scheduling by the scope of their avail-

ability calculation and by the completeness and spatial efficiency of their global

transformations.

In general, the differences in the support for these key aspects are a result of tradeoffs

made between scheduler capability and scheduling complexity. For example, a complete

set of transformations will allow for the reordering of branch and jump instructions. A

complete set of transformations therefore provides a powerful mechanism for not only

moving code, but also for changing the structure of the CFG during scheduling. Yet, the

2. We assume top-down scheduling for this discussion. For bottom-up scheduling, the word ‘predecessor’
should obviously be replaced with the word ‘successor’. For the rest of the thesis, we assume top-down,
cycle-scheduling unless a distinction is appropriate to the discussion.

3.1.2 Issues in global scheduling

40

reorganization of branch and jump instructions can lead to cases of code explosion, and

researchers often add special heuristics to minimize code explosion. In another example,

the larger the scope of the CFG from which the scheduler can search for available instruc-

tions, the better chance the scheduler has of generating the best possible schedule. Yet, the

calculation of the available set is at least proportional to the number of basic blocks exam-

ined, and thus compile time increases with increasing scope. More importantly, the global

movement of an instruction changes the global dataflow information, and these changes

must be propagated to the appropriate basic blocks within the scope in order for schedul-

ing to continue. Recalculating all the global dataflow information after each global code

motion is prohibitively expensive, and thus some schedulers attempt to incrementally

update the global dataflow information [Ebcio˘glu and Nicolau 1989]. Still, the complexity

of the incremental update limits the scope of the availability calculation. In the end, where

Figure 3-2: Example of availability.

i1: x = z - 1
i2: beq x==0
i3: <empty>

B

A

D

C

i5: y = x
i6: z = y + 1

i4: x = 3

(a) CFG before any global code motion.

i1: x = z - 1
i2: beq x==0
i3: x’ = 3

B

A

D

C

i5: y = x
i6: z = y + 1

i4: x = x’

(b) CFG after global movement of i4.

i1: x = z - 1
i2: beq x==0
i3: y = x

B

A

D

C

i6: z = y + 1

i4: x = 3
i5: y = x

(c) CFG after global movement of i5.

3.1.3 Existing global schedulers

41

the tradeoff between capability and complexity is made is ultimately dictated by the

assumptions about the target application domain and the target machine architecture.

3.1.3 Existing global schedulers

This tradeoff between capability and complexity is evident in the wide variety of pub-

lished algorithms for global scheduling. By reviewing the tradeoffs made in the existing

algorithms for global scheduling, we can better understand the tradeoffs necessary for our

target application domain and machine architecture. Through this review, we find that,

though some of the ideas are applicable, no single existing algorithm is sufficient to obtain

our goal of exploiting the ILP within a non-numerical application without adversely

affecting the instruction count of that application.

Bernstein and Rodeh [1991] describe a scheduling algorithm that is targeted toward super-

scalar processors with a very limited number of machine resources, and thus their algo-

rithm tightly controls the creation of compensation code. This tight control on

compensation code results in a fairly limited set of transformations. Bernstein and Rodeh

[1991] are interested in the performance of non-numerical applications, and they believe

that the conditional branches in non-numerical programs are not predictable. This belief

gives them little incentive to search across multiple branches for available instructions.

Consequently, their algorithm only looks for available instructions in a dynamically-adja-

cent basic block or in anequivalent basic block [Bernstein and Rodeh 1991]. Two basic

blocks are equivalent if and only if the execution of one block implies the execution of the

other block (e.g. blocksA andD of Figure 3-2 are equivalent). Though these decisions

result in an algorithm which is very space efficient in its exploitation of ILP, these two

decisions restrict the size of the available set, and this restriction can sometimes lead to a

missed opportunity for a better schedule. For example in Figure 3-2, their limited set of

global transformations results in a definition of availability calledM-ready instructions

[Bernstein et al. 1991]. Under this calculation of availability, instructioni5 is not avail-

able for scheduling in the delay slot of the branch at the end of basic blockA until instruc-

tion i4 in blockB is scheduled. Yet, we have already seen that it is possible to schedule

instructioni5 in blockA by placing a copy of the instruction at the end of the unscheduled

block B. We definitely want to perform this code motion even though instructioni5 is

executed twice along the pathABD. We have not lengthened the execution time of path

ABD (the delay slot cycle exists whether the scheduler fills it or not), and we have short-

ened the execution time of pathACD.

3.1.3 Existing global schedulers

42

Trace Scheduling [Fisher 1981] was the first attempt at an instruction scheduler with a

more global calculation of availability. Ellis [1985] and Colwell et al. [1987] both describe

an implementation of Trace Scheduling. Trace Scheduling was originally developed for

the compilation of numerical applications, applications in which conditional branches are

quite predictable. Because of this predictability, Trace Scheduling relies on execution

probabilities to select atrace (a major execution path) of basic blocks. From this trace, the

algorithm builds a DAG which contains all of the data dependence constraints within the

trace. The algorithm then schedules this DAG as if the trace was one large basic block, and

the calculation of availability is simply a calculation of data-readiness within the DAG of

the trace (the scheduler at this point looks a lot like a basic block scheduler). This calcula-

tion of availability is supported by powerful transformations that can even rearrange the

order of the conditional branches in the trace and thus change the structure of the CFG.

The simplicity of the availability calculation and completeness of the global transforma-

tions makes Trace Scheduling quite appealing.

Yet, this same combination of powerful transformations and an intense focus on the trace

as a single basic block made the insertion of compensation code a conceptually difficult

and compile-time expensive task. In fact, the original implementation of Trace Scheduling

by Ellis [1985] did not try to limit the amount of compensation code produced. Any time

that the code motion of an instruction moved past a point in the current trace where

another trace entered the first trace, Ellis would place a copy of the moving instruction at

the end of the entering trace. Figure 3-3 slightly modifies the example of Figure 3-2 so that

instructioni5 is capable of being directly scheduled in the branch delay slot without any

duplication off the traceACD (Figure 3-3b). Ellis’s implementation of the trace scheduling

algorithm automatically inserts a copy of instructioni5 into blockB (Figure 3-3c). For

numerical applications, this excessive duplication does not noticeably affect performance

because numerical applications often contain a single major trace and thus the space and

time efficiency of the other traces is not of critical importance. Recently, Gross and Ward

[1991] have described some modifications to Trace Scheduling to improve the transforma-

tions and optimize the compensation code.

Like the Trace Scheduling compiler, the IMPACT compiler uses traces to obtain a sched-

uling algorithm with a probability-driven calculation of availability [Chang et al. 1991b].

Moreover, the IMPACT researchers noticed that the use of execution probabilities could

improve other parts of the compiler, and thus they also use traces to direct the optimizer

[Chang et al. 1991a]. In the IMPACT work, a trace of basic blocks is converted into a

superblock by code duplication. A superblock indicates the path on which optimization

3.1.3 Existing global schedulers

43

and scheduling is most important. A superblock is a block of code with a single entry at

the top of the block and one or more exits throughout the block. The single entry point

ensures that upward code motions in the superblock never require the creation of compen-

sation code. The beauty of this approach is that it is extremely simple to implement since it

eliminates the determination of whether duplication is required during the scheduling of a

superblock. Yet, the schedules that are not part of the most-probable superblock may be

space and time inefficient because all possible code duplications are made before any

scheduling takes place. For example, Figure 3-3d shows the duplication of blockD (by the

creation of the superblockACD) results in the unnecessary duplication of instructioni5 .

Ebcioğlu and Nicolau [1989] discuss an approach to instruction scheduling called Percola-

tion Scheduling with resources (PSr) that is more global than Trace Scheduling in its

B

A

D

C

i6: z = y + 1

i4: x = 3
i5: y = 5

i1: x = z - 1
i2: beq x==0
i3: <empty>

Figure 3-3: Examples of a global code motion.

B

A

D

C

i5: y = 5
i6: z = y + 1

i4: x = 3

(a) CFG before any global code motion.

(c) CFG after Trace Scheduling movement
of i5 along trace ACD.

D

C

i6: z = y + 1

(d) CFG after IMPACT movement of i5
in superblock ACD.

i1: x = z - 1
i2: beq x==0
i3: y = 5

B

A

D

C

i6: z = y + 1

i4: x = 3

(b) CFG after efficient movement of i5.

B

D’
i5: y = 5
i6: z = y + 1

i4: x = 3

A
i1: x = z - 1
i2: beq x==0
i3: y = 5

i1: x = z - 1
i2: beq x==0
i3: y = 5

3.2 Issues in our global scheduling algorithm

44

calculation of available instructions. In PSr, the available instructions (called theunifiable-

ops [Ebcioğlu and Nicolau 1989]) for a basic block are calculated from all successor

blocks on all paths from the current basic block (a path stops when it reaches a back edge

in the CFG). That is, PSr computes availability as a dataflow calculation on a CFG with its

back edges removed. PSr uses the very powerful Percolation Scheduling rules to deter-

mine availability and to transform the code after the scheduling of an operation. Like

Trace Scheduling, PSr was developed for VLIW machines with a large number of

resources, and it seems that the routines to transform the code after scheduling were devel-

oped only with a concern for correctness and not with a concern for the spatial efficiency

of the compensation code. Recently though, Moon and Ebcio˘glu [1992] published a modi-

fied PSr algorithm which is much more concerned with compensation code efficiency. In

this modified algorithm, they have disabled the transformation rule which allowed for the

reordering of branches, and they have prioritized the instruction selection process so that

one execution path is not lengthened to optimize another. This work seems quite promis-

ing, and it is obviously heading in a direction similar to the work described in this thesis.

3.2 Issues in our global scheduling algorithm

In this thesis, we are particularly interested in effectively scheduling non-numerical appli-

cations for superscalar machines with few parallel resources. We focus on small supersca-

lar machines because (as we show in Chapter 4) we can build them with cycle times that

are nearly equivalent to the single-issue version of the same architecture. This type of a

resource-limited machine model implies the use of global transformations which are spa-

tially efficient so that the global scheduler does not generate a lot of unnecessary duplica-

tion (which will waste the scarce resources and greatly increase the instruction count). On

the other hand, the global transformations must be fairly complete and the range of the

availability calculation fairly large so that we can obtain our other goal of uncovering a

large amount of ILP.

The trace-based approach of Trace Scheduling is quite appealing as the basis for our glo-

bal scheduler because of the range and simplicity of a trace-based availability calculation.

A trace-based approach is applicable because conditional branches are fairly predictable

even in a non-numerical applications, and thus traces are a good first approximation of the

instructions that we will most-likely execute next (see Chang et al. [1991b], Fisher and

Freudenberger [1992], and Table 4-1 on page 83). A trace-based approach is appropriate

because the basic blocks in non-numerical applications are small (typically 4 to 5

3.2 Issues in our global scheduling algorithm

45

instructions in length [MDSmith et al. 1989]), and thus a trace-based approach allows the

scheduler to look across many of the small blocks in order to find ILP.

Yet, the original Trace Scheduling algorithm is not entirely appropriate for our application

domain or our scheduling goals. Remember that Trace Scheduling views a trace of basic

blocks as a single basic block during instruction scheduling, and any compensation code

created by the scheduling process is only considered during a separatebookkeeping phase

[Ellis 1985]. As we discussed earlier, this separation makes it difficult to control the spa-

tial efficiency of the algorithm, i.e. it makes it difficult to control the effects of the global

code motions on the other traces. This control is important because a global code motion

that is slightly beneficial to the current trace might greatly increase the path through

another trace or it might produce an excessive amount of compensation code on that other

trace. Since non-numerical applications contain many important traces and some 50-50

branches,3 we should not overly penalize one trace for the benefit of another. As a result of

these views, our trace-based scheduling algorithm closely integrates the scheduling and

bookkeeping processes. We maintain the concept of individual basic block boundaries in

our trace during instruction scheduling so that we can tightly control the compensation

code produced and the penalties imposed during the scheduling of a trace. Section 3.3

overviews our trace-scheduling framework, and it discusses the important aspects of the

algorithm that tailor it for the non-numerical application domain.

One important way of restricting the penalties on the other traces is to restrict the com-

pleteness of the set of global transformations. The major restriction on our global transfor-

mations is that the order of the conditional branches is unchanged during scheduling. This

restriction ensures that we do not encounter the problem of exponential code explosion

during a global code motion. However, one of the nice properties of the original Trace

Scheduling algorithm is that the completeness of its global transformations makes the cal-

culation of availability very simple and compile-time efficient, and we would like to main-

tain this simplicity and efficiency. Section 3.4 discusses how we preserve the simplicity

and compile-time efficiency of the availability calculation while still restricting the com-

pleteness of the global transformations.

In addition to the major goal of producing effective schedules, we began the development

of this global scheduling algorithm with a number of other minor goals in mind. These

3. Notice that this does not conflict with our prior statement that conditional branches in non-numerical
applications are mostly predictable. This statement simply says that not all branches are 90-10 (or some
other lop-sided ratio) and so we should also tailor the algorithm for the less-probable cases.

3.3 A trace-scheduling framework

46

minor goals helped shape the structure of the algorithm. Basically, we wanted the algo-

rithm to be compile-time efficient, easily extensible, and highly flexible. By compile-time

efficient, we mean that the algorithm should schedule programs in a small fraction of the

total compile time. This goal is achieved through a number of efficient, non-backtracking

techniques. Scheduling decisions, once made, are never undone, and dataflow information

is incrementally updated whenever possible. By easily extensible, we mean that the algo-

rithm should interact well with ILP-increasing optimizations (such as procedure inlining

[Chang and Hwu 1991]) and loop-level parallelization techniques (such as loop unrolling

and software pipelining [Lam 1990]). This goal is achieved through the scheduling of

loops as independent entities. In this way, the global scheduler works whether an inner-

loop is scheduled through simple global scheduling techniques or through more advanced

loop scheduling techniques. By highly flexible, we mean that the algorithm should effi-

ciently schedule code for a wide range of machine models. For example, the global sched-

uler should intelligently handle instructions with non-unit latencies, instructions with

delay slots, non-pipelined functional units, machine models with a fairly-wide range of

functional unit distributions, and other non-trivial hardware constraints. This goal pro-

vides a vehicle with which it is possible to experiment with the tradeoffs between machine

complexity and achieved performance.

3.3 A trace-scheduling framework

Figure 3-4 contains an outline of our global scheduling algorithm. At the outermost level,

the algorithm schedules one procedure at a time. Within each procedure, scheduling pro-

ceeds from innermost to outermost loops, and each loop is scheduled as an integral entity.

The parts of the procedure body which are not part of any loop are scheduled last. Because

of this scheduling order, global code motions only occur from inner loops into outer loops.

Within each loop, traces are selected and scheduled until no unscheduled basic blocks

exist within a loop. At this point, our scheduler collapses the loop into a structure that

looks like a single basic block, and it summarizes the dataflow information for this loop so

that code motions can occur around this inner-loop. After the entire procedure is sched-

uled, our algorithm runs a compaction routine to remove as many static NOPs as possible

(compaction is discussed in Section B.1 of Appendix B).

Our global scheduler builds the CFG in a single pass when the procedure is read in.4 Each

node in the CFG is a basic block, except that call instructions do not necessarily terminate

a basic block. With interprocedural information, a call instruction looks like a simple ALU

3.3 A trace-scheduling framework

47

instruction which has many sources, destinations, and side-effects. The scheduler, and not

the CFG builder, decides whether code motions can occur past a call instruction. In the

CFG, a special node is designated as the ENTRY node of the CFG. The ENTRY node has

no preceding basic blocks, and the first basic block in the procedure is the only successor

of ENTRY. Another special node is designated as the EXIT node. The EXIT node has no

succeeding basic blocks, and the predecessor blocks of the EXIT node are all the basic

blocks which end in a procedure return. A basic blockd in the CFG is said todominate a

basic blockn if d is executed on every path from the ENTRY node to blockn [Aho et al.

1986]. Domination is an example of global dataflow information that is required for

scheduling. We present other pieces of global dataflow information as they are needed for

the description of our algorithm.

In order to process the loops in a depth-first ordering, our global scheduling algorithm

assumes that all loops in the application arenatural loops [Aho et al. 1986], loops with a

single entry point. This restriction is not an inherent property of our trace-based schedul-

ing algorithm but a consequence of the organization of the surrounding framework. In the

following discussion, aloop edge or back edge is any edge in the CFG where the basic

block at the end of the edge dominates the basic block at the start of the edge. Aloop head

is the basic block at the end of a loop edges.

4. The scheduler expects the front-end of the compiler system to annotate each dynamic jump instruction
(e.g. a jump-through-register instruction or a C-style switch statement) with all its possible successor blocks.
If any dynamic jump instruction is not annotated, the scheduler builds an incomplete CFG. Since a global
code motion on an incomplete CFG might unknowingly result in a violation of the program semantics, an
incomplete CFG causes the scheduler to default to scheduling without global code motions.

foreach PROCEDURE {
generate CFG;
compute initial GLOBAL DATAFLOW INFO;
find and order LOOPs;
foreach REGION (innermost loop out to procedure level) {

while (exists unscheduled BASIC BLOCK in REGION) {
select next best TRACE;
schedule TRACE;

}
collapse REGION;

}
compact PROCEDURE;

}

Figure 3-4: Overview of the trace-scheduling framework.

3.3.1 Building and scheduling a trace

48

Instead of discussing our entire trace-scheduling framework in detail, the rest of this sec-

tion briefly describes our algorithms for building and scheduling a trace. Along the way

though, we highlight those aspects of our trace-based scheduling algorithm which are sig-

nificantly different from the previous trace schedulers. These differences translate into

new capabilities (e.g. scheduling from already-scheduled basic blocks) and into special

priority heuristics for the basic block scheduler.

3.3.1 Building and scheduling a trace

A trace is a sequence of basic blocks which are executed in order for some choice of input

data. Execution profile information drives the selection of traces so that a trace represents

the most probable sequence of basic blocks. Our global scheduler uses branch profile

information or branch prediction heuristics to determine the most-likely successor to a

basic block ending in a conditional branch. In the original Trace Scheduling algorithm

[Fisher 1981], the traces are loop-free sequences of unscheduled basic blocks. In this glo-

bal scheduling algorithm, a trace may contain a loop, and it often terminates with an

already-scheduled basic block. Both of these capabilities are included to mitigate the usual

lack of scheduling lookahead associated with the end of a trace.

The global scheduler chooses traces by searching through the loop or procedure body in

the program order looking for the first unscheduled basic block. Once the scheduler has

located the next unscheduled basic block, it grows a trace forward (in the direction of the

edges in the CFG) with this basic block as the start of the trace. This approach is slightly

different from the one taken by Ellis [1985]. In his compiler, the operation with the highest

probability of execution is chosen as theseed of the trace, and the trace is grown both for-

ward and backward from this seed. Figure 3-5 outlines our algorithm for building and

scheduling a trace given a seed basic block.

During the construction of the trace, two data structures are built. The global scheduler

uses these structures to determine scheduling priority and instruction availability. The first

structure is called theEDAG (for Extended DAG), and it is a simple data dependence

graph of all the instructions in the trace. The other data structure is called theGCL (for

Global Constraint List), and it captures the control dependence and off-trace data depen-

dence information needed for correct global code motion. The EDAG gives us a global

view of instructions in the trace (it is our instruction window), and it encodes the data con-

straints along the trace. The GCL encodes the global constraints on the movement of

3.3.1 Building and scheduling a trace

49

instructions along the trace. We discuss the specifics of the EDAG in the next subsection,

and we discuss the specifics of the GCL in Section 3.4 on availability and bookkeeping.

Once the global scheduling algorithm has built the trace and its dependence structures, the

next step is to prioritize the instructions in the EDAG and thus prepare for the scheduling

of the trace. Priorities help the scheduler choose among the data-ready instructions in the

EDAG. As we mentioned in the background section on basic block schedulers, a large

number of priority heuristics exist, and the implementation of our global scheduling algo-

rithm is set up so that one can easily change the priority function. Currently, the global

scheduler prioritizes the instructions in the EDAG byheight (or maximum path length to a

leaf) for the top-down scheduler, and bydepth (or maximum path length from root) for the

bottom-up scheduler. Height and depth are complementary priority calculations, and they

both attempt to balance the progress of the code scheduler [Smotherman et al. 1991]. The

complementary values are necessary because our basic block scheduler uses a combina-

tion of top-down and bottom-up instruction scheduling (see Appendix A).

The trace is scheduled by individually scheduling each basic block in the trace in the order

that they appear in the program. Each basic block is scheduled using a list scheduling

algorithm (described in detail in Appendix A). In addition to the priorities assigned to the

instructions in the EDAG, our list scheduling algorithm gives priority to thenative instruc-

tions (those instructions that originally lived in the current basic block) over the non-

native instructions. Furthermore, the basic block scheduling algorithm does not allow the

build_and_schedule_trace(BB *sBB /* “seed” of trace */) {
trace and EDAG initially empty;
nBB = sBB;
while (nBB) { /* build */

add nBB to trace;
insert instructions from nBB into EDAG;
choose next nBB (if any);
if (nBB) compute new global constraints for GCL;

}
prioritize EDAG;
nBB = sBB;
while (nBB) { /* schedule */

cBB = nBB;
schedule cBB;
update trace, EDAG, and GCL;
special case operations for special case scheduling;
nBB = next basic block in trace (if any);

}
}

Figure 3-5: Algorithm for building and scheduling a trace.

3.3.1 Building and scheduling a trace

50

native instructions to move down and out of the current basic block, and it tries to fill in

the empty instruction slots in the current basic block schedule with instructions from basic

blocks later in the trace. In this way, a basic block schedule is never lengthened by a global

code motion (i.e. global code motions only occur to fill empty instruction slots), and there-

fore the other traces are never lengthened by a global code motion on the current trace.

Because of this priority scheme, the global scheduling algorithm in this thesis may not

produce as good a schedule as Fisher’s Trace Scheduling algorithm would produce for a

very probable trace. Yet, for the non-numerical application domain where there is no sin-

gle major trace, we feel that our priority scheme is more appropriate because it produces

reasonably good schedules for all of the traces.

Basically, the list scheduling algorithm uses the EDAG to quickly find and select among

the data-ready instructions in the trace. However, a data-ready instruction from a later

basic block in the trace is not guaranteed to be available (recall that availability is a func-

tion of the global transformations as previously illustrated by Figure 3-2), and thus the

scheduler must first check the availability of the data-ready instruction before attempting

to schedule it. This optimistic outlook on instruction readiness makes the design of the

global scheduling algorithm simple; yet it opens up the potential for a compile-time ineffi-

cient scheduling algorithm. For example, if most of the high-priority, data-ready instruc-

tions are not available, then the basic block scheduler could spend much of its time dealing

with a ready list in which most instructions are not actually ready. Our global scheduling

algorithm avoids this problem through a combination of techniques. First of all, we give

priority to the native instructions (which are always available) over the non-native instruc-

tions. Secondly, we precompute and summarize the availability of each instruction so that

the scheduler does not consider an instruction for scheduling until it becomes available.

Section 3.4 discusses our bookkeeping data structures and how we can precompute avail-

ability in a compile-time efficient manner.

After the basic block scheduler has completely scheduled a basic block, the global sched-

uler updates the trace and its constraints so that scheduling can proceed on the next block.

There are a number of special case situations which occur during the scheduling of the

trace, and these situations are handled at this point in the scheduling process. An example

of a special case situation is when the next basic block to be scheduled is an already-

scheduled basic block. The block is not scheduled again, but the trace must reflect the fact

that instructions were taken from this already-scheduled basic block. Before we explain

how we accomplish this and the other special capabilities of our trace-based approach, we

3.3.2 Building the EDAG

51

need to describe how we construct the EDAG data structure and how we choose the basic

blocks in the trace.

3.3.2 Building the EDAG

Whenever the scheduler adds a basic block to the trace, the scheduler adds the instructions

within that basic block to the EDAG. These instructions are added in program order so

that the correct data dependence relationship is maintained between instructions. As the

scheduler inserts an instruction (called thecurrent instruction), it adds a number of differ-

ent dependence edges between this instruction and instructions already in the EDAG. For

each source register in the current instruction, a true dependence edge is added from the

instruction which last defined this register (if any) to the current instruction. Similarly, an

output dependence edge is added from the instruction which last defined the current

instruction’s destination register (if any) to the current instruction. To simplify the deter-

mination of the latest definition of a register, the scheduler maintains a list of the instruc-

tions which last defined each of the registers in the machine. In order to determine anti-

dependence constraints, the scheduler maintains another list of instructions which corre-

spond to all of the uses of a register since the last definition of that register. Thus, given the

current instruction’s destination register, the scheduler places an anti-dependence edge

from each of the last-use instructions for this register to the current instruction. As

explained in Section 3.1.1, a true dependence edge is labelled with the latency of the

instruction at the start of the edge, an output dependence edge is labelled with a latency of

the maximum of 1 and (l1 - l2 + 1), and an anti-dependence edge is labelled with a latency

of zero cycles. The global scheduler takes special care to ensure that implicit condition

code registers, special registers, double registers, and other novel register structures are

handled correctly by the data dependence analyzer.

If the current instruction is a memory operation, the scheduler checks to see if any addi-

tional constraint edges are required in order to maintain the dependence relationship

between memory locations. Basically, the address of the current memory operation is

checked against the addresses of all the previous memory operations already in the

EDAG. A load address is checked against all previous store addresses to locate true

dependences. A store address is checked against all previous load addresses to locate anti-

dependences and against all previous store addresses to locate output dependences. A

dependence edge is never placed between two load operations, and it is assumed that loads

can always be reordered with respect to each other. For memory-mapped I/O, the global

3.3.2 Building the EDAG

52

scheduler takes special care to ensure that non-idempotent load operations are never reor-

dered, and that these I/O operations are not duplicated on a single execution path.

The scheduler labels the true and output memory dependence edges with their appropriate

delay value. For the simple load/store architectures discussed in this thesis, both these val-

ues are equal to 1 cycle. The delay value associated with a memory anti-dependence edge

is slightly trickier. Even with a simple load/store architecture, one cannot immediately

assume that a concurrent load and store of the same memory location is handled correctly.

Though there are pipelined memory architectures where this operation is possible, the

dependence analyzer is conservative and labels anti-dependence memory edges with a

delay of 1 cycle.5

The static determination of whether two memory operations address the same memory

location is calledalias analysis, and our scheduler supports three user-specified levels of

alias analysis. The first and simplest level performs no analysis of the memory addresses.

The only reordering allowed is between load instructions; all other orderings are kept in

the original ordering. The second level of analysis is called simple analysis. Simple analy-

sis differentiates between references off the stack pointer, references off the global pointer,

and references off an arbitrary pointer. Simple analysis returns one of three answers to the

question of whether two memory operations are aliases of each other: they are aliases;

they are not aliases; or the analysis failed. For the case where analysis fails, the scheduler

conservatively assumes that the memory addresses do alias. Figure 3-6 outlines our algo-

rithm for simple analysis. The final level of analysis leverages off analysis done in earlier

passes of the compiler. Basically, the compiler labels independent load and store instruc-

tions with unique identifiers that the alias analyzer can compare. For this final level, the

scheduler actually performs simple analysis first, and if this fails, the scheduler then looks

for the labels. The scheduler assumes that two memory addresses do not alias only if both

have labels and the labels are different and unique.

The final type of constraint edge that the scheduler can add to the EDAG maintains the

original program ordering for control transfer instructions (CTIs). Conditional branches,

unconditional jumps, procedure calls, and procedure returns are all examples of CTIs.

Upon seeing a CTI, the scheduler adds an edge from the last CTI to this current CTI, and

the scheduler labels this edge with a delay of 0 cycles. These constraint edges represent a

capability, and not a data dependence, constraint. These constraint edges enforce the

5. Notice that theregister-to-register anti-dependence delay is still 0 cycles.

3.3.3 Choosing the next basic block

53

previously-discussed policy of limiting the amount of code explosion possible during

instruction scheduling.

Another important capability constraint deals specifically with the call instruction. To cor-

rectly allow for code motion past a call instruction, the scheduler requires interprocedural

data dependence information. This information tells the scheduler which instructions are

possibly dependent upon the call instruction. Without this information, the scheduler must

conservatively assume that all instructions after the call are dependent upon the call. The

scheduler has two choices in implementing this conservative approach. Either continue to

build an EDAG after seeing a call instruction and add dependence edges from the call to

all subsequent instructions, or simply stop building the EDAG once a call is inserted. Our

scheduler follows the second approach. Calls cause the scheduler to temporarily suspend

the building of a trace until the section of the trace above the call is scheduled. Once the

scheduling of that part of the trace is complete, the trace continues from the point of the

call. In other words, the main loop of the global scheduler (see Figure 3-4) invokes the

procedure in Figure 3-5 with the remaining part of the basic block (starting after the trace-

suspending call instruction).

3.3.3 Choosing the next basic block

Once the scheduler has chosen a seed basic block and built an EDAG from its instructions,

the scheduler proceeds to choose a successor block of the current basic block and adds this

given two memory addresses of the form ‘base + offset’;
ans = failure;
if (base i == stack_ptr) {

if (base j == stack_ptr) {
if (offsets equal or overlap) ans = alias;
else ans = NOTalias;

} else if (base j == global_ptr) ans = NOTalias;
} else if (base i == global_ptr) {

if (base j == stack_ptr) ans = NOTalias;
else if (base j == global_ptr) {

if (offsets equal or overlap) ans = alias;
else ans = NOTalias;

}
} else if (base i == base j) {

if (offsets equal or overlap) ans = alias;
else ans = NOTalias;

}
return ans;

Figure 3-6: Algorithm for simple alias analysis.

3.3.3 Choosing the next basic block

54

new block to the trace. The action of choosing the next successor basic block for the cur-

rent trace is referred to as “growing the trace”. Basically, a trace is grown from the seed

basic block using branch probabilities (either from a execution profile or from heuristics)

until one of four conditions is met: the next block is not in the current loop (e.g. a call); the

next basic block is dynamically determined (e.g. an indirect jump); the next basic block is

already scheduled; or the next basic block is already in the current trace (e.g. a loop edge).

For the last two conditions, the trace is extended one more basic block to mitigate the

usual lack of scheduling lookahead associated with the end of a trace. The scheduler’s

actions under these last two conditions are described in detail in the next two subsections.

The algorithm for choosing the next basic block in the trace is listed in Figure 3-7.

3.3.3.1 Scheduling from already-scheduled basic blocks

In the original Trace Scheduling algorithm, a trace ends if the next predicted basic block is

part of an already-scheduled trace [Fisher 1981]. A consequence of this approach is that

the global scheduler has fewer and fewer available instructions from which to choose as it

approaches the end of the trace. Since the scheduler produces better schedules with a

larger set of available instructions, we would like to maintain the size of the availability

Figure 3-7: Algorithm for choosing the next basic block in the trace.

cBB = the currently-last basic block (BB) in the trace;
if (saw call || saw return || saw indirect_jump) nBB = NULL;
else if (saw branch) {

if (branch profile predicted) {
if (loop_branch)

nBB = target BB of branch; /* force prediction */
else {

if (predict take) nBB = target BB of branch;
else nBB = lexical successor BB of branch;

}
} else { /* heuristic prediction */

if (loop branch) nBB = target BB of branch;
else nBB = lexical successor BB of branch;

}
} else { /* saw fall-thru or unconditional jump */

nBB = only successor of cBB;
if (nBB is out of region) nBB = NULL;
if (nBB is already scheduled || nBB already in trace) {

specially add nBB to trace;
nBB = NULL;

}
}
return nBB; /* next basic block in trace */

3.3.3 Choosing the next basic block

55

set even as the scheduler approaches the end of the trace. One way to achieve this is to pull

instructions from the already-scheduled basic blocks. Yet, we must carefully constrain this

capability so that we do not have to re-schedule the already-scheduled basic blocks

(remember that one of our goals was to implement a global scheduler that never back-

tracks).

Our global scheduler is able to pull instructions from a single, already-scheduled basic

block whenever the basic block preceding the already-scheduled basic block ends in a

jump or a taken branch. The lookahead of one block is often the maximum lookahead pos-

sible for our global scheduler because our scheduler does not rearrange CTIs and the

already-scheduled basic blocks frequently end in a CTI. Basically, the global scheduler

pulls copies of the instructions from the already-scheduled basic block in order of increas-

ing instruction address. To restore program correctness, the scheduler then changes the tar-

get offset of the branch or jump instruction (in the last unscheduled basic block in the

trace) by the number of copies pulled from the already-scheduled basic block and inserted

into the current trace schedule. To ensure that the basic block scheduler only considers the

copies of the already-scheduled instructions in order, the global scheduler places an

addressing dependence edge from the last copy to the current copy as it inserts each copy

into the EDAG. The addressing constraint ensures that a copy from later in the already-

scheduled basic block is only considered for scheduling in the new trace if all preceding

copies with lower addresses have been pulled and scheduled. The addressing dependence

edge is given a latency of zero cycles so that it acts like a register anti-dependence edge.

As an aside, it is possible to make this mechanism even more sophisticated and therefore

more applicable. The current restriction is that the last basic block in the trace must end in

a jump or branch that is predicted to take so that we can change the target offset after the

pulling of instructions. If the last basic block simply falls into the already-scheduled

block, we could support scheduling across this edge if we simply added an unconditional

jump onto the end of first block. For a branch which is predicted to not take, we could

invert the branch’s condition and the program layout of the THEN and ELSE blocks so

that the branch is now predicted to take.

For asymmetric microarchitectures, our zero labelling of anti-dependence edges interferes

with this approach to the scheduling of already-scheduled basic blocks. An asymmetric

microarchitecture is one in which some instructions are not capable of issuing from any

location in memory; VLIW architectures often employ an asymmetric microarchitecture.

For example, assume that we are given a two-issue superscalar processor which can only

3.3.3 Choosing the next basic block

56

issue a memory operation and an integer operation in parallel if the memory operation is

the first instruction in the instruction fetch unit (i.e. the memory port is only connected to

the integer pipeline on the “left” side of the machine). A legal execution unit for this pro-

cessor could place a memory load instruction at a lower address than an anti-dependent

ALU instruction, if the scheduler knew that the instructions would be fetched and exe-

cuted together. The anti-dependence constraint in this schedule runs in the opposite direc-

tion from the addressing constraint (see Figure 3-8), and these two constraints cause a

dependence loop in the EDAG. Under this condition, the EDAG is no longer an acyclic

graph, and our basic block scheduling algorithm will fail. For this reason, the routine

which inserts the copies of the instructions from an already-scheduled basic block detects

these backward-flowing anti-dependence edges, and the routine halts the construction of

the EDAG at this point. This action is conservative. If the scheduler knew (a priori) that

the anti-dependent pair and all instructions scheduled between the pair would be sched-

uled in the new trace or if it could undo the scheduling of a basic block to recreate a sin-

gle-entry point into the already-scheduled basic block, then the scheduler could build the

EDAG without the addressing dependence edges and thus without the possibility of a

dependence loop. Since our global scheduler does not know the future and since it does

not backtrack, it simply halts the construction of the EDAG for any packet with a back-

ward-flowing, anti-dependence edge.

Another method of solving this problem is to label all of the anti-dependent edges with a

delay of 1 cycle (i.e. no data dependences are possible within a packet of instructions). We

chose to maintain the 0-cycle delay on the register anti-dependence edges because we

found through experimentation that an anti-dependence delay of 0 cycles is more impor-

tant to the performance of a non-numerical application than an unrestricted ability to

schedule from already-scheduled basic blocks (using an anti-dependence delay of 1

cycle). The exact amount that our limited ability to schedule from already-scheduled basic

blocks increases performance is dependent upon the particular application and upon the

Figure 3-8: Example of a backward-flowing anti-dependence edge.

Sequential Code

add r1 = r2 + r3
load r2 = 0(r4)

add

anti-dependence

addressing dependence

Parallel Code

load

3.3.3 Choosing the next basic block

57

specifics of the hardware model, but even for a relatively simple superscalar processor6,

this ability improves the superscalar cycle counts of our benchmarks by 0–3%.

3.3.3.2 Dynamic completion of the EDAG

The scheduling of already-scheduled basic blocks tries to provide our global scheduler

with a generic method for mitigating the end-of-trace penalty. Yet, there is one important

loop-edge situation that our technique of scheduling from already-scheduled basic blocks

does not cover. The situation occurs in a trace where the trace begins with the loop head

and continues until it reaches a loop edge. At this point, the trace builder will attempt to

re-add the loop head at the end of the trace. The instructions in the loop head are already

part of the EDAG, so the scheduler can only add copies of these instructions to the EDAG.

However, the copies require an addressing constraint (so the scheduler can ultimately

change the offset of the loop branch), and this addressing constraint is dependent upon the

scheduling order which has not been determined. The global scheduler is now left with a

“chicken and egg” problem. The scheduler cannot complete the trace until the loop head is

scheduled, and the scheduler cannot schedule the loop head until the trace is completed.

To provide the global scheduler with the biggest window for finding ILP, we want to con-

struct as much of the EDAG as possible before we start any instruction scheduling. For the

case where the loop head occurs twice in the trace, this means that the global scheduling

algorithm should build all of the EDAG up to the point where the loop head is re-encoun-

tered. At this point, the global scheduler begins the scheduling of the EDAG, but as each

cycle in the loop head is scheduled, the instructions in this cycle are inserted into the

EDAG using the already-scheduled basic block techniques. Once the entire loop head has

been scheduled (or a backward-flowing anti-dependence constraint is seen), the global

scheduler considers the EDAG complete and scheduling continues in a normal fashion.

We refer to this as the dynamic completion of the EDAG because the global scheduler

begins the scheduling of the EDAG before the EDAG is complete.

The most difficult aspect of dynamically completing the EDAG is the dynamic update of

the priority information kept in the EDAG. Unless the EDAG is dynamically completed,

the global scheduler defines the priorities once and they remain constant during the sched-

uling of the trace. When instructions are dynamically inserted into the EDAG, the global

6. The machine model is a two-issue TORCH machine with limited functional units and hardware support
for one level of boosting (see Chapter 4 for more details). During this experiment, we found that the com-
press, eqntott, and espresso benchmarks showed the greatest decrease in cycle counts, while the grep bench-
mark was at the other end of the spectrum with no change in cycle count.

3.4 Availability and bookkeeping

58

scheduler incrementally updates the priorities to indicate the new state of the EDAG. Spe-

cifically, we only update the priorities of those instructions that are affected by the newly-

inserted instructions. Since we only dynamically insert instructions at the end of the

EDAG, we only need to recalculate the heights of the instructions which are data depen-

dent upon the newly-inserted instructions (the depths of the instructions in the EDAG are

unaffected). We accomplish the update through an upward scan of the EDAG starting with

the newly-inserted instructions. This incremental update is efficient because the newly-

inserted instructions often affect only a small subset of the nodes in the EDAG.

By dynamically completing the EDAG (without the ability to schedule from already-

scheduled basic blocks), our global scheduler generated schedules that were 1–9% faster

on a relatively simple superscalar machine.7 By both dynamically completing the EDAG

and scheduling from already-scheduled basic blocks, our global scheduler generated

schedules that were 1–10% faster.8 Close examination of the results shows that these two

techniques are orthogonal in their impact on performance.

3.4 Availability and bookkeeping

To take advantage of the ILP that exists across the basic block boundaries, the global

instruction scheduler relies on a set of global transformations which govern the movement

of instructions across the edges of the CFG. These transformations are used to define the

set of available instructions, and they used to determine where compensation code is

required for program correctness. Section 3.4.1 describes the set of global transformations

used in our global scheduling algorithm. Section 3.4.2 then discusses how we incorporate

these transformations into our global instruction scheduling algorithm to produce the

bookkeeping data structures. These structures simplify the determination of instruction

availability and the calculation of compensation code.

3.4.1 Transformations to support upward code motion

Our global transformations only support the upward movement, movement against the

direction of the edges in the CFG, of instructions. Since our trace-scheduling framework

schedules the basic blocks in each trace in their order of execution and since it schedules

7. This experiment uses a machine model that is identical to the one used in the last subsection. During this
experiment, we found that the awk, espresso, and grep benchmarks showed the greatest decrease in cycle
counts, while the nroff benchmark was at the other end of the spectrum with little change in cycle count.
8. Again, the same machine description as before was used.

3.4.1 Transformations to support upward code motion

59

all instructions native to a basic block in or before that basic block, our global scheduler

never attempts to move an instruction down and out of a basic block.

To provide the global scheduler with as much freedom during scheduling as possible, the

repeated application of our global transformations can achieve the upward code motion of

any non-CTI across multiple basic block boundaries. To limit the potential for code explo-

sion during global scheduling, our global transformations do not support the reordering of

CTIs. Though we constrain the upward movement of a CTI, we still allow for the specula-

tive execution of a CTI in the delay slot of the preceding CTI. In this way, our global

transformations try to balance the need for general code motions with the desire to avoid

excessive code explosion.

A general algorithm for upward code motion using our global transformations follows

three basic rules:

(1) a rule for intra-block motion,

(2) a rule for motion out of the top of a block, and

(3) a rule for motion into the bottom of a block.

The rule for intra-block motion simply involves the movement of an instruction over ear-

lier instructions in the basic block. This motion is inhibited by any earlier instructions

which impose data dependences upon the instruction being moved (thecurrent instruc-

tion). For instance, an instruction cannot move above the definition of its operands. If the

current instruction is not free to flow up to the top of the basic block, the upward code

motion routine recursively applies itself to all of the preceding, data-dependent instruc-

tions of the current instruction.

Once the current instruction is at the top of the block, it is free to move to the bottom of

the preceding blocks. A copy of the instruction is placed at the end of each preceding basic

block so that the instruction still executes on every path that reaches the current basic

block. Thus, the motion of an instruction out of the top of a block can requireduplication.

On the other hand, the motion of an instruction into the bottom of a preceding block can

requirehardware-assisted speculative execution. If the only successor of a preceding basic

block is the original basic block, then the current instruction is alwaysuseful because the

instruction is always executed independent of the control flow. If instead the preceding

block has multiple successors, then the current instruction is a speculative operation which

is only useful if the execution proceeds down the CFG edge that the current instruction

3.4.1 Transformations to support upward code motion

60

just traversed. Hardware-assisted speculative execution (such as boosting) ensures that

this speculative instruction does not corrupt the program state if the control flow proceeds

down a different CFG edge. With hardware-assisted speculative execution, we are at a

point where we can re-apply the first rule. Through the successive application of the three

basic rules, we can continue to move the current instruction up through the CFG. These

three rules are sufficient because they cover all possible entry and exit configurations for a

basic block in a CFG.

Without hardware-assisted speculative execution, this generic upward code motion algo-

rithm is limited by any global code motion that results in unsafe or illegal speculative exe-

cution. To adapt this algorithm for environments without hardware-assisted speculative

execution, we have the algorithm perform the following checks before moving an instruc-

tion above a conditional branch. If any of these checks are true, the algorithm halts the

progress of the upward code motion. The algorithm checks for an unsafe speculative exe-

cution by checking if the current instruction is capable of signalling an exception. If it can

cause an exception, we cannot speculatively execute this instruction in a safe manner. The

algorithm checks for an illegal speculative execution by checking the set of values that are

needed when the other edge or edges of a preceding block are traversed. We can obtain

this set of values through live-variable analysis (see Aho et al. [1986], pp. 631–632). By

checking this set of values against the destination register of the current instruction, the

algorithm can determine when a movement would result in illegal speculative execution.9

As Section 2.1.1 discussed, the compiler can rely on software register renaming tech-

niques to transform some of these movements into legal speculative execution, and our

algorithm can check for these cases.

These simple rules succinctly describe our core global transformations—the set of trans-

formations that are sufficient to support the upward code motion of any non-CTI. Yet, this

set of transformations is pessimistic because it assumes that every instruction that moves

above a conditional branch is dependent upon the conditional branch. As Lam and Wilson

[1992] quantitatively show, precise knowledge of the control dependence during global

scheduling can noticeably improve the instruction schedule and thus machine perfor-

mance. To capture some of this benefit, our algorithm for upward code motion includes

one more transformation. This new transformation works on equivalent basic blocks

[Bernstein and Rodeh 1991]. This transformation determines when a global code motion

9. Any illegal speculative executions due to the overwriting of a value in memory (i.e. a speculative store
instruction) are caught by the unsafe speculation check since all store operations can cause an exception.

3.4.2 Bookkeeping

61

across a conditional branch does not require speculative execution or off-trace duplication

because the moving operation is independent of the execution of the conditional branch.

To explain the transformation, we need to explain some terminology. Two basic blocks are

control equivalent if one block of the pairdominates the execution of the other block, and

the other blockpost-dominates the execution of the first block. Recall that a basic blockd

dominates a basic blockn if d is executed on every path from the ENTRY node to blockn

[Aho et al. 1986]. Similarly, a basic blockp post-dominates a basic block n if p is executed

on every path from blockn to the EXIT node [Aho et al. 1986]. As an example, blocksA

and D of Figure 3-3a on page 43 are control equivalent because the execution of one

implies the execution of the other. Two control-equivalent blocks aredata equivalent with

respect to the moving instruction if the moving instruction is free of data dependences

with any instruction along any path between the control-equivalent blocks. If two blocks

exist that are both control equivalent and data equivalent with respect to a moving instruc-

tion, our new transformation will simply move the instruction between the two blocks

without any duplication or checks for illegal or unsafe speculative execution. The move-

ment of instructioni5 from blockD to blockA in Figure 3-3b is an example of this new

transformation. Control equivalence guarantees us that the execution of instructioni5 is

always useful in blockA, and data equivalence guarantees us that there are no data depen-

dences violated along the paths between blocksA andD. It is interesting to note that our

core set of transformations would produce the CFG in Figure 3-3c when moving instruc-

tion i5 from blockD to blockA. Thus, this new transformation not only improves the exe-

cution time of the scheduled code, but it also improves the spatial efficiency of our set of

global transformations.

Figure 3-9 outlines an algorithm for upward code motion that is based on our global trans-

formations. This algorithm does not assume the existence of any hardware to assist in the

movement of speculative operations; obviously the checks for illegal and unsafe specula-

tive execution are unnecessary if we have hardware-assisted speculative execution.

3.4.2 Bookkeeping

Through repeated application of the algorithm in Figure 3-9, our global scheduler can

move an instruction across multiple basic blocks. Since instruction availability depends

upon finding a set of global transformations that result in a data-ready instance of the

instruction, we could invoke the repeated use of this algorithm every time that our global

scheduler inquired about the availability of an instruction. Yet, a shortcoming of this

3.4.2 Bookkeeping

62

straightforward approach for determining availability is that the scheduler performs a

great deal of redundant analysis. As we will see, the global movement of an instruction

along the trace of basic blocks not only determines that instruction’s availability for the

current basic block, but it also determines the earliest point along the trace when that

instruction is available. Since a single global movement can determine earliest availability,

it is wasteful to recalculate availability at every availability inquiry. Instead, our approach

to global scheduling precalculates and summarizes the availability of each instruction so

that an availability inquiry becomes a compile-time efficient operation. Our global sched-

uling algorithm also summarizes the global dataflow constraints along the trace so that the

global movement of an instruction is a compile-time efficient operation. In this subsection

then, we describe the organization and the handling of the bookkeeping information for

instruction availability and for our global transformations.

3.4.2.1 Support for duplication and speculation

To summarize the constraints on the global movement of an instruction, we need to first

answer the question of what causes an instruction to be unavailable for scheduling. One

reason why an instruction might not be available for scheduling is that the instruction is

given an instruction I in block A to move;
given a path from block B to block A;
while (A != B) {

move I to top of A;
if (control/data equivalent pair to A exists on path) {

move I to bottom of pair;
A = equivalent pair on path;

} else {
/* check for illegal and/or unsafe speculation */
if (code motion into any predecessor of A results

 in unsafe speculative execution) stop;
if (code motion into any predecessor of A results

 in illegal speculative execution) {
rename destination of I;
insert copy at original position of I;

}
foreach (predecessor C of A) {

duplicate I at end of C;
}
remove I from A;
A = predecessor of A on path;

}
}

Figure 3-9: Algorithm for upward code motion.

3.4.2 Bookkeeping

63

not data-ready along the trace. Figure 3-10 contains an unscheduled CFG where the global

scheduler has chosen the traceABDE. If no instructions have been scheduled for this trace,

then instructioni4 is an example of an instruction that is not data-ready along the trace

since it depends upon the result of the on-trace instructioni2 . The EDAG in our trace-

scheduling framework nicely summarizes the on-trace data dependences of an instruction

so there is no need for a new data structure to re-summarize this information.

A second reason why an instruction might not be available for scheduling is that the

movement of the instruction results in an unsafe or illegal speculative execution. This con-

straint on availability is a property of the hardware and compiler support for speculative

execution. Without support for hardware-assisted speculative execution, the global move-

ment of instructioni6 out of basic blockE in Figure 3-10 causes an unsafe speculative

execution (because the load can cause an exception). As another example, the global

movement of instructioni7 from blockE to blockA results in illegal speculative execu-

tion (because the registerz is live on entry to blockC). Thus, both instructionsi6 andi7

are unavailable for scheduling in blockA. Once we schedule blockA though, instruction

i7 becomes available for scheduling; on the other hand, instructioni6 is only available

for scheduling in blockE. With some hardware assistance for speculative execution, both

instructionsi6 andi7 could become available in blockA.

Figure 3-10: Example for availability constraints.

B i2: x = 3

A
i1: beq u==0

D

i4: v = x
i5: beq v==1

C i3: w = z

E
i6: y = ld(w)
i7: z = z + 1

F i8: z = 4

live: w,x,z

live: w,x

def: w

3.4.2 Bookkeeping

64

A third reason why an instruction might not be available for scheduling is that the move-

ment of the instruction requires a duplication of the moving instruction that the global

scheduler cannot satisfy. This constraint on availability is solely a property of the sophisti-

cation of the routine that actually performs the global code motions and creates the com-

pensation code. To clearly explain our duplication constraints, we need to present a few

more definitions. Ajoin block is a basic block with more than one predecessor block, and

a branch-ending block is a basic block with two successor blocks.10 Theon-trace prede-

cessor (successor) is the predecessor (successor) block of the join (branch-ending) block

that is on the trace. Theoff-trace predecessors (successor) are (is) the predecessor blocks

(successor block) of the join (branch-ending) block that are (is) not on the trace.

Duplication can occur whenever an instruction is moved up and out of a join block. To

perform the duplication, we would like to simply place a copy of the moving instruction at

the end of each predecessor block. We refer to this action asduplicate and remove (DaR),

and it is illustrated in Figure 3-11a. This action is possible as long as the predecessor block

is not already scheduled or as long as the predecessor block does not end in a conditional

branch. To safely place the duplicate in a predecessor block that is already scheduled, we

would have to reschedule that predecessor block. Since our scheduling algorithm does not

backtrack, we do not allow duplications into already-scheduled basic blocks. To safely

place the duplicate in a predecessor block that ends in a conditional branch, we would

have to make sure that the duplicate does not destroy the operands of the branch and that

the speculative execution of this duplicate is safe and legal. Since it is difficult and expen-

sive to perform this analysis in our implementation of the global scheduling algorithm and

since our global scheduler will schedule for hardware implementations without hardware-

assisted speculative execution (otherwise we could always label the instruction as a specu-

lative instruction), we do not allow duplications into predecessor blocks that end in condi-

tional branches.

Still, we can get around both of these restrictions through the insertion of a new basic

block between the join block and the offending predecessor block. Since the straightfor-

ward insertion of a new basic block requires the scheduler to change the branch target of

the off-trace predecessor block and it requires the scheduler to add an unconditional jump

to the end of the new basic block (deemed too expensive for our application domain), our

algorithm actually creates the new basic block by splitting the join block into two blocks.

10. Our global scheduler stops a trace at a dynamic CTI, and thus we never need to consider a global code
motion into a block with more than two successor blocks

3.4.2 Bookkeeping

65

We refer to this action asduplicate and split (DaS), and it is illustrated in Figure 3-11b.

The tradeoff though is that we need to be able to adjust the branch target of the on-trace

predecessor. Consequently, our global scheduler only fails to duplicate an instruction

when the following two conditions both hold: the on-trace predecessor does not end in a

branch or jump instruction, and one of the off-trace predecessors is already scheduled or

ends in a conditional branch. As an aside, Figure 3-11c shows how our global scheduler

handles duplication from an already-scheduled join block;duplicate and adjust (DaA) is

very similar to DaS except the duplicate is already scheduled. Figure 3-12 presents a code

segment for determining the type of duplication required.

Since the global movement of a data-ready instruction in the EDAG can only cause the

duplication and/or the speculative execution of that instruction, the constraints on these

Figure 3-11: Examples of each duplication scheme.

on-trace
pred.

off-trace
pred.

unsched.
join

(a) duplicate and remove

on-trace
pred.

off-trace
pred.

unsched.
join

(b) duplicate and split

split
join

on-trace
pred.

sched.
pred.

sched.
join

(c) duplicate and adjust

sched.
join

indicates duplication

if (join block scheduled) {
duplicate_and_adjust;

} else if (any predecessor block is scheduled) {
if (on-trace predecessor ends in branch/jump)

duplicate_and_split;
else

duplication_not_possible;
} else if (off-trace predecessor ends in branch) {

/* cannot duplicate into branch-ending basic block */
if (on-trace predecessor ends in branch/jump)

duplicate_and_split;
else

duplication_not_possible;
} else {

duplicate_and_remove;
}

Figure 3-12: Code for determining the type of duplication required.

3.4.2 Bookkeeping

66

two actions are the only constraints on the availability of that instruction. Thus, we can

summarize the availability of an instruction by checking the duplication and speculative

execution constraints on the global movement of that instruction. Theearliest availability

of an instruction is the first point along the trace (proceeding from the home basic block of

that instruction to the seed basic block of the trace) where the compiler and/or the hard-

ware does not have enough sophistication to support the movement of the instruction

across the next CFG edge. Remembering the basic block at this point is the easiest way to

summarize earliest availability. For example in a system without hardware-assisted specu-

lative execution, the earliest availability of instructioni6 in Figure 3-10 is blockE

because the movement of this instruction across the edgeDE would result in unsafe specu-

lative execution, and the earliest availability of instructioni7 in Figure 3-10 is blockB

because the movement of this instruction across the edgeAB would result in illegal specu-

lative execution.

3.4.2.2 Our structures for bookkeeping

To explain how we initialize and update this availability information, we first need to

explain how we summarize the constraints on the global code motions along the trace. Our

global scheduler summarizes these constraints to further improve the compile-time effi-

ciency of our algorithm. For the global scheduler to calculate availability and perform glo-

bal code motions, it requires information about control dependence and off-trace data

dependence. Control dependence and off-trace data dependence indicate when duplication

and speculative execution are necessary. This dependence information is a property of the

CFG, and we therefore summarize it with the trace. The data structure which summarizes

this dependence information is referred to as theglobal constraint list (GCL).

When the trace only contains the seed basic block, all of the instructions in the EDAG are

available because only intra-block code motion is possible. At this point, the GCL is

empty. Once the global scheduler chooses a new basic block to add to the end of the trace

(called thenext basic block by Section 3.3.3), the scheduler creates what we call a set of

global constraints, and it adds these global constraints to the GCL. These global con-

straints summarize the constraints on a global code motion across the CFG edge between

the current basic block and the next basic block. The type or types of global constraints

generated depend on how the current basic block ends and on how the next basic block

can be entered (see Figure 3-13). If the next basic block has multiple predecessors, the

scheduler inserts a DEF constraint into the GCL. This DEF constraint contains the off-

trace global dataflow information necessary for the scheduler to determine if it should

3.4.2 Bookkeeping

67

duplicate an instruction when it moves that instruction across this trace edge. If the current

basic block has multiple successors, the scheduler inserts a LIVE constraint into the GCL.

This LIVE constraint contains the off-trace global dataflow information necessary for the

scheduler to determine if an instruction results in illegal speculative execution when the

scheduler moves that instruction across this trace edge. If the only successor of the current

basic block is the next basic block and the only predecessor of the next basic block is the

current basic block, then the global scheduler inserts aNULL constraint into the GCL. A

NULL constraint is simply a placeholder that indicates that there is no restriction on the

movement of instructions across this CFG edge. Of course, a single CFG edge can require

both a DEF and a LIVE constraint.

3.4.2.3 Building the bookkeeping information

As an example of the GCL and its use, we describe how we construct the GCL for the

trace in Figure 3-10 (see Figure 3-14). The GCL is constructed as the trace and the EDAG

are constructed. Initially, the trace only contains blockA (our seed block), the EDAG only

contains the instructions in blockA, and the GCL is empty. When we add blockB to the

No. of successors
of current basic block

1 2

No. of predecessors
of next basic block

1
NULL

constraint
LIVE

constraint

many
DEF

constraint
LIVE & DEF

constraint

Figure 3-13: Summary of global constraints.

current
basic block

on trace

next
basic block

on trace

(a) Off-trace edge possibilities from bottom of current basic block
and top of next basic block.

(b) Table of global constraints created for each combination of
 off-trace edge possibilities.

off-trace
off-trace

defined registers
live registers

3.4.2 Bookkeeping

68

traceA (Figure 3-14a), the multiple successors of blockA indicate that speculative execu-

tion is required for any code motion across the CFG edge between blocksA andB (blockA

is a branch-ending block). To determine whether the speculative execution of an instruc-

tion which moves across this CFG edge is safe and legal, the global scheduler requires

exception information about the moving instruction and global dataflow information about

the registers that are live on entry to blockC (the off-trace successor of blockA). Since the

exception information is an attribute of the instruction, the global scheduler only needs to

summarize the off-trace information about the registers which are live on entry to blockC.

This information is kept in the LIVE constraint for that CFG edge. In Figure 3-14a, the

LIVE constraint between blocksA andB contains the register set {w,x ,z}; these are all of

the variables that a speculatively-executed instruction from blockB could destroy. Since

blockB has only a single predecessor, this LIVE constraint is the only global constraint on

the CFG edge between blocksA andB.

Once we know what is required to globally move an instruction from blockB to blockA,

the scheduler uses the GCL to determine the earliest availability for each instruction in

block B by checking the duplication and speculative execution constraints along the trace.

That is, as the scheduler inserts instructions into the EDAG, it also simulates the global

code motion of that instruction from blockB (home) to the blockA (seed). This simulation

involves the updating of the GCL due to a duplication (we will talk more about how the

GCL is updated in the next subsection), but the simulation does not actually perform the

duplication. Each global code motion is simply done to determine the earliest availability

for that instruction.

When we next add blockD to the traceAB (Figure 3-14b), the multiple predecessors of

blockD indicate that duplication might be required for a code motion across the CFG edge

between blocksB andD (blockD is a join block). For this CFG edge then, we create a DEF

constraint with a register set that contains all of the registers that are defined in the off-

trace predecessors of blockD. The global scheduler uses this DEF register set to determine

when duplication is necessary. Specifically, the global movement of an instruction above a

join block requires duplication if the sources (a true data dependence) or the destination

(an output data dependence) of the moving instruction are in the DEF register set. For the

example in Figure 3-14, blockC only defines registerw so the DEF constraint on the edge

BD only contains the registerw. The movement of instructioni4 from blockD to blockA

(assuming prior movement of instructioni2) does not require duplication because the

early execution ofi4 is not affected by the instructions in blockC. On the other hand, the

movement of instructioni6 from blockE to blockA does require duplication.

3.4.2 Bookkeeping

69

Figure 3-14: Example of GCL construction.

B i2: x = 3

A
i1: beq u==0

C i3: w = z

live: w,x,z

B i2: x = 3

A
i1: beq u==0

D

i4: v = x
i5: beq v==1

C i3: w = z

live: z

def: w

B i2: x = 3

A
i1: beq u==0

D

i4: v = x
i5: beq v==1

C i3: w = z

E
i6: y = ld(w)
i7: z = z + 1

F i8: z = 4

live: z

live: w,x

def: w

(a) Added blockB to traceA

(b) Added blockD to traceAB

(c) Added blockE to traceABD

3.4.2 Bookkeeping

70

Alternatively, if the trace had begun with blockB instead of blockA, then the DEF con-

straint on the edgeBD would contain theuniversal set (the set of all of the registers in the

architecture) so that duplication always takes place. Unconditional duplication is neces-

sary in this case because no block in the traceBDE dominates blockC; unconditional

duplication ensures that the operation is executed when the control flow enters the trace

from this off-trace edge.

Returning to the example in Figure 3-14b, notice that when we added the basic blockD to

the traceAB we changed the register set of the LIVE constraint on the edgeAB. This

change may seem strange since we just finished saying that a global constraint for a CFG

edge is only dependent upon the entry and exit conditions of the blocks at the ends of that

edge. Well, the type of global constraint is determined as we previously discussed, but the

contents of the register set depend upon another factor. The reason for a change in the reg-

ister set of a global constraint is to support the equivalence optimization of Figure 3-9.

When we add blockD to the traceAB, we can immediately determine that the blocksA and

D are control equivalent. We would like the GCL to summarize the off-trace data depen-

dence information that we need in order to determine if these two blocks are data equiva-

lent with respect to a moving instruction. If they are data equivalent, then the global

movement of that instruction does not require speculative execution or off-trace duplica-

tion. As we said earlier, the EDAG captures all of the data dependences on the trace, and

thus the GCL only needs to capture those data dependences off the trace. The DEF register

set for the edge entering the join block of the control-equivalent pair (edgeBD in Figure

3-14b) captures the off-trace true and output dependences because it contains all of those

registers that are defined in the off-trace predecessors of blockD. The off-trace anti-depen-

dences are summarized by the set of live registers in the off-trace subgraph which is

reached by taking the off-trace successor of the branch-ending block of the control-equiv-

alent pair (edgeAC in Figure 3-14b). Before we changed the LIVE register set of CFG

edgeAB, it indicated the live-register set for all of the blocks reachable from the CFG edge

AC. By changing this set to contain only those registers which are live in the off-trace sub-

graph between the control-equivalent blocks, we can use these two global constraints to

determine whether data equivalence holds for this off-trace subgraph.

Actually, the blocksA andD in Figure 3-14b are what we call twoideally control-equiva-

lent blocks, and the implementation of our global scheduler only applies the equivalence

optimization to ideally control-equivalent blocks. To help in the precise definition of ideal

control equivalence, assume that we are given a branch-ending blockA and a join blockB

3.4.2 Bookkeeping

71

whereA is the immediate dominator ofB andB is the immediate post-dominator ofA so

that A andB are control equivalent. BlocksA andB are ideally control equivalent if the

following two conditions hold true:A does not immediately dominate any other join block

betweenA andB; andB does not immediately post-dominate any other branch-ending

block betweenA and B. Ideal control equivalence guarantees that the two subgraphs,

rooted at the branch edges ofA and terminated at the join edges of blockB, are completely

separate and that they have a single entry and exit point. These conditions guarantee that

our global scheduler can easily and accurately summarize the dataflow information for the

off-trace subgraph. We could improve our scheduler so that it attempts to apply the equiv-

alence optimization to all of the control-equivalent blocks in our applications by trans-

forming a pair of control equivalent blocks that are not ideally control equivalent into ones

that are. This transformation simply involves the duplication of blocks and the splitting of

join blocks as demonstrated in Figure 3-15. We chose not to include this optimization at

this time because a large fraction (over 55%) of the control-equivalent pairs in our bench-

mark applications are also ideally control equivalent. In summary, the type of global con-

straint on a CFG edge in the trace is only dependent upon the entry and exit conditions of

the blocks at the ends of that edge, but the contents of the register set of a DEF (LIVE)

constraint are dependent upon whether or not the successor (predecessor) of the CFG edge

is part of an ideal control-equivalent pair.

Figure 3-15: Transforming control-equivalent blocks into ideally control-equivalent blocks.

A

B

c

d e

A

B

c

d

e”

e’

A

B

c

d

e”

e’

‘empty’

NOT ideally control equivalent
(not separate subgraphs)

NOT ideally control equivalent
(B immediate post-dominator of c)

ideally control equivalent

3.4.2 Bookkeeping

72

Once we determine the global constraints for moving an instruction from blockD to block

A, the global scheduler simulates this global movement to determine the earliest availabil-

ity of each instruction in blockD. With this done, we can finally add blockE to the end of

our trace, and the creation of its global constraint proceeds in a similar fashion to the addi-

tion of blockB (Figure 3-14c). Again, as the instructions in blockE are inserted into the

EDAG, the earliest availability of each instruction is determined by simulating the global

movement of that instruction from blockE to blockA.

Figure 3-16 lists an algorithm that builds and initializes the GCL as the trace is con-

structed; this algorithm is called by the algorithm in Figure 3-5 on page 49. Since the con-

struction of our trace proceeds in the direction of the edges in the CFG, the algorithm in

Figure 3-16 only checks for an ideal control-equivalent pair when a DEF constraint is

inserted into the GCL. The discovery of an ideal control-equivalent pair of blocks results

in a recalculation of the pair’s LIVE constraint register set as we discussed in the example

in Figure 3-14. Once the global scheduler has constructed the trace, EDAG, and GCL, it

proceeds to schedule each basic block in the trace in a top-down manner as described in

Figure 3-5.

if (current_basic_block ends in conditional branch) {
/* movement requires check for speculative execution */
add LIVE constraint to GCL;
reg_set = live-var set of off-trace edge;

}

if (next_basic_block has multiple predecessors) {
/* movement requires check for duplication */
add DEF constraint to GCL;
if (immediate_dominator of next_basic_block is on trace

 && immediate_dominator is ideally control equivalent) {
reg_set = all_def set for off-trace paths between

 immediate_dominator and next_basic_block;
LIVE_constraint reg_set of immediate_dominator =

 live_var set for off-trace paths between
 immediate_dominator and next_basic_block;

} else {
reg_set = universal function; /* always duplicate */

}

determine type of duplication required (Figure 3-12);
}

Figure 3-16: Algorithm for building and initializing the GCL.

3.4.2 Bookkeeping

73

3.4.2.4 Updating the bookkeeping information

Up to this point, the discussion has always assumed that the register sets of the GCL con-

tained the appropriate global dataflow information. Each time the global scheduler per-

forms a global code motion though, the program graph changes and therefore the global

dataflow information changes. These changes require the scheduler to update the register

sets in the GCL to reflect the new global dataflow information. Our scheduler incremen-

tally updates the dataflow information in the GCL so that the updates are done in a com-

pile-time efficient manner.

Even though the global dataflow information changes whenever a global code motion

occurs, our global scheduler only needs to update those global constraint register sets that

are generated from an ideal control-equivalent pair. The following two claims support this

statement. The first claim is that a global code motion from a block later in the trace to the

block at the head of the trace can never increase the register set of a DEF constraint that is

not generated from an ideal control-equivalent pair. The proof of this claim is straightfor-

ward. A register set of a DEF constraint that is not generated from an ideal control-equiv-

alent pair is currently the universal set so duplication into the off-trace predecessor blocks

cannot possibly increase this set. The second claim is that a global code motion from a

block later in the trace to the block at the head of the trace can never increase the register

set of a LIVE constraint that is not generated from an ideal control-equivalent pair. The

proof of this claim implies that a global code motion cannot increase the set of off-trace

live variables. The global movement can obviously increase the set of live variables for

the on-trace edge by simply moving up a definition of a previously dead register. How-

ever, to affect the set of off-trace live variables, the moving instruction must have started

in or after a join block so that there exists a path from the off-trace branch edge to the

home block of the moving instruction. Now, either the uses of the moving instruction are

in the live-variable set or they are not, and a duplication at the join cannot change this off-

trace fact. The only way to increase the off-trace live-variable set is to move the instruc-

tion up so its destination is now live. If the join block was not part of an ideal control-

equivalent pair, the moving instruction is automatically duplicated and so the destination

register cannot become live. If the join block is part of an ideal control-equivalent pair so

that duplication does not have to occur, the pair must be the branch block of the ideal con-

trol-equivalent LIVE constraint, and this claim does not apply.

For register sets of global constraints that are generated from an ideal control-equivalent

pair, our global scheduler updates the register sets in these constraints when a duplication

3.4.2 Bookkeeping

74

occurs into the off-trace subgraph. A duplication into the off-trace subgraph adds the

duplicated instruction’s destination register to the DEF constraint’s register set—the dupli-

cation causes a new definition in the off-trace subgraph. A duplication also affects the

LIVE constraint’s register set because the duplication might change the off-trace live-vari-

able set. We update the live-variable set of the LIVE constraint by incrementally recalcu-

lating the live-variable sets of the basic blocks in the off-trace subgraph; a single upward

walk of the subgraph is sufficient.

Figure 3-17 illustrates how our global scheduler updates the bookkeeping data structures

during the scheduling of the traceABDE. (This example CFG is almost identical to the one

used in Figure 3-14, except that we changed instructionsi3 and i6 so that we could

movei6 to blockA without encountering an unsafe or illegal speculative execution.) The

global scheduler begins by scheduling blockA. Figure 3-17b shows the state of the CFG

and the GCL after the scheduler issues instructioni1 and a copy of instructioni6 in

block A (we show issued instructions in bold). The global code motion of instructioni6

required the scheduler to place a duplicate ofi6 (compensation code) in blockC, since

one of the operands of instructioni6 was redefined in blockC. This duplicate then caused

the scheduler to update the register sets of the LIVE and DEF constraints which depend

upon the control-equivalent pairAD. Notice that this update restricts the upward move-

ment of instructioni7 . If the scheduler had not updated the global constraints, the global

constraints in Figure 3-17a would have allowed instructioni7 to issue in blockA (thus

causing an error).

Figure 3-18 is a continuation of Figure 3-17, and it shows the state of the CFG and the

GCL after the scheduler has completed the scheduling of blockA and after it has moved

on to begin scheduling blockB (we show scheduled blocks in bold). When we finished

scheduling blockA, we removed the global constraints for the trace edgeAB from the

GCL since the global scheduler will no longer move any instructions across this edge.

Since blockA was part of an ideally control-equivalent pair, the register set of the DEF

constraint between blocksB andD has reverted to “top” (the universal set) to indicate that

duplication should always occur for a global code motion across this edge. If blockA was

not part of an ideally control-equivalent pair, then the other global constraints in the GCL

would not be affected by the removal of blockA from the trace. During scheduling, the

GCL always tracks the current state of the CFG and the trace.

Figure 3-19 inserts all of the bookkeeping specifics into our algorithm for building and

scheduling a trace (previously Figure 3-5). To review, our global scheduling algorithm

3.4.2 Bookkeeping

75

performsat most two global movements for each instruction in the trace. The first global

code motion occurs during the building of the trace/EDAG/GCL (this global code motion

is used to determine the earliest availability of the instruction), while the second global

Figure 3-17: Example of GCL update.

B i2: x = 3

A
i1: beq u==0

D

i4: v = x
i5: beq v==1

C i3: w = u

E
i6: y = w + z
i7: z = z + 1

F i8: z = 4

live: u

live: w,x

def: w

(a) CFG after trace construction and before scheduling.

B i2: x = 3

A
i1: beq u==0
i6: y = w + z

D

i4: v = x
i5: beq v==1

C i3: w = u
i6: y = w + z

E
i7: z = z + 1

F i8: z = 4

live: u,z

live: w,x

def: w,y

(b) CFG after scheduling of instructionsi1 andi6 .

3.5 Scheduling support for boosting

76

code motion occurs during the scheduling of the trace (this global code motion is only

necessary if the issued instruction originally existed in a basic block other than the one

that we are currently scheduling). For the determination of earliest availability, our global

scheduler only simulates the global movement of an instruction. This simulated global

movement may require an update of the GCL, but it does not produce any compensation

code because we have not yet determined the actual instruction schedule. Once the global

scheduler has completely built the trace and its data structures for bookkeeping, the global

scheduler is ready to schedule the trace. Since the GCL should now represent the program

graph before any global movements, each global constraint in the GCL reverts its register

set to the state that the register set was given when we first created the global constraint

(i.e. the state that originally existed before we simulated any global movements across

each CFG edge). The global scheduler then schedules the basic blocks in the trace in a top-

down fashion. As the global scheduler completes the scheduling of a basic block, it

removes the block from the trace, updates the EDAG instruction lists, and deletes the glo-

bal constraints of the completed basic block and trace edge.

3.5 Scheduling support for boosting

Opportunistic instruction scheduling techniques such as branch speculation are orthogonal

to and independent of our global scheduling algorithm. Opportunistic instruction

Figure 3-18: Example of GCL and trace update.

B i2: x = 3

A
i1: beq u==0
i6: y = w + z

D

i4: v = x
i5: beq v==1

C i3: w = u
i6: y = w + z

E
i7: z = z + 1

F i8: z = 4

live: w,x

def:T

Data structures
after basic block A

completely scheduled.

Basic block A
completely scheduled.

3.5 Scheduling support for boosting

77

scheduling techniques simply loosen the run-time-dependent scheduling constraints

between instructions so that the compiler is not conservative in its scheduling decisions.

The architectural mechanisms like boosting increase the power of the global scheduler by

permitting a greater range of global code motions. This section focuses on how boosting

augments the capabilities of our global scheduling algorithm.

Boosting is an architectural mechanism for hardware-assisted speculative execution which

provides the compiler with the ability to move any instruction above its control dependent

branch. In relation to the upward code motion routine listed in Figure 3-9, this capability

means that code motion into the bottom of a basic block is always possible. With boosting,

unsafe and illegal speculative movements do not inhibit the upward movement of an

instruction. We simply label any speculative instruction that would result in an unsafe or

illegal speculative execution as boosted instruction, and the hardware guarantees that the

effects of this instruction only affect the non-speculative state of the machine if the

instruction commits.

The discussion now turns from how boosting affects the upward code motion routine to

how boosting affects the our global scheduling algorithm. As it turns out, our trace-based

build_and_schedule_trace(BB *sBB /* “seed” of trace */) {
trace, EDAG, and GCL initially empty;
nBB = sBB;
while (nBB) { /* build */

foreach (instruction i in nBB) {
insert i into EDAG;
simulate move of i from nBB to sBB;
remember earliest availability of i;

}
choose next nBB (if any);
if (nBB) compute and add new constraints to GCL;

}
prioritize EDAG;
re-initialize GCL;
nBB = sBB;
while (nBB) { /* schedule */

cBB = nBB;
schedule cBB (perform any global code motions necessary);
remove cBB from trace;
delete global constraints associated with cBB from GCL;
special case operations for special case scheduling;
nBB = next basic block in trace (if any);

}
}

Figure 3-19: Bookkeeping specifics for building and scheduling a trace.

3.5 Scheduling support for boosting

78

approach to global scheduling and our trace-based simplification of boosting (as described

in Section 2.1.2) mesh quite well together. Whenever the global movement of an instruc-

tion above a conditional branch would result in an unsafe or illegal speculative execution,

the scheduler labels that instruction as a boosted instruction which is dependent upon the

conditional branch. From that point on, the instruction is considered dependent upon every

other conditional branch that the global scheduler moves it above. This automatic depen-

dence is because boosting encodes control dependence information as a count of the fol-

lowing branches. The number of branches that the instruction finally depends upon is the

boosting level of the instruction. If the hardware can support this many levels of boosting,

then there is no speculative execution constraint on the availability of the instruction. For

hardware configurations with support for fewer levels of boosting, the earliest availability

of the instruction is the point before the CFG edge that requires a level of boosting greater

than that supported in the hardware (assuming no earlier duplication that the compiler can-

not support).

Boosting also affects the actions of the global scheduler during the generation of compen-

sation code. As previously stated, the processor discards the effects of a boosted instruc-

tion when a dependent branch for that instruction is incorrectly predicted. This action

differs from the execution of a safe and legal speculative instruction (a speculative instruc-

tion that is not boosted) because this speculative instruction affects the program state inde-

pendent of the execution of the dependent conditional branch. Thus, our global scheduler

must check to make sure that the boosted operation was not needed on the non-predicted

path of the branch. If it is needed, the global scheduler must insert a duplication to recalcu-

late the operation even if the global constraints did not indicate that duplication was neces-

sary. Figure 3-20 illustrates a case where duplication into blockC is necessary for the

global movement of instructioni7 , but the DEF constraint on the trace edgeBD did not

indicate the need for this duplication.

Specifically, our global scheduler handles this check and duplication in the following man-

ner. First remember that the scheduler always duplicates into the off-trace predecessors of

a join block that is not part of ideally control-equivalent pair. Thus, the only way duplica-

tion could possibly not occur is if the branch-ending block (that caused the scheduler to

label the instruction as boosted) is part of an ideally control-equivalent pair, if the boosted

instruction moved through the join of this ideally control-equivalent pair on its way up the

trace (i.e. the boosted instruction’s home block is that join block or some block later in the

trace), and if the DEF constraint of that join block did not force a duplication. If these

three conditions hold, as they do for Figure 3-20, then the scheduler performs the

3.5 Scheduling support for boosting

79

appropriate duplication into the off-trace predecessor of the join block. Notice that the

third check is required to ensure that duplication does not occur twice, i.e. the DEF con-

straint did not force duplication on its own. To summarize, the movement of a boosted

Figure 3-20: Example of boosting-initiated duplication.

B i2: x = 3

A
i1: beq u==0

D

i4: v = x
i5: beq v==1

C i3: w = z

E
i6: y = ld(w)
i7: z = z + 1

F i8: z = 4

live: z

live: w,x

def: w

(a) CFG after trace construction and before scheduling.

B i2: x = 3

A
i1: beq u==0
i7: z.B = z + 1

D

i4: v = x
i5: beq v==1

C i3: w = z
i7: z = z + 1

E
i6: y = ld(w)

F i8: z = 4

live: z

live: w,x

def: w,z

(b) CFG after scheduling of instructionsi1 andi7 .

3.5 Scheduling support for boosting

80

instruction across a pair of ideally control-equivalent blocks always requires a duplication

into the off-trace predecessor of the join block of that pair. This duplication is a result of

the semantics of boosting and is independent of the DEF constraint check. Since our

scheduler maintains a set of pointers between the global constraint of a ideally control-

equivalent pair, a check for this special duplication is simple to perform.

To support precise exceptions under boosting, Section 2.1.3 described our recovery-code

scheme where exception processing for a boosted instruction is postponed until the com-

mit point. This scheme requires the hardware to re-execute the previously boosted instruc-

tions and all of their data-dependent successor instructions that were also moved above the

commit point. To support this re-execution, none of these instructions can destroy a value

that might be required during exception processing. Boosted instructions never destroy a

value needed during exception processing because they only modify speculative state. Yet,

a safe and legal speculative operation that uses a boosted value might inadvertently

destroy a value needed during exception processing. The simplest way to ensure that this

does not happen is to label as boosted any instruction that uses a boosted operand or that is

anti- or output dependent upon a boosted instruction. This solution also simplifies the

determination of what instructions need to be copied into the recovery code; the recovery

code consists of every boosted instruction. To summarize, the scheduler labels a specula-

tive instruction as a boosted instruction if any of the following five conditions are true:

(1) the speculative instruction is already boosted (hardware constraint),

(2) the speculative instruction can cause an exception to occur (unsafe specula-

tive execution),

(3) the speculative instruction destroys a live value on the off-trace edge of the

branch (illegal speculative execution),

(4) the speculative instruction uses a value produced by a boosted instruction

(true data dependence with a boosted instruction), or

(5) the speculative instruction writes a register that is read or written by a

boosted instruction (anti- or output dependence with a boosted instruction).

Though boosting changes the global constraints on availability and the compensation code

produced during a global code motion, boosting does not change the bookkeeping data

structures. Boosting, like any other opportunistic instruction scheduling mechanism, sim-

ply minimizes the constraints on code motion, and provides the compiler with more

opportunities for generating a good instruction schedule.

3.6 Summary

81

3.6 Summary

Compilers perform static instruction scheduling with the goal of minimizing program exe-

cution time by minimizing processor stalls. For parallel machines such as superscalar pro-

cessors, the instruction scheduler uses the exploitable ILP in an application to hide the

latencies from resource conflicts, data-dependence stalls, and control-dependence stalls.

Because most non-numerical applications contain very little exploitable ILP within a basic

block, we rely on global instruction scheduling techniques to find extra ILP across the

basic block boundaries. This chapter discussed the components of a typical global sched-

uling algorithm, and it reviewed some previous works in the field of global scheduling.

Though the previous works differed in their support for global transformations and in their

determination of which instructions are available for scheduling, all of these algorithms

tried to uncover as much ILP as they thought it was feasible to uncover.

The chapter also described a new global scheduling algorithm that is tailored for the

uncovering of ILP within non-numerical applications. We designed the algorithm to be

compile-time efficient, easily extensible, and highly flexible so that it is useful on a wide

range of machines and so that it complements other techniques for uncovering and

exploiting ILP (e.g. specialized optimizations such as software pipelining and procedure

inlining). Our global scheduling algorithm can be thought of as conscientious trace sched-

uling because we chose our limited set of global transformations so that we minimized the

potential execution-time penalties in the off-trace blocks due to an on-trace global code

motion (i.e. penalties from excessive compensation code). Though a trace-based approach

limits the size of the set of available instructions (from which we find ILP), a trace ensures

that this set contains those instructions of the larger set which are most beneficial to the

creation of a good global schedule. Our trace-based approach also suggests solutions for

many of the problems associated with the original Trace Scheduling algorithm such as a

lack of overlap between traces and a complex bookkeeper. The key to our simplification

and optimization of the bookkeeping process is the observation that the availability of an

instruction is an attribute that the global scheduler can precompute and summarize.

Chapter 2 argued the need for opportunistic instruction scheduling techniques because a

compiler’s pessimism about run-time-dependent information lead to lost opportunities for

exploiting ILP. This chapter showed how boosting could augment the capability of the

global scheduler by increasing the scope of the availability calculation. The next chapter

uses our global scheduling algorithm to investigate the hardware costs and performance

benefits of boosting.

Chapter 4 Evaluating Hardware Support for Scheduling

82

Chapter 4

Evaluating Hardware Support
for Scheduling

In the last two chapters, we looked at the compiler’s ability to exploit ILP through global

instruction scheduling and at a way of enhancing the capabilities of a global scheduler

through boosting. In this chapter, we investigate the cost of the hardware required to sup-

port boosting, and we evaluate how the level of hardware support for boosting affects

overall performance. As we mentioned in the introduction, the addition of extra hardware

features like boosting will only improve the overall performance of a processor if we can

implement these features without adversely affecting the cycle time of that processor. To

appropriately quantify the effects on cycle time, we discuss the organization and the cycle

time impact of the hardware structures required to support boosting in a specific processor

microarchitecture which we call TORCH. TORCH is a superscalar processor based on the

MIPS R2000 processor architecture [Kane 1987].

4.1 Background

To better understand the simulation system that we use to generate the results in this chap-

ter, this section briefly overviews our compilation environment, our benchmark programs,

and our simulation methodology.

4.1.1 Environment

Our experimental setup consists of a compilation system and a simulation system which

are both based upon the MIPS R2000 processor architecture. Table 4-1 lists the set of

benchmarks that we ran through this experimental system to generate the results presented

in this thesis. All of these programs are written in C, and all were run to completion. Three

of the benchmarks (eqntott, espresso, and xlisp) are from the original SPEC benchmark

4.1.1 Environment

83

suite [SPEC 1990], while the other four benchmarks (awk, compress, grep, and nroff) are

standard UNIX utilities.

We ran each benchmark on two different input data sets. We used the first input to generate

the branch profile used by the global scheduler, while we used the second input to run the

actual superscalar simulation. Like the study done by Fisher and Freudenberger [1992] on

profiled branch prediction, we tried to find input data sets with very different characteris-

tics so that our branch prediction accuracy would not be overinflated. We chose the data

set pairs so that the characteristics of our pairs varied in both execution time and execution

profile. Table 4-1 presents the total execution cycles and average instructions per cycle

(IPC) values for each benchmark when that benchmark was executing the second of its

input data sets on a MIPS R2000 processor with a perfect memory system (i.e. the caches

never miss). The final column in Table 4-1 is the overall accuracy of the static branch pre-

diction during this run.

We compiled all of the benchmark applications under the SUIF compiler system which

was developed at Stanford University [Tjiang et al 1991]. The SUIF compiler takes a

source file and generates an optimized assembly file; the optimizer in this compiler imple-

ments all of the standard optimizations [Tjiang and Hennessy 1992]. To generate the

MIPS R2000 numbers in Table 4-1, we scheduled the assembly file with the commercial

MIPS assembler (version 1.31), and then we ran this object file under pixie to collect the

execution statistics [MDSmith 1991]. To generate the performance metric for our super-

scalar machine models, we also scheduled this optimized assembly file with our global

scheduler. We talk about the specifics of the global scheduler implementation and the

Total R2000
Cycles

Avg. R2000
IPC

Branch Prediction
Accuracy

awk 52.6M 0.88 82.0%

compress 29.3M 0.87 82.7%

eqntott 1.0M 0.93 72.1%

espresso 101.4M 0.88 75.7%

grep 28.6M 0.81 97.9%

nroff 67.0M 0.81 96.7%

xlisp 1.0M 0.89 83.5%

Table 4-1: Benchmark programs and their simulation information.

4.1.1 Environment

84

superscalar simulator in the next two subsections. The performance metric for the super-

scalar machine models isspeedup, where speedup is defined as the total number of R2000

processor cycles taken to execute a program divided by the total number of superscalar

processor cycles taken to execute the same program.

SUIF is an experimental compiler system, and thus we need to put the results produced by

this system in some perspective. The advantage of an “in-house” compiler system is that

the structure of the compiler is flexible and easy to change; the disadvantage of an “in-

house” compiler system is that the code produced by this compiler may not always run as

fast as the code produced by a good commercial compiler. To determine how the SUIF

compiler compares with a good commercial compiler, we re-compiled and re-optimized

(at optimization level -O2) our benchmark programs with the commercial MIPS cc com-

piler (version 1.31). After running these new object files with the second of the input data

sets, we discovered that the SUIF-compiled object files were 10–35% slower than the

MIPS-compiled object files. The concern with this situation is that the SUIF object files

might contain extra, redundant work that is easily executed in parallel on the superscalar

processor, thus overinflating the performance numbers of the superscalar machine models.

Fortunately, this is not the case.

The reasons for the longer execution times in the SUIF-compiled object files stem from a

variety of causes, but the main causes are longer instruction sequences for some opera-

tions and poor register allocation in important loops. We found that, even though the abso-

lute execution time of a SUIF-generated object file is greater than a MIPS-generated

object file, the relative performance improvement of both object files is the same when

scheduled for and run on the same superscalar machine model. That is, speedup of the

superscalar machine model is unaffected as long as we start both the MIPS scheduler and

our global scheduler with the same optimized assembly file. To prove this point, the

implementation of global scheduler scheduled a number of MIPS-cc-generated assembly

files. The speedups produced by these MIPS-compiler-based simulations varied within the

range of +15% to -15% of the speedups produced by the SUIF-compiler-based simula-

tions. The reason that we use the SUIF compiler instead of the commercial MIPS compiler

is that the SUIF compiler supports more experiments than are possible with the commer-

cial MIPS compiler. For instance, the SUIF compiler can generate an assembly file with an

infinite register model, and this is not easily possible with the commercial MIPS compiler.

4.1.2 Specifics of scheduler implementation

85

4.1.2 Specifics of scheduler implementation

Twine is a C++ implementation of our global scheduling algorithm from Chapter 3. We

structured Twine so that it easily handles a wide variety of superscalar machine models.

Within Twine, one can change the types of functional units, the distribution of the func-

tional units within the issue packet, the issue and result latency rates of the functional

units, the size of the parallel issue, the handling of exceptions, etc. Of course, one can also

vary the degree of hardware support for speculative execution (e.g. the number and types

of hardware buffers included to support boosting).

The input to Twine is a MIPS assembly language file, and from this file, Twine produces a

globally-scheduled object file. To assist in the global scheduling process, the MIPS assem-

bly language file may contain branch profile information. If the profile information is not

present, Twine predicts the direction of conditional branches with the simple heuristic that

backward branches are predicted to take and forward branches are predicted to not take.

This simple heuristic achieves a branch prediction accuracy of only 60–70% for most pro-

grams, and it noticeably limits the speedups of the superscalar processors. Since accurate

branch prediction is very important for our trace-based global scheduling algorithm, the

SUIF compiler automatically inserts branch profile information into the MIPS assembly

language files. All of the results in this thesis use branch profile information, and as we

mentioned in the previous subsection, the SUIF compiler generates this profile informa-

tion with a different input than the input that is run in the superscalar simulation.

Since Twine is part of an experimental compiler system, Twine only implements those key

features which are required to perform instruction scheduling. We know of a number of

additional techniques which we did not implement in Twine that could possibly improve

the performance of our scheduled code. For instance, we could perform integrated register

allocation and instruction scheduling to minimize any register reuse conflicts. Currently,

Twine simply accepts the register allocation that is performed in the earlier phases of the

SUIF compiler (register allocation in SUIF follows a round-robin allocation scheme for

temporary variables, and it uses a coloring scheme for global variables [Chow and Hen-

nessy 1990]). As another potential optimization, Bernstein and Rodeh [1991] have shown

that scheduling with a global priority does not always produce the best basic block sched-

ule, and they suggest the local rescheduling of a basic block after it has been globally

scheduled. Currently, Twine only schedules each basic block once (using a global prior-

ity). Also, we could change the CFG during scheduling (e.g. change branch directions and

add/remove jumps) to improve the scheduler’s ability to globally move instructions. For

4.1.3 Simulation methodology

86

the most part, we expect that these techniques would have only a minor impact on the

numbers in this chapter. There are other techniques such as interprocedural analysis, pro-

cedure inlining, and loop-level optimizations (e.g. software pipelining [Lam 1988]) that

we expect to have a larger influence on performance, and we are planning to investigate

these techniques in the future.

4.1.3 Simulation methodology

We used three different simulation tools in our research. The first is a fully-functional,

gate-level simulator of our superscalar hardware.1 The second is an instruction-level sim-

ulator that runs our globally-scheduled code.2 The last is a trace-driven simulator that

quickly generates cycle counts for our globally-scheduled programs, given the characteris-

tics of our superscalar hardware. Though we have used the gate-level simulator to verify

the correctness of our TORCH hardware and the instruction-level simulator to verify the

correctness of some of our globally-scheduled programs, we used the trace-based simula-

tor to generate the results presented in this chapter. To generate these results, the trace-

based simulator takes advantage of the fact that Twine does not reorder conditional

branches. Because the branch ordering is the same in the globally-scheduled object file as

it is in the R2000 object file, we can calculate the cycle count of a globally-scheduled

application from a trace of the conditional branch directions in the R2000 object file.

Specifically, the trace-based simulation system works as follows. A benchmark program is

compiled by the SUIF compiler to produce an optimized MIPS assembly language file.

This file is then scheduled by the commercial MIPS assembler to produce a scalar object

file and by Twine to produce a superscalar object file. During global scheduling, Twine

generates statistics about each basic block in the application. These statistics include such

items as the cycle count for a basic block, the total instruction count in that basic block,

and the change in the instruction and cycle counts due to changes in the branch/jump tar-

get (a result of scheduling from already-scheduled basic blocks). Because Twine only ana-

lyzes individual basic blocks and because the execution of some instructions extends

beyond the end of the basic block, each basic block actually has a minimum and maximum

cycle count. The minimum cycle count is the number of execution cycles required by this

basic block if none of the instructions whose execution time extends beyond the end of the

basic block cause a hardware interlock or stall; the maximum cycle count is equal to the

1. The gate-level simulator was written by Tom Chanak, John Maneatis, Don Ramsey, and Drew Wingard.
2. The instruction-level simulator is based on the MIPS unimable simulator by Peter Davies. Phil Lacroute
converted the unimable simulator so that it executed TORCH instructions.

4.2 Boosting hardware

87

minimum cycle count for the basic block plus the longest possible stall time caused by an

instruction scheduled immediately after the basic block. (Since there was only a small

variation between the minimum and maximum numbers, the results in this chapter report

speedup as the minimum cycle count for the R2000 processor divided by the minimum

cycle count for the superscalar processor.) To support statistic gathering under boosting,

Twine also calculates the change in the instruction count of a basic block due to an incor-

rectly-predicted branch, i.e. this number represents the count of the boosted instructions

whose execution was useless due to the incorrectly-predicted branch. An incorrectly-pre-

dicted branch does not affect the cycle count. Twine dumps these statistics and a copy of

the CFG into a superscalar statistics file.

To generate dynamic statistics, our simulation system reads both the scalar object file and

the superscalar statistics file, and it collects the basic block trace of the scalar object file as

it runs on a scalar MIPS machine. We use the MIPS pixie utility to generate the scalar

basic block trace [MDSmith 1991]. Our simulation system uses this scalar trace to gener-

ate a superscalar basic block trace. Though there is not a one-to-one correspondence

between the basic blocks in the CFG of the scalar program and the basic blocks in the

CFG of the superscalar program, the ordering of the branches in the scalar program

matches the ordering of the branches in the superscalar program, and thus we are able to

generate a basic block trace for the superscalar processor by checking which way each

conditional branch goes. To cover the case where we only globally schedule the applica-

tion code and not the libraries, our simulation system also recognizes procedure call and

return instructions in the scalar trace so that it can trace through any procedures that were

not globally scheduled.

Our trace-based simulation system only models the execution time of the CPU since it

assumes a perfect memory system where caches never miss. Obviously, the true advantage

of a superscalar processor over a scalar processor depends upon the effectiveness of the

memory system. The more effective the memory system, the closer the CPU speedups pre-

sented in this chapter will represent the true speedups of the entire superscalar system.

4.2 Boosting hardware

Boosting is a powerful architectural mechanism for hardware-assisted speculative execu-

tion, and as such, boosting requires some specific hardware support. This section investi-

gates a number of different ways of organizing that hardware support within the TORCH

4.2.1 Basic support

88

microarchitecture. We first look at the hardware support required for an unconstrained

implementation of boosting, and we present a straightforward way of building this hard-

ware. As we will see though, this unconstrained model of boosting requires a large amount

of hardware buffering. Consequently, we describe two orthogonal approaches for reducing

the amount of speculative buffering in our processor. In Section 4.3, we will use these two

approaches to explore the overall performance benefit of boosting.

4.2.1 Basic support

To support boosting within the TORCH microarchitecture, Chapter 2 states that the hard-

ware must support a method of information transfer, a separation of state, and a resolution

of the speculative action. We transfer boosting information from the compiler to the hard-

ware through extra bits in the TORCH instruction words. Section B.2 of Appendix B

describes one method of encoding the boosting information.

To accomplish the separation of the speculative state from the non-speculative state, we

add extra buffering to the microarchitecture of TORCH. We refer to the extra buffers as

theshadow structures since they hold the speculative state. Specifically, the shadow struc-

tures hold the effects of a boosted instruction from the time that the boosted instruction is

executed until the time that the boosted effect is squashed or committed. Since our global

scheduler can label any instruction as a boosted instruction, the shadow structures must

capture all of the possible effects of the instructions in the MIPS R2000 architecture. The

R2000 architecture is a load/store architecture [Kane 1987], and as such, there are three

possible effects from instruction execution: a register is written, a memory location is

written, or an exception is signalled. From this list, it is obvious that the hardware requires

a shadow register file and a shadow store buffer. Our hardware includes shadow register

locations for every register destination in the machine, and this includes the floating point

register file and any special system registers (e.g. the floating-point condition code regis-

ter). Due to limited movement of branches in the global scheduler, the hardware squashes

all of the boosted branch effects in the pipeline; and thus, the program counter does not

require a shadow structure. Lastly, TORCH handles boosted exceptions with our recovery-

code scheme (Section 2.1.3), and thus the hardware also includes a single-bit queue.

To resolve the outcome of the speculative action, we have the hardware in TORCH check

the predicted direction of the branch against the actual direction of the branch. On an

incorrectly-predicted branch, the hardware invalidates all of the values in the shadow

structures. On a correctly-predicted branch, the hardware updates the non-speculative state

4.2.2 Full support

89

with the appropriate speculative state. That is, the hardware logically transfers a specula-

tive value in a shadow location that commits to the non-speculative location which is

paired with that shadow location. The mechanism which cheaply implements this logical

move is discussed in detail in the next two subsections.

4.2.2 Full support

In the simplest case, we can think of the shadow structures as copies of the non-specula-

tive structures. For instance, we could pair a shadow register location with each non-spec-

ulative register location. However, a single shadow location per non-speculative location

only supports the speculative execution of an instruction that is dependent upon a single

conditional branch (i.e. only supports a single level of boosting). To support unconstrained

boosting (i.e. boosting for dependence upon multiple conditional branches) in this

straightforward approach, we need multiple shadow locations per non-speculative loca-

tion. Thus, if we allown levels of boosting, the hardware must containn shadow register

locations for each sequential register location. Figure 4-1a illustrates a legal instruction

schedule that is possible when we fully support two levels of boosting (FULL boosting).

With a full complement of shadow structures,r1 , r1.B1 , andr1.B2 are each separate

physical locations.

The shadow structures for unconstrained boosting demand a large amount of buffering

hardware since we requiren buffer locations for each non-speculative location. Even so,

this hardware is straightforward to implement. The only difficult aspect of the shadow

structures is the implementation of the commit process, and the key insight in the imple-

mentation of this process is to realize that the data needs only to logically move on a com-

mit. This logical move is implemented by a technique that is similar to register renaming

[Keller 1975]. For each non-speculative register in the architecture, we physically build a

register and counter pair for each level of boosting. The counters contain the logical name

of each physical register. The register with a count value of 0 holds the non-speculative

state, the one with a count value of 1 holds the boosted-level-one state, etc. Additionally, a

valid bit is kept with each register to indicate whether a valid boosted value exists for this

register. On a correctly-predicted branch, each boosted value shifts down one level of

boosting. Rather than moving the data, each counter is decremented since each counter

represents the boosting level of its register. The most complex part of this hardware is to

make sure that the non-speculative register is only updated if the boosted-level-one regis-

ter contains valid data. If it does not, then the non-speculative register counter is not

4.2.2 Full support

90

decremented (it stays at 0) and the boosted-level-one counter (which was at 1) is set to the

maximum boosting level (essentially it is decremented twice).

The shadow store buffer consists of a similar hierarchy of renameable buffer locations. In

this case though, there exists an ordering among the shadow locations which hold stores

operations with the same boosting level, and this ordering complicates the construction of

the entire store buffer. To complicate the problem even further, the store buffer has only a

limited bandwidth to the data memory system, and this limited bandwidth can easily

become a bottleneck at a commit point. For example, when a commit occurs, the shadow

store buffer can release a large number of stores to the memory system. Obviously, the

memory system cannot handle all of these stores at once, and so they are buffered in a

non-speculative store buffer. Since this situation can cause resource problems (e.g. more

stores are committed than there is space left in the non-speculative store buffer), our hard-

ware in TORCH checks for store buffer overflow before committing the speculative

stores. If overflow would occur, the hardware in TORCH causes a boosted exception.

Another problem with a store buffer is that performance suffers greatly if all subsequent

Figure 4-1: Example schedules for different levels of hardware support.

r1 = load 4(r1)

r2 = r1 … r1 = r2 & r3

r1.B1 = r2 & r3

r1.B2 = load 4(r1.B1)

i1

i2

i3

(a) FULL boosting – multiple shadow locations per register name.

r1 = load 4(r1)

r2 = r1 …

r1.B1 = r2 & r3i1

i3

(b) LIMITED boosting – one shadow location per register name.

i2”: r4 .B2 = load 4(r1.B1)

i2’: r1. B1 = load 4(r1)

4.2.3 Partial support

91

loads have to wait for the store buffer to empty before proceeding. To overcome these per-

formance bottlenecks, there are a number of previously-proposed solutions which allow

loads to bypass buffered stores and even for loads to be satisfied by a buffered store

[Johnson 1990]. For our experiments which include a shadow store buffer, the trace-

driven simulation system assumes that the hardware can satisfy a load with a queued value

in the store buffer (i.e. loads never stall on memory or the store buffer).

4.2.3 Partial support

Providing full support for the movement of any instruction above multiple conditional

branches requires a large increase in the amount of hardware dedicated to the register file

and to the store buffer. We can reduce the amount of buffering necessary if we constrain

the speculative code motions that our global scheduler is allowed to perform. For exam-

ple, if we limit the global scheduler to one level of boosting, we only need one copy of the

register file and the store buffer. In general, there are two orthogonal methods for reducing

the hardware support for boosting: reduce the amount of support for speculative register

values, or reduce the amount of support for speculative store values. We have chosen what

we feel are three interesting options along this spectrum.

In option 1, we propose to completely remove the shadow store buffer.3 Without a shadow

store buffer, the scheduler cannot label any store instructions as boosted instructions, but

since the MIPS architecture is a load/store architecture, the scheduler is still free to label

any non-store instructions as boosted instructions. Without boosted stores, the global

scheduler cannot “boost” a calculation that involves a store to memory and then a load of

that value from memory. Furthermore, the lack of store movement will exacerbate any

performance penalties due to imperfect memory disambiguation (i.e. the boosting of loads

will be constrained by store instructions whose address we cannot disambiguate). How-

ever, if the processor architecture has a large enough number of registers and if the com-

piler uses an effective register allocator and memory disambiguator, the lack of store

boosting should minimally impact the overall performance.

In option 2, we propose to collapse the multiple shadow register files into a single shadow

register file that is capable of handling multiple levels of boosting. Without a distinct stor-

age location for each possible level of boosting,r1.B1 andr1.B2 in Figure 4-1a refer to

3. As an aside, our TORCH machine model without a shadow store buffer only includes a single-entry store
buffer to implement apipelined-store or delayed-write scheme [Fu et al. 1987]. This scheme pipelines store
operations so that a data memory operation can occur on every cycle.

4.2.3 Partial support

92

the same physical storage location, and the compiler must handle this output-like depen-

dence when it schedules the code. If the compiler generates the schedule in Figure 4-1a

and thus writes both speculative values to the same shadow location, there is some path

(depending upon which speculative value was written last) through the CFG that com-

pletes with the wrong value in registerr1 . Figure 4-1b illustrates the choices that the glo-

bal scheduler has in how it can legally boost instructioni2 . The global scheduler can limit

the boosting of instructioni2 (i2’) or it can rename the destination register ofi2 (i2”).

In both these cases, the speculative values do not contend for the same physical register.

Since Twine always limits the boosting of the instruction under option 2, the performance

penalty of this scheduling restriction should be minimal if the output-like dependence

occurs infrequently or if the limited overlap of operations is sufficient.

Option 2 significantly reduces the amount of hardware necessary for supporting multiple

levels of boosting because it requires only two registers, one counter, and one valid bit for

each sequential register name. Figure 4-2 illustrates how the hardware for this scheme is

organized (this figure only illustrates functionality and not implementation specifics). The

counter maintains the current boosting-level of the value in the shadow register. This

counter is decremented each time a branch is correctly-predicted. If the count field is one

and the register holds valid data, then on the next correctly-predicted branch the flip-flop is

toggled to “pong” the registers—the shadow register becomes the non-speculative register

and vice versa. This hardware implements the shadow state and only adds a single gate to

the register file access path.

Figure 4-2: Hardware functionality of the Option 2.

word

decoder

boosting
specifier

register
specifier

Q Q

line A

For one pair
of registers

T

commit

valid

m
od

ul
o

co
un

te
r

(s
iz

e
of

 b
oo

st
in

g
sp

ec
ifi

er
)

Bit to indicate
which register

is shadow

word
line B

ready to
commit?

4.2.4 Exceptions and the commit process

93

In option 3, we propose to completely remove the shadow register file and shadow store

buffer. To still allow for the boosting of operations, we can augment the processor’s pipe-

line control so that the scheduler can “boost” into the “shadow” of the conditional branch.

This scheme is basically an extension of squashing branches where instructions are nulli-

fied in the cycles following the branch if the branch was incorrectly predicted. With boost-

ing, only the boosted instructions in the cycles following the branch are nullified, not all

the instructions in those cycles. Without any extra shadow storage in the machine, the

scheduler is constrained to boosting only a few cycles into a branch-ending basic block.

For the MIPS R2000 pipeline, the instructions issued with the branch and in the branch

delay slot are simple to squash in the pipeline. This scheme requires the least amount of

hardware support, but it also imposes the greatest constraints on instruction scheduling.

4.2.4 Exceptions and the commit process

TORCH is a pipelined processor, and the interaction between pipelining and the commit

process is complicated by exceptions. To see why, we need to look at the TORCH pipeline

in detail. The pipeline in TORCH is identical to the pipeline in the MIPS R2000 processor.

It consists of five stages: instruction fetch (IF), register fetch and instruction decode (RD),

instruction ALU execution (ALU), data memory load or store (MEM), and register write-

back (WB). Figure 4-3a illustrates this pipeline. Figure 4-3b contains a pipeline diagram

showing when the condition of the delayed branch is determined and when the commit

process occurs.

IF RD ALU MEM WB

Figure 4-3: Smearing of the commit point onto a MIPS R2000 pipeline.

Icache Dcacheop wbrf

(a) MIPS R2000 pipeline

IF RD ALU MEM WB

IF RD ALU MEM WB

IF RD ALU MEM WB

Bcc

delay

target

(b) Example of when commit phases actually occur

LATE commit point
EARLY commit point
branch determination

4.2.4 Exceptions and the commit process

94

One might initially think that the commit process should occur immediately after the

branch condition is determined, but because of the pipelined nature of our processor, the

entire commit process is actually smeared across a number of pipeline stages. The commit

process begins in the RD stage of the branch target instruction so that this instruction reads

the correct operands when it does its operand fetch. If it were not for exceptions, this pipe-

line stage would complete the commit process. To correctly handle exceptions though, the

commit process should not really occur until the WB stage of the branch delay instruction.

At this point in the pipeline, the processor can be sure that an exception did not occur on

any instruction in the current basic block (Figure 4-3b assumes that the hardware checks

for exceptions at the end of the MEM pipeline stage), and thus before this point, the hard-

ware is unsure whether or not the speculative state is correct. To satisfy the needs of these

two pipeline stages, we actually rename the buffer locations during the early commit, and

we include some extra hardware to roll back the state if an exception is signalled before

the late commit. Remember that our recovery-code scheme for boosted exceptions dis-

cards and rebuilds the speculative state on any type of exception, so we do not want to

commit the speculative state if an exception occurs between the commit points.

So, an exception between the two commit points requires the processor to undo the early

commit. Because our hardware accomplishes the early commit process by only renaming

buffer space and never destroying any pieces of data, the hardware can handle the roll-

back of the late commit point by buffering the commit information for a few cycles (i.e.

the hardware remembers which register names performed a commit). For instance, the

hardware recognizes a boosted exception at the end of the MEM stage of the delay slot,

and it discards the speculative state by first un-renaming the renamed locations and then

invalidating the current speculative locations. We have designed the logic that performs

this commit buffering and roll-back, and in fact, our design can handle multiple early com-

mits between any early and late commit pair. We found that this more complicated design

still only adds a single gate delay to the access time of the register file in option 2. As a

final note, the signalling of a boosted exception during WB of the delay slot causes us to

not complete the execution of any non-speculative instructions in the delay slot. Conse-

quently, our recovery-code scheme places a copy of these non-speculative instructions at

the beginning of the recovery code for that branch.

4.3 Performance evaluation

95

4.3 Performance evaluation

This section describes the cost and performance of various different TORCH machine

models. By collecting cycle-time independent performance numbers and by understanding

the complexity of the hardware, we can evaluate the tradeoffs between hardware support

for instruction scheduling and performance. This section shows that we can achieve good

performance in TORCH with very little hardware support for speculative execution.

4.3.1 Superscalar base model

Our superscalar machine models contain the absolute minimum amount of scheduling

hardware required to build a multiple-issue processor out of a single-issue processor. That

is, our superscalar machine models do not include any hardware to check for dependences

between instructions in a fetch packet; they assume that the global scheduler is responsible

for ensuring that instructions fetched together can execute together. Yet, our superscalar

machine models do include hardware for interlocks; a packet is stalled in decode if any of

its operands are not ready. In this way, our superscalar machine models look a lot like

some VLIW machines (e.g. see Fisher [1983]). Unlike some VLIW machines though, all

of our superscalar machine models are single-program-counter machines which do not

include any type of multi-way branch instruction [Fisher 1980]. Because of this restric-

tion, every superscalar processor in this study is capable of executing at most one CTI per

cycle. Furthermore, ourbase superscalar machine models do not include any hardware

support for speculative execution (i.e. no boosting hardware). To fairly compare the per-

formance of our superscalar machine models with a MIPS R2000, all of our superscalar

machine models have a delayed load and delayed CTI instruction, and their functional

units have the same characteristics as the functional units in the MIPS R2000 processor.4

The complexity of a superscalar machine model is mainly dependent upon the size of the

parallel issue. Some aspects of the superscalar machine design scale linearly with the size

of the parallel issue (e.g. register file ports), but some other parts of the design grow super-

linearly in the size of the parallel issue (e.g. the bypass logic). If ani-issue machine is a

superscalar processor that issuesi instructions in parallel into execution, then the bypass

logic of ani-issue machine grows as O(i3) (i.e. O(i2) for comparisons between the instruc-

tions and another O(i) for determining priority). To limit the cost and complexity of our

4. For the few floating-point operations in our benchmarks, our scalar and superscalar simulators use a sim-
plified model of the MIPS R2010 floating-point pipeline where the floating-point functional units do not
share any resources.

4.3.1 Superscalar base model

96

superscalar hardware, we only investigate machine models which issue a small number of

instructions per cycle.

For our studies, afull-issue machine model is a superscalar machine model with no restric-

tions on its parallel issue. Each issue slot in a full-issue machine is supported by a full

compliment of functional units and processing resources. This superscalar machine model

duplicates the instruction fetch logic, the decode logic, the register fetch logic, the execute

logic, the data memory logic, and the write-back logic of the MIPS R2000 processor for

each parallel issue slot. Consequently, any number of the same (non-CTIs) instructions

may issue and execute together.

Even with the limitation of a single CTI per cycle though, a full-issue model has undesir-

able properties. A full-issue machine is expensive to build because some resources, like

data memory ports, are expensive to duplicate. Furthermore, a full-issue machine is ineffi-

cient in its use of the available hardware resources because the duplication of some

resources, like the shifter, do not noticeably increase performance. A more cost-effective

solution distributes the functional units among the parallel issue slots and duplicates only

those inexpensive functional units which noticeably increase performance.

A limited-issue machine model is a superscalar machine model with restrictions on its par-

allel issue. Each issue slot in a limited-issue machine is supported by some subset of the

functional units. This machine also assumes that an instruction that is fetched in a particu-

lar issue slot can execute in that slot. The compiler is responsible for scheduling instruc-

tions in the correct issue locations; there is no swap logic as there is in the DEC 21064

[DEC 1992].

The only limited-issue model used in this thesis is for a two-issue superscalar machine.

This limited-issue model is organized such that one side of the two-issue machine contains

an integer ALU, a branch unit, a shifter, an integer multiply/divide unit, and a floating-

point unit; the other side contains just an integer ALU and a memory port. This limited-

issue model is inexpensive because it only duplicates the integer ALU. All other opera-

tions execute only on one side of the machine, and thus the parallel execution of some

pairs of instruction classes is restricted. For example, this limited-issue machine cannot

execute a branch and a shift operation in parallel. We chose the position of functional units

in this limited-issue machine by the frequency of issue pairs in a full-issue machine model

so that those pairs of instruction classes which cannot execute in parallel were those

classes with the lowest probability of parallel issue.

4.3.1 Superscalar base model

97

Table 4-2 presents the cycle-count speedups (over the MIPS R2000 processor) for a vari-

ety of base superscalar machine models. The table references three different superscalar

processors: a 2-issue, limited-issue model (2i.L); a 2-issue, full-issue model (2i.F); and a

4-issue, full-issue model (4i.F). Twine schedules each application for the three superscalar

processors. The first time that Twine schedules the applications, it performs post-pass,

basic block scheduling (scheduling after register allocation with no global code motions).

For the other two times, Twine uses the global instruction scheduling algorithm to move

instructions past basic block boundaries, but Twine only permits safe and legal speculative

executions to occur since the base superscalar machine model does not contain hardware

to support boosting. The difference between the global scheduling cases is whether the

compiler performs register allocation or not. In the post-pass scheme, register allocation is

done before global scheduling. In the infinite register scheme, register allocation is not

done for the assembly language input to the global scheduler (though it is done for the

assembly language input to the MIPS assembler). Since the intermediate form of our com-

piler is an infinite register model, the performance of this machine model is as if the super-

scalar processor had an infinite number of registers (i.e. storage conflicts between and

among temporary variables and different user variables are eliminated).

Basic block scheduling achieves only a small cycle-count speedup across all of the

machine models in Table 4-2. This result supports our statement in Chapter 1 that non-

numerical applications contain very little ILP within a basic block. Our global instruction

Post-pass Post-pass Global Scheduling

Basic Block Scheduling Global Scheduling with Infinite Registers

2i.L 2i.F 4i.F 2i.L 2i.F 4i.F 2i.L 2i.F 4i.F

awk 1.13 1.16 1.18 1.16 1.19 1.21 1.24 1.26 1.26

compress 1.15 1.19 1.21 1.33 1.39 1.44 1.40 1.45 1.46

eqntott 1.23 1.35 1.38 1.25 1.38 1.43 1.43 1.54 1.61

espresso 1.16 1.21 1.25 1.22 1.29 1.33 1.38 1.44 1.51

grep 1.07 1.09 1.09 1.30 1.35 1.36 1.36 1.37 1.37

nroff 1.10 1.13 1.14 1.23 1.28 1.30 1.30 1.32 1.33

xlisp 1.14 1.21 1.26 1.20 1.29 1.34 1.31 1.35 1.35

h. mean 1.14 1.19 1.21 1.24 1.31 1.34 1.34 1.38 1.40

Table 4-2: Superscalar speedups achievable without hardware support for boosting.

4.3.2 Superscalar models with boosting

98

scheduler looks beyond these basic block boundaries for ILP and thus produces better

cycle-count speedups. The 2i.L model in Table 4-2 is the simplest and cheapest of our

superscalar machine models without boosting, and it achieves a a harmonic mean speedup

of 1.24 under post-pass global scheduling. Our hardware designs show that we can imple-

ment a 2i.L machine model with a cycle time that is probably identical to the cycle time of

the MIPS R2000 processor, and thus the cycle-count speedup of 2i.L is a good indication

of the true performance of that superscalar processor over the R2000 processor. Since we

are interested in a design approach that improves processor performance without

adversely affecting the processor cycle time, we use this 2i.L machine model in the next

subsection as the foundation for our superscalar simulations with boosting.

4.3.2 Superscalar models with boosting

Section 4.2.3 described two orthogonal approaches for increasing the amount of hardware

support for boosting: increase the complexity of the shadow register file buffering, or

increase the complexity of the shadow store buffering. In this subsection, we use some

combinations of the options discussed in Section 4.2.3 to build five augmented machine

models. We call these augmented models:Squashing, MinBoost1, Boost1, MinBoost3, and

Boost7. Table 4-3 presents the percentage improvement in the cycle-time speedup of these

augmented superscalar processors over the cycle-count speedup of the 2i.L machine

model. The numbers in this table correspond to scheduling with register allocation (i.e.

post-pass scheduling).

Squashing MinBoost1 Boost1 MinBoost3 Boost7

awk 10.7% 14.1% 15.0% 16.4% 16.9%

compress 6.1% 8.8% 8.8% 10.6% 10.6%

eqntott 6.8% 12.8% 14.1% 14.7% 15.3%

espresso 9.5% 17.7% 17.7% 21.0% 22.1%

grep 15.6% 27.7% 27.7% 41.5% 41.5%

nroff 11.2% 23.8% 24.0% 30.7% 35.9%

xlisp 6.9% 13.0% 13.3% 12.4% 13.3%

h. mean 8.7% 14.8% 15.2% 16.4% 17.1%

Table 4-3: Improvements in cycle-count speedup for various degrees of boosting support
over post-pass global scheduling (machine model 2i.L).

4.3.2 Superscalar models with boosting

99

Basically, the augmented machine models include an increasing amount of hardware sup-

port for boosting as we read across Table 4-3 from left to right. TheSquashing model con-

tains no shadow structures and boosting is only supported by a squashing pipeline. This

scheme adds the smallest amount of hardware possible for a scheme that supports boost-

ing. With this limited boosting ability, Twine is constrained to only label instructions as

boosted if they fall into the delay branch cycle of a branch-ending basic block, as dis-

cussed in Option 3 of Section 4.2.3. The Squashing model achieves less than a 10%

improvement in performance over global scheduling without boosting.

TheMinBoost1 model adds only a small amount of buffering to the processor. It contains

a single shadow register file that can only support a single level of boosting, and it does

not contain any type of shadow store buffer. This schemes basically doubles the size of the

register file, and it supports the general speculative movement of any non-store instruction

over a single conditional branch. Referring to the hardware in Figure 4-2, the shadow reg-

ister file hardware for the MinBoost1 model does not contain any counters, and the gate

which clocks the T flip-flop is simply an AND ofvalid andcommit. Since the boosting

specifier is only one bit, the OR-gate of Figure 4-2 is also not necessary. The MinBoost1

model achieves nearly a 15% improvement in performance over global scheduling with-

out boosting.

TheBoost1 model is the same as MinBoost1 except that it supports the boosting of stores.

That is, Boost1 includes both a shadow register file and a shadow store buffer, and both of

these structures only support a single level of boosting. The Boost1 model achieves

slightly better than a 15% improvement in performance over global scheduling without

boosting.

The MinBoost3 model is like MinBoost1 in that it does not contain any type of shadow

store buffer. Unlike MinBoost1 though, MinBoost3 contains a single shadow register file

that supports boosting with dependence information for three conditional branches. This

scheme adds the smallest amount of hardware possible for a scheme that supports boost-

ing over a large number of branches. For this scheme, the scheduler is constrained as dis-

cussed in Options 1 and 2 of Section 4.2.3. The MinBoost3 model achieves more than a

16% improvement in performance over global scheduling without boosting.

The Boost7 model approximates an upper limit on the performance gain available from

boosting with our global scheduler. The Boost7 model contains all the hardware necessary

to support boosting with dependence information for seven conditional branches, and

4.3.2 Superscalar models with boosting

100

because the vast majority (over 99%) of our static traces contain fewer than eight condi-

tional branches, Boost7 basically provides the global scheduler with an unrestricted model

of speculative execution. This “unrestricted” model of speculative execution achieves

about a 17% improvement in performance over global scheduling without boosting.

Overall, our “unrestricted” model of speculative execution (Boost7) contains an amount of

hardware support for boosting that is obviously unreasonable, and Table 4-3 shows that

this amount of extra hardware does little to improve performance over the other boosting

models with much less hardware support. Table 4-3 also shows that the boosting of store

instructions provides only a small increment in performance; Boost1 improves the har-

monic mean performance of MinBoost1 by less than 0.5%. The decrease in the cycle

count obtained with the shadow store buffer (even a simple one) does not seem to justify

the cost and complexity of that shadow store buffer. The best schemes for cost-effective

performance seem to be MinBoost1 and MinBoost3. Both schemes are basically advocat-

ing a duplicated register file.

As Section 4.2.3 discussed, the addition of a single shadow register file causes the register

file access time to be approximately one gate delay longer than the access time of the sim-

ple scalar register file. Since the register file is not currently in the critical path of the our

TORCH implementation (determined by looking at critical paths in the gate-level simula-

tor), we do not expect the complexity of the shadow register file to increase the cycle time

of the TORCH processor without boosting. Also, the additional hardware required by the

more complex register file is not large. The decoder for a MinBoost1 machine with 32

sequential registers contains only 33% more transistors than a normal decoder for a regis-

ter file with 64 registers (50% more transistors are required for a MinBoost3 implementa-

tion).

The MinBoost1 and MinBoost3 schemes double the size of the register file and then set

aside this extra register space to handle unsafe and illegal speculative execution. An inter-

esting question to ask is whether the MinBoost1 or MinBoost3 schemes actually do better

than a global scheduling scheme which uses software register renaming with a 64-entry

register file. Though the SUIF register allocator and Twine cannot directly generate code

for this enhanced machine model, we can place an upper bound on the performance of a

global scheduler with software register renaming by checking the performance achieved

by the global scheduling scheme with an infinite register model (see Table 4-2). Global

scheduling with infinite registers (no boosting) achieves an 8.1% performance improve-

ment (harmonic mean for machine model 2i.L) over the post-pass global scheduling

4.3.3 Comparison with a dynamically-scheduled model

101

scheme. This is a smaller improvement than that achieved by MinBoost1 and MinBoost3.

Thus hardware support for unsafe speculative code motions improves machine perfor-

mance beyond the best performance achievable with a pure software scheme.

Table 4-4 summarizes the hardware requirements and the cycle-count speedups (speedup

over the R2000 processor) for each of the schemes with some support for speculative exe-

cution. In addition to the 2i.L machine model, Table 4-4 also contains cycle-count speed-

ups for the 4i.F machine model. These numbers reinforce the conclusion that small

amounts of boosting hardware capture the majority of the cycle-count benefit.

4.3.3 Comparison with a dynamically-scheduled model

To put the results of the last subsection into perspective, Table 4-5 compares the speedup

of the 2i.L model under MinBoost3 to the speedup of a dynamically-scheduled, out-of-

order-issue superscalar processor with support for speculative execution (all speedups are

relative to the MIPS R2000 processor). The speedup numbers for the dynamically-sched-

uled machine were gathered from the trace-driven simulator built by Johnson [1990]. The

dynamically-scheduled machine is functionally equivalent to the 2i.L, MinBoost3

machine model. Like a 2i.L machine, the dynamically-scheduled machine fetches and

decodes two instructions per cycle. To implement out-of-order execution with speculative

execution, the dynamically-scheduled machine uses a total of 30 reservation station loca-

tions [Tomasulo 1967] and a 16-entry reorder buffer [JESmith and Pleszkun 1985]. These

are enough locations to guarantee that the machine never stalls waiting for a reservation

G
lo

ba
l

S
ch

ed
ul

in
g

S
qu

as
hi

ng

M
in

B
oo

st
1

B
oo

st
1

M
in

B
oo

st
3

B
oo

st
7

E
xt

ra
 b

oo
st

in
g

ha
rd

w
ar

e shadow
register files

— — 1 1 1+ 7

shadow
store buffers

— — — 1 — 7

H
. m

ea
n

sp
ee

du
p

model 2i.L 1.24 1.36 1.45 1.45 1.49 1.50

model 4i.F 1.34 1.53 1.57 1.59 1.65 1.68

Table 4-4: Summary of hardware requirements and cycle-count speedups
for the different speculative execution schemes.

4.3.3 Comparison with a dynamically-scheduled model

102

station or reorder buffer location. To predict branches, the dynamically-scheduled

machine uses a 2048-entry, 4-way set associative branch target buffer. This structure is

aggressive enough to achieve a branch prediction accuracy that is slightly better than that

achieved by our static profiling. Finally, the dynamically-scheduled machine has the same

number of functional units as a 2i.L machine, but since the dynamically-scheduled

machine uses reservation stations, it can issue up to 6 instructions per cycle. For the stati-

cally-scheduled machine model, Table 4-5 first presents the speedup numbers for post-

pass MinBoost3 scheduling (i.e. global scheduling with boosting after register allocation);

Table 4-5 then presents the numbers for MinBoost3 scheduling with an infinite register

model. Simiarly for the dynamically-scheduled machine model, Table 4-5 first presents

the speedup numbers without any hardware register renaming (i.e. dynamic scheduling

constrained by the register allocator); Table 4-5 then presents the numbers with perfect

hardware register renaming.

Statically-scheduled
2i.L Model

Dynamically-Scheduled
“2i.L” Model

Post-pass
MinBoost3

MinBoost3 with
Infinite Registers

No
Register Renaming

Perfect
Register Renaming

awk 1.36 1.45 1.51 1.59

compress 1.45 1.55 1.60 1.66

eqntott 1.43 1.63 1.37 1.52

espresso 1.48 1.62 1.57 1.66

grep 1.84 1.96 1.67 1.68

nroff 1.61 1.72 1.57 1.67

xlisp 1.35 1.52 1.42 1.56

h. mean 1.49 1.62 1.52 1.62

Table 4-5: Cycle-count speedup comparison of MinBoost3 with a dynamic scheduler.

4.4 Summary

103

4.4 Summary

Boosting relies on hardware buffers and some control logic to ensure the safe and legal

speculative execution of any instruction. In this chapter, we looked at three aspects of the

hardware support required for boosting: the organization of the hardware support, the ben-

efit of the hardware support on the cycle count of an application, and the impact of the

hardware support on the cycle time of a processor. For our load/store architecture, boost-

ing requires hardware support in two distinct regions of the processor. Boosting requires

buffering in the register file to postpone the effects of the boosted register operations, and

it requires buffering in the data memory subsystem to postpone the effects of the boosted

store operations.

Through a trace-driven simulation of our superscalar machine model, we found that boost-

ing can decrease the total cycle count of our benchmark applications beyond the cycle-

count performance that we could achieve in the machine model without boosting. Though

the performance benefit from boosting was greater in the parallel-resource-rich machine

models, we did achieve noticeable improvements in those machine models with a very

limited number of parallel resources. Furthermore, by varying the amount of hardware

support for boosting in each machine model, we found that only a small amount of hard-

ware support is necessary to approach the performance of a machine model with “unre-

stricted” speculative execution.

For the boosting configurations that only added speculative buffering in the register file,

we found that we could create a shadow location for every register location in the machine

and only change the access time of the register file by one logical gate delay. With this sin-

gle shadow register file, we described a design by which the compiler was still able to

label speculative instructions with dependence information for multiple conditional

branches. The combination of these two factors provided us with a design in which the

compiler is able to look across multiple conditional branches for a greater amount of ILP

and in which the cycle time of the processor is negligibly impacted by the hardware sup-

port for boosting. As a result, we believe that the 1.49x cycle-count speedup of the 2i.L,

MinBoost3 machine model over the MIPS R2000 processor is an accurate indicator of the

overall improvement in CPU performance gained from boosting.

Chapter 5 Conclusion

104

Chapter 5

Conclusion

The commercial acceptance of superscalar and superpipelined microarchitectures has cre-

ated a strong need for instruction schedulers to extract and exploit a larger amount of the

ILP within an application. In the domain of non-numerical applications, this need for more

ILP has indicated the need for instruction schedulers which effectively support speculative

execution. For this thesis, we followed an integrated design approach so that we could

determine a distribution of instruction-scheduling functionality between the hardware and

the compiler that best decreases the average CPI of a non-numerical application while

negligibly increasing the instruction count of that application and the cycle time of the

processor. The result of our research is a design framework called opportunistic instruc-

tion scheduling, and under this framework, we developed an architectural mechanism for

hardware-assisted speculative execution called boosting which noticeably increases the

performance of our superscalar CPU.

Opportunistic instruction scheduling provides the compiler with an effective method of

speculating on a run-time event. Under opportunistic instruction scheduling, the compiler

informs the hardware about its speculative decisions so that the hardware can check the

appropriate run-time variables and correctly update the program state. The advantages of

this cooperative approach are twofold. First, we can use sophisticated compiler techniques

to efficiently uncover and schedule for ILP, and since the compiler is no longer pessimistic

in its scheduling decisions, the compiler produces better schedules. Second, because the

compiler does all of the instruction analysis and scheduling, the hardware in our supersca-

lar machine remains simple and fast. The hardware never weighs options to determine

what instructions to execute next; it just executes the schedule that the compiler creates.

Specifically, this thesis described and investigated boosting, an opportunistic instruction

scheduling mechanism for branch speculation. Boosting provides the compiler with the

ability to specify the speculative execution of any instruction, and boosting relies on the

5.1 Areas of future research

105

hardware to ensure that a speculative value does not corrupt the machine state if the com-

piler-specified speculation is incorrect. To accurately evaluate boosting, we developed a

new global instruction scheduling algorithm which is tailored for the non-numerical appli-

cation domain. This algorithm provides one base line for how effectively a compiler can

globally schedule code without boosting. Since boosting only augments the capabilities of

the global scheduling algorithm and does not change its structure, the algorithm provides

an effective platform for evaluating a range of hardware support for boosting. In this the-

sis, we also developed a simulation system to collect cycle-count numbers for a variety of

superscalar machine models, and we analyzed the hardware complexity of these models to

accurately determine their overall performance.

Table 5-1 summarizes the major findings of our evaluation. The results of the evaluation

are encouraging for they show that boosting can improve the performance of a simple

superscalar processor. Furthermore, our results showed that a small amount of hardware

support for boosting captures almost all of the improvement achievable with unrestricted

speculative execution. In fact, a statically-scheduled superscalar processor using boosting

achieves a cycle-count performance rating which is nearly equal to that achieved with a

dynamically-scheduled, out-of-order-issue superscalar processor that supports speculative

execution, and boosting does so without the hardware overhead of dynamic scheduling.

5.1 Areas of future research

Rather than viewing this thesis as an end point to an area of research, we believe that the

work in this thesis provides a foundation for further research into tradeoffs between func-

tionality in the hardware and functionality in the software. There are many experiments

and many more architectural investigations that we could explore with the instruction

Table 5-1: Summary of performance evaluation (machine model 2i.L).

Cycle-count
speedup

Cycle-time
impact

Global scheduling
without boosting

1.24 none

Global scheduling
with MinBoost3

1.49 none

Dynamic scheduling
with speculative execution

1.52 some

5.1 Areas of future research

106

scheduler and the simulation system developed in this thesis. This section focuses on just

two specific areas of future research that try to uncover even more of the exploitable ILP

in non-numerical applications (thus further improve the performance of our superscalar

processor).

The first area deals with the analysis and optimization of the existing system and tech-

niques. Given a working compiler for a superscalar processor, we can now analyze the

generated code to discover where more compile-time effort would produce noticeably bet-

ter schedules. Chapters 3 and 4 mention a number of possible scheduling optimizations

(e.g. a more sophisticated priority function) and a number of ILP-increasing optimizations

(e.g. procedure inlining) that could lead to better schedules. Analysis of the current super-

scalar code would help us determine which of these optimizations are necessary and

which are most beneficial.

In fact, we believe that the cycle-count speedups in Table 4-5 are a lower bound on the

achievable cycle-count speedups since a number of avenues exist for decreasing the cycle

counts of either scheduling approach. For instance, one could improve the cycle-count

speedup of the dynamically-scheduled machine by using our global scheduling algorithm

to preschedule the code. Prescheduling improves the utilization of the processor’s

resources and minimizes stalls. Alternatively, we could modify the pipeline of the base

processor to remove the branch or load delay slots that lengthen the instruction schedules

and consume some of the available ILP. For example, the designers of the SUN Super-

Sparc arranged their pipeline so that the typical load-to-use delay is replaced with a less-

frequent load-to-load-address delay [Case 1991]. We could further improve the static

schedules produced for either approach by using ILP-increasing optimizations, such as

loop unrolling, to carefully uncover more ILP. We have performed some preliminary

experiments with a loop unroller which unrolls all the loops in a program module. Though

cycle counts for the MinBoost3 model did decrease slightly, the improvement was well

below what we expected. Upon closer inspection of the code, we discovered that no one

problem is limiting the performance. What is required is an effective mix of solutions to

problems in many areas (e.g. loop-level optimizations, procedure inlining, and better

memory disambiguation).

Furthermore, opportunistic instruction scheduling mechanisms such as boosting open up

entirely new opportunities for peephole optimization. For example, the unconditional

jump at the end of a THEN block in an IF-THEN-ELSE construct can become unneces-

sary if the global scheduler is able to boost all of the code in the THEN block. A peephole

5.1 Areas of future research

107

optimizer for boosting should remove the unconditional jump, invert the condition of the

conditional branch, change the target of the conditional branch so that it branches over the

ELSE, and predict the conditional branch to be taken. Figure 5-1 contains another exam-

ple where a peephole optimizer for boosting could reduce the instruction count of the

application. The original code is swapping the values in registersr1 and r2 . Simple

sequential RISC code requires a temporary register (r9) to perform this swap. Direct

translation of this sequential code into speculative code (assumingr1 andr2 are live on

the non-predicted edge of the conditional branch) is shown in Figure 5-1b. Sincer1.B

andr2.B are temporary registers that are different fromr1 andr2 , the temporary regis-

ter r9 is not needed as shown in Figure 5-1c. Of course, a superscalar processor with anti-

dependence length of zero cycles can interchanger1 andr2 by scheduling “r1 = r2; ”

and “r2 = r1; ” in the same cycle. Boosting provides the global scheduler with more

freedom since the global scheduler does not have to schedule the two instructions in Fig-

ure 5-1c in the same cycle.

Finally, the current simulation system focuses on the performance of the CPU, and it

assumes a perfect memory system. This simulation system therefore provides a first-order

approximation of the performance of the real superscalar processor. The inclusion of a real

memory model in the simulation system would provide accurate answers on how the glo-

bal scheduler and boosting affect the performance of the memory system.

The inclusion of a real memory model also provides an excellent starting point for the sec-

ond area of future research, i.e. investigating other architectural techniques for improving

the performance of non-numerical applications on superscalar processors. For instance, a

memory model is required for the evaluation of speculative memory disambiguation

(Section 2.3). Furthermore, the memory system is the next big performance bottleneck in

superscalar processors. The current superscalar machines contain only a single data mem-

ory port that stalls the machine on a cache miss. Research is needed to determine the

cheapest and most effective ways of providing multiple memory pipes and of tolerating

cache misses. Looking even further, the next big performance bottleneck is a result of the

r9 = r1;
r1 = r2;
r2 = r9;

(a) Original code

r9 = r1;
r1.B = r2;
r2.B = r9;

(b) Boosted code

r1.B = r2;
r2.B = r1;

(c) Optimized code

Figure 5-1: Example of a peephole optimization on boosted code.

5.1 Areas of future research

108

single CTI per cycle limitation. Are multi-way branches cheap and effective, or should

superscalar architectures include some sort of guarding mechanism to remove a number of

the conditional branch instructions?

Eventually, this type of research needs to evaluate how the fine-grain parallelism tech-

niques for superscalar processors interact with the coarse-grain parallelism techniques

found in parallelizing compilers for multiprocessors. This information will help determine

when we should stop building a large-issue superscalar processor and start building a mul-

tiprocessor consisting of small-issue superscalar processors.

For all of these further investigations, the best approach for cost-effective performance

comes from a design approach that considers the needs and capabilities of the hardware

and the software together. In this thesis, we have demonstrated how this design philosophy

is applicable to the area of instruction scheduling for high-performance processors.

Appendix A Scheduling a Basic Block

109

Appendix A

Scheduling a Basic Block

This appendix describes the structure of the basic block scheduling algorithm that lies at

the heart of our global scheduling algorithm. It also describes some of the important

implementation issues involved in the scheduling of instructions for our target microarchi-

tecture.

As outlined in Figure 3-5 on page 49, our global scheduler schedules the basic blocks in

each trace in a top-down ordering, i.e. it schedules the basic block at the head of the trace

before it schedules any basic block later in the trace. The basic block scheduling algorithm

is a list scheduling algorithm which uses a combination of top-down and bottom-up sched-

uling techniques to cycle schedule a basic block. The actual instruction scheduling is done

by a top-down scheduler which attempts to pull instructions as early in the basic block as

possible. Top-down scheduling is convenient in this context because a top-down schedul-

ing approach maps well onto our top-down approach to the scheduling of the basic blocks

in the trace. Recall that the top-down approach to the scheduling of the trace was done

because our global transformations only move code upward in the CFG, and that specula-

tive techniques such as boosting require this upward code motion.

Yet, our microarchitecture contains delayed CTIs, and top-down scheduling makes it diffi-

cult to know when the algorithm may schedule a delayed CTI. Since bottom-up schedul-

ing pulls instructions as far down the schedule as possible, bottom-up scheduling is good

for filling the CTI delay slots. Thus, to effectively handle this aspect of our microarchitec-

ture, our basic block scheduling algorithm first uses a bottom-upprescheduler to pre-

schedule the CTI delay slots, if any. Once the delay slots are scheduled, the prescheduler

marks the instructions in the prescheduled delay slots and undoes the bottom-up schedul-

ing. The priority on these marked instructions is decreased slightly so that a list scheduler

has a higher probability of scheduling the non-marked instructions first. Now when the

top-down scheduler runs, it knows that a CTI is available for scheduling if all non-marked

A.1 Instruction lists

110

instructions have been scheduled (i.e. it has predetermined what instructions are capable

of scheduling within the CTI delay). Figure A-1 outlines the algorithm which schedules

the basic block at the head of the trace. The next few sections describe some specifics of

this basic block scheduling algorithm.

A.1 Instruction lists

Our basic block scheduling algorithm relies on three sets of instruction lists. The top-down

scheduler uses two of the sets, and the bottom-up prescheduler uses the third set. Each set

consists of aready list, awaiting list, and ananti-dependent list. An instruction belongs to

a ready list if all of its dependent predecessor1 instructions in the EDAG are scheduled and

their latencies fulfilled, i.e. a ready list contains only ready instructions. To simplify the

list scheduling routines, the scheduler orders the instructions in each ready list by decreas-

ing priority.

An instruction belongs in a waiting list if all of its dependent predecessor instructions in

the EDAG are scheduled, but not all of their latencies are fulfilled. If the scheduler sched-

ules a waiting instruction in the current cycle, the hardware must stall the instruction’s

execution for the number of cycles that are required to generate the waiting instruction’s

1. The descriptions in this appendix are written for a top-down list scheduler. The simple translation for a
bottom-up list scheduler is left to the reader.

if (basic block ends in delayed CTI) {
preschedule CTI delay slots in bottom-up manner;
lower priority of prescheduled instructions;
undo prescheduling;

}

while (exists unscheduled instruction in basic block) {
top-down list schedule next cycle;
issue scheduled instructions;
update EDAG;

}

if (BB ends in delayed CTI && CTI not fully delayed) {
for (i = 0; i < no_of_unfilled_cycles; i++) {

top-down list schedule next cycle;
issue scheduled instructions;
update EDAG;

}
}

Figure A-1: Algorithm for scheduling the first basic block in the trace.

A.2 Scheduling a packet

111

operands. In other words, the scheduling of waiting instructions requires hardware inter-

locks. The scheduler orders the instructions in each waiting list by increasing interlock

time.

An instruction belongs to the anti-dependent list if all of its preceding true and output

dependent instructions in the EDAG are scheduled and their latencies fulfilled, and all of

its preceding anti-dependent instructions in the EDAG are either scheduled or in the ready

list. The instructions in the anti-dependent list are not yet ready to be scheduled in the cur-

rent cycle, but they will be available for scheduling in the current cycle if all of their

unscheduled anti-dependent partners are scheduled in the current cycle. The scheduler

does not bother to order the instructions in the anti-dependent lists.

The global scheduler initializes the set of bottom-up lists whenever it invokes the pre-

scheduler. The global scheduler initializes both sets of top-down lists during the creation

of the prioritized EDAG. One set of the top-down lists holds instructions for the current

basic block, while the other set of top-down lists holds the instructions for all of the later

basic blocks in the trace. The separation of these sets manages the priority distinction

between native instructions and non-native instructions. For both the top-down and bot-

tom-up lists, the scheduler updates each instruction list during the scheduling of a cycle

(e.g. to mark scheduled instructions, to simulate hardware interlocks, and to move instruc-

tions from the anti-dependent list to the ready list), and it updates each instruction list after

the scheduling of a cycle (e.g. to remove scheduled instructions and to insert newly-ready

instructions). Finally, the scheduler redistributes the instructions between the native and

non-native sets when it completes the scheduling of a basic block (to prepare for the

scheduling of the next, newly current, basic block).

A.2 Scheduling a packet

The scheduling of a cycle consists of matching the available resources with a set of the

ready instructions. For this purpose, the basic block scheduling algorithm maintains a

resource reservation table which describes the resources available at each cycle. From a

compiler’s point of view, this table represents apacket of instruction slots which it must

fill with ready instructions. The filling of this packet is constrained both by the execution

resources available in the machine (e.g. only one memory port so only one load or store

per cycle) and by the issue resources available in the machine (e.g. the processor is asym-

metric so instruction placement is constrained). Figure A-2 lists the steps required in the

A.2 Scheduling a packet

112

cycle scheduling of an instruction packet. This figure represents the core set of steps in

both the top-down scheduler and the bottom-up prescheduler. The top-down scheduler

though invokes this packet scheduling algorithm twice: first for the lists containing the

native instructions, and second for the lists containing the non-native instructions. This

ordering is how we ensure that native instructions always have priority over non-native

instructions.

The first step in the scheduling of a packet is to make sure that the ready list contains at

least one instruction. If the ready list is empty but there are unscheduled instructions in the

current basic block, the waiting list must contain instructions from the current basic block

that are simply waiting for their operands to become available. By increasing the cycle

count by the smallest waiting time in the waiting list and by appropriately updating the

ready and waiting lists, the scheduler can mimic a hardware interlock. If the hardware

does not support a full set of interlocks, the scheduler fills out the schedule with the appro-

priate number of NOPs. By only forcing hardware interlocks when the ready set is empty

at the beginning of the scheduling of a cycle, this approach ensures that the schedule is

never extended unnecessarily by a hardware interlock.

The next step scans the non-empty ready list looking for instructions to schedule in the

current cycle. This scan continues as long as there are unchecked instructions and unre-

served resources in the current instruction packet. The scheduler pulls instructions from

the ready list in the order of highest priority to lowest priority. As each ready instruction is

if (empty READY list && hardware interlocks available) {
increase cycle count by smallest waiting time;
update READY list with instructions from WAITING list;

}

/* fill packet with cycle ready instructions */
while (unchecked instructions in READY list

&& empty instruction slots in packet) {
ip = highest priority, unchecked instruction;
if (ip available via global code motion) {

if (resource available for ip) {
pick issue slot and reserve resources;
mark ip as scheduled;
if (newly ready instruction in ANTI list)

update ANTI and READY lists;
} else if (busy resource non-pipelined)

move ip from READY to WAITING list;
}

}

Figure A-2: Basic algorithm for cycle scheduling an instruction packet.

A.2 Scheduling a packet

113

selected, the scheduler checks the earliest availability of this instruction to determine if the

instruction is actually available for scheduling at this point. As we mentioned in Chapter

3, our global scheduler summarizes availability so this check is easy and compile-time

efficient (e.g. check two integer values for equality). For certain special instructions (e.g.

CTIs, non-interlockable instructions, special system instructions, etc.), the scheduler per-

forms other specific checks to determine if the instruction is really ready. If the instruction

passes the ready and available checks, the scheduler then checks the resource reservation

table to determine if current packet contains enough free resources to execute the instruc-

tion. If the required resources are free, the scheduler picks an issue slot for the instruction,

marks the required resources as busy, and records the instruction as scheduled. If the

instruction is not available or all required resources are not free, the instruction is left in

the ready list and the next instruction in priority order is checked. If the instruction is

available but the required resource is currently busy and non-pipelined, the instruction is

moved from the ready list to the waiting list; thus, the waiting list is used for both data and

resource interlocks.

Whenever the scheduler schedules another ready instruction, it checks the anti-depen-

dence list to determine if the scheduling of this instruction permits the scheduling of any

anti-dependent partner instructions. If an anti-dependent instruction becomes ready

because of the scheduling of a ready instruction, the scheduler updates the ready and anti-

dependent lists. By updating the ready list in the middle of the scan, the scheduler might

need to adjust its scan data structures so that it scans the newly inserted instructions at the

appropriate time (i.e. insert in priority order).

Delayed CTIs add a number of interesting twists to the basic packet scheduling algorithm.

During top-down scheduling of a packet, a data-ready CTI encounters an additional check

to determine whether the CTI is really ready for scheduling. The check examines the count

of unscheduled, unmarked instructions in the current basic block. If this count is zero, then

the CTI is really a candidate for scheduling. If the count is greater than zero, the CTI

remains in the ready list. To guarantee that the CTI is scheduled in the earliest cycle possi-

ble, the CTI acts like it has an anti-dependent constraint on the last unmarked instruction.

In other words, as soon as the last unmarked instruction is scheduled, the CTI is consid-

ered for scheduling in the current packet.

Delayed CTIs also complicate the enforcement of the requirement that the scheduler not

move any instructions down out of their original basic block. Even though all unmarked

instructions are scheduled, the operands of a marked instructions may still be unavailable,

A.2 Scheduling a packet

114

and because of global code motions, this marked instruction might get pushed out of the

CTI delay slots. The reason that this happens is that an interlock only occurs if absolutely

no instructions are ready. For top-down scheduling outside of the CTI delay slots, an inter-

lock occurs if both the current basic block ready list and the later basic block ready lists

are empty. To avoid downward code motion, the top-down scheduler should force an inter-

lock if it is scheduling a CTI delay slot and the current basic block ready list is empty.

The immediate reservation of resources is a simple approach to mapping scheduled

instructions onto the machine, but it is also an inefficient approach for microarchitectures

that are asymmetric. For instance, if a machine can execute either an ALU or memory

operation from the first issue slot in the packet but can only execute an ALU in the second

issue slot, a non-backtracking scheduler can produce a poor schedule if it searches and

assigns resources in a simple first issue slot to last issue slot manner. Under this simple

scheme, the scheduling of a ready list containing a high-priority ALU operation and a low-

priority load operation results in a two cycle schedule, even though both instructions can

issue in the same cycle (by placing the load in the first issue slot). To avoid this problem

without backtracking, the actual picking of an issue slot and the reserving of resources is

postponed for a scheduled instruction if that instruction has multiple choices among the

available resources. The actual algorithm maintains an indication of the number of multi-

ple resources reserved, but it postpones the mapping of a scheduled instruction to a

machine resource until a specific choice is forced or the packet schedule is complete. A

choice is forced when there is only one available issue slot or resource for the scheduled

instruction. Of course, the forced mapping of one instruction might cause earlier post-

poned instructions to map.

A general algorithm for this delayed-mapping approach is difficult. The basic problem is

that overlapping resource classes can cause a cycle in a simple reservation checking mech-

anism. Consequently, the algorithm that we implement only handles resource classes that

are perfectly nested or totally disjoint with respect to the instruction issue locations. For

example, suppose we are given a microarchitecture which issues five instructions per

cycle and which contains three ALUs and two memory ports. If any issue location in this

machine can accept both an ALU and a memory operation, then the other memory port

must also be grouped with an ALU (perfect nesting). The other choice (totally disjoint

resource sets) has the two memory operations in the two issue slots that cannot accept an

ALU operation. This restriction is relatively minor from a machine microarchitecture

point of view, especially since we focus on machine models with few parallel resources

and small issue widths.

A.3 Overlapping branch delays

115

A.3 Overlapping branch delays

The pipelining of CTIs improves performance, and the execution of a CTI in another

CTI’s delay slot is fairly simple to support in hardware [Chow 1989]. Though our global

scheduling algorithm does not reorder CTIs (to minimize the potential of code explosion),

the global scheduling algorithm can support the scheduling of a CTI in another CTI’s

delay slot. The cost of this performance feature is a small increase in the complexity of the

global scheduler. That is, the scheduling of a CTI in another CTI’s delay slot involves a

global code motion, and this global motion might result in the duplication of the second

CTI. Figure A-3 shows an example where the delay slots of the copies of the conditional

branch instructioncBra3 are no longer adjacent to each copy of the instruction. This sep-

aration is not a problem for the hardware, but the scheduler must remember to schedule

this duplicate CTI with fewer delay slots because some of the delay slots are already

scheduled elsewhere.

Figure A-3: Example of overlapped CTI scheduling.

cBra1 t3

<empty>

cBra2 t2

<empty>

Jmp1 t3 t2:I1

<empty>

t3:cBra3 t4

<empty>

cBra1 t3

cBra3 t4

cBra2 t2

<empty>

Jmp1 t3 t2:I1

cBra3 t4

cBra3 t4

t3:NOP

Before scheduling of trace After scheduling of trace
b

lo
ck

s
a

n
d

 e
d

g
e

 in
vo

lv
e

d
 in

 t
ra

ce

to be scheduled
with no delay slots

CTIs have
one delay slots

Appendix B Secondary Issues

116

Appendix B

Secondary Issues

The major conclusion of this thesis implies that static scheduling with boosting is an

acceptable solution to the problem of instruction scheduling in superscalar processors.

Yet, this thesis primarily focuses on how static scheduling with boosting affects the execu-

tion engine, and the discussion so far largely ignores how static scheduling with boosting

affects other secondary issues that are extremely important when determining the true fea-

sibility of an idea. This section focuses on two of those secondary issues. The first issue is

a performance question that specifically deals with the effect of static scheduling on the

instruction memory subsystem. The second issue is a commercial concern that specifically

deals with the effect of boosting on code compatibility. These brief discussions follow our

philosophy of integrated approach to high-performance processor design, and they uphold

the conclusions of this thesis.

B.1 Code compaction

Our global scheduling algorithm of Section 3.3 contains a compaction routine, and though

compaction is not an actual part of the scheduling routine, compaction is an integral part

of instruction scheduling for superscalar machines with limited hardware for dynamic

dependence checking. Compaction involves the removal of the static NOP instructions

from the software schedule. Compaction of some sort is necessary since the global sched-

uler cannot always fill every instruction issue slot. Currently, the global scheduler fills

each empty issue slot with a NOP instruction. These static NOPs increase the size of the

object file and therefore decrease the effectiveness of a fixed-size instruction cache. By

increasing the complexity of the hardware issue and execution mechanisms, one can

remove more and more of these static NOPs. Of course, one could remove all of the static

NOPs by implementing a machine that checks for dependences between instructions in

issue and by implementing a compiler that schedules anti-dependences with a dependence

B.1 Code compaction

117

edge delay of one cycle. Yet, this solution ignores the fact that the compiler already deter-

mined what the hardware could issue in parallel. Why throw all of this information away

and make the hardware regenerate it? A solution somewhere in the middle seems much

more appealing. As usual though, the question remains of how much complexity one

should put in the hardware and how much help can the compiler provide.

The instruction fetch and decode logic is an important component of the overall system

design. A superscalar processor would like to maintain the simplicity of the fetch and

decode subsystem found in today’s RISC processors. The fixed-length, fixed-format style

of RISC instructions decouples instruction fetch from instruction decode so that fetch and

decode can operate in parallel. To achieve a decoupling of the fetch and decode units in

most superscalar processors today, designers include prefetch and buffering logic. This

logic is necessary in superscalar machines that perform dependence checking in the fetch

unit and thus allow for variable-sized issue packets. The prefetching and dependence-

checking logic can add a significant amount of hardware to the processor, and this logic

can often increase the number of stages in the pipeline (e.g. see the description of the SUN

SuperSparc [Case 1991]). Additional techniques are then required to ensure that the

branch delay does not increase because of the additional pipe stages.

Our approach to this problem minimizes the fetch and dependence-analysis hardware

while still removing a large number of the static NOP instructions. In this approach, the

software does what it is best at doing—determining the grouping of independent instruc-

tions; and the hardware does what it is best at doing—nullifying instruction issue slots. In

other words, the hardware dynamically inserts NOPs into the instruction execution stream

where the software requests, without the software having to insert an entire 32-bit NOP

instruction. The approach allows the compiler to condense a set of multiple execution

packets into a single fetch packet. This approach is achieved by including some extra

information with each fetch packet that tells the hardware how to reconstruction the origi-

nal set of execution packets. Currently, this extra information is encoded astiming bits in

each instruction word. The timing bits tell the hardware how long to delay from the packet

fetch till that instruction’s issue. The timing bits succinctly inform the hardware of depen-

dences between the instruction in the fetch packet, and they greatly reduce the complexity

of the instruction issue unit. By never splitting an execution packets to finish out the fill of

a fetch packet, the complexity of the instruction fetch unit is also greatly reduced

(prefetching is unnecessary). Figure B-1 contains three examples from a two-issue

machine with a single timing bit per instruction; the compiler indicates a delay of one

cycle by prefixing a “D.” specifier to the front of the opcode. In the first two examples, the

B.1 Code compaction

118

compiler compacts the execution sequences, but in the last example, the compiler does not

compact the sequence because compaction would split the second execution packet (and

ultimately lengthen the execution of this sequence because the hardware does not prefetch

and merge instructions from different packets). Figure B-2 outlines the compiler algorithm

that compacts a software schedule for this hardware configuration.

Figure B-1: Examples of compaction with a single timing bit per instruction.

i1 NOP

i2 NOP

Execution sequence

i1 D.i2

Fetch packet after compaction

(a)

NOP NOP

i1 i2

Execution sequence

D.i1 D.i2

Fetch packet after compaction

(b)

i1 NOP

i2 i3

Execution sequence

i1 NOP

Fetch packets (NO compaction)

(c)
i2 i3

Figure B-2: Algorithm for compacting a software schedule for hardware with timing bits.

d = 0;
cpkt = first packet in software schedule;
npkt = next packet in software schedule;
if (no npkt) done;
while (not done) {

if (number of NOPs in cpkt >= number of instrs in npkt) {
d++;
put instructions from npkt into cpkt with delay d;

} else {
d = 0;
output cpkt;
cpkt = npkt;

}
npkt = next packet in software schedule;
if (no npkt) done;

}
output cpkt;

B.2 Code compatibility

119

The purpose of this section is not to completely explain and evaluate this mechanism, but

to demonstrate that global instruction scheduling can improve more than just the effi-

ciency of the functional units. Of course, a full implementation of our technique requires

an understanding of how the mechanism interacts with scheduler changes to branch and

jump targets (e.g. scheduling from already-scheduled basic blocks), with limited-issue

architectures, with hardware interlocks, and with exceptions. The utility of this mecha-

nism does not show up in CPU cycle counts. The mechanism simplifies fetch and decode

hardware which affects the cycle time of the machine, and the mechanism removes static

NOPs which reduces the number of cycles spent in the instruction memory subsystem. So,

with all of these caveats aside, this mechanism reduces the number of static NOP instruc-

tions in the applications of Chapter 4 from around 30-35% of the total instructions to

around 15-20% of the total instructions. The machine model in this experiment is a two-

issue, limited-issue superscalar machine with no load interlocks and one-level of boosting

(one shadow register file and one shadow store buffer).

B.2 Code compatibility

In addition to performance, code compatibility is also an important issue in the commer-

cial world. Architectural extensions such as boosting require more instruction encoding

space than exists in the current 32-bit RISC architectures. Architectural extensions possi-

bly jeopardize compatibility between different extensions of a given architecture because

the extensions could differ in instruction length and encoding. Furthermore, strict static

scheduling also jeopardizes compatibility between different implementations of the same

architecture because the implementations could differ in issue width and functional unit

organization.

This subsection briefly addresses the issue of code compatibility in our TORCH imple-

mentation. The purpose of this subsection, like the last subsection, is not to completely

explain and evaluate some solution to the code compatibility issue, but to demonstrate that

architectural extensions and static scheduling do not destroy code compatibility. As

always, a full evaluation of the solutions requires an understanding of how each mecha-

nism interacts with instruction addressing, virtual memory, etc.

For architectural extensions, the simplest method of increasing the instruction encoding

space is to use prefix bytes, such as was done in the Intel 80386 [Crawford 1986]. Prefix

bytes ensure compatibility by leaving the bits that compose the original instruction format

B.2 Code compatibility

120

unchanged and encode the additional functionality required by the architectural extensions

in the new instruction bits. In TORCH, we use a prefix byte to encode the architectural

extension information for each instruction. Specifically, TORCH instructions are com-

posed of a 32-bit base component that is identical to a MIPS instruction and an 8-bit

extension byte that contains the boosting and timing information. Figure B-3 illustrates a

sequential and boosted encoding for a typical MIPS instruction.

To effectively satisfy the high instruction bandwidth of the superscalar processor, we orga-

nize the primary instruction cache in TORCH so that it caches 40-bit objects. That is, the

primary instruction cache contains a binary number of 40-bit instructions per cache line,

and the program counter directly indexes the primary cache (the program counter is an

instruction number and not the byte address of the instruction). To minimize the effect of

the 40-bit instructions on the later levels of the memory hierarchy, a translation takes place

during a primary instruction cache miss that translates an instruction number into a byte

address (the translation is a multiplication by 5/4 which corresponds to a shift-and-add

operation on the program counter). The advantages of this scheme are that the implemen-

tation of the CPU and primary instruction cache (which is most-likely on the same chip

with the CPU) completely hide the complexity of the 40-bit instructions and that the

implementation optimizes the performance of the time-critical path between the CPU and

the primary instruction cache. Preliminary studies show that this solution typically incurs

less than a 2% degradation in instruction memory system performance. The memory sys-

tem in this preliminary study is typical of those found in today’s high-performance

machines: 8 kilobyte primary instruction cache with a 6–8 cycle miss penalty, and a 512

kilobyte combined secondary cache with a 20–25 cycle miss penalty.

Now, the execution of a 32-bit MIPS object file on the 40-bit TORCH implementation

simply requires the cache miss handler to correctly fill the 40-bit instruction cache with

timing bits (see Section B.1)

Figure B-3: Example of instruction encodings in TORCH.

addu $9, $8, $7

addu $9.B, $8.B, $7

opcode src1 src2 dest

000000 01000 00111 01001 <add>

000000 01000 00111 01001 <add>

Base MIPS Instruction

00 00 00 00

Extension Byte

00 01 00 01

dest boosting level

src2 boosting levelsrc1 boosting level

Example Instruction

op_ext

B.2 Code compatibility

121

32-bit instructions. Specifically, the primary instruction cache miss handler does not trans-

late the program counter (an instruction number for a 32-bit instruction is its byte address),

and the handler defaults the prefix bytes to some set pattern. The simplest fill pattern is one

that forces single instruction issue. Yet, better performance results from the inclusion of

some dependence analysis hardware in the miss handling logic. This augmented miss han-

dler analyzes each packet of instructions, and it appropriately sets the timing bits to take

advantage of any possible parallel issue. A similar scenario handles the execution of an

object file compiled for a two-issue machine on a four-issue machine. This approach uses

dynamic scheduling to achieve efficient code compatibility because dynamic scheduling

best satisfies the requirements of code compatibility. Still, this approach limits the com-

plexity of the dynamic scheduling hardware by analyzing instructions only within a

packet, and it limits the cost of the dynamic scheduling hardware by analyzing the instruc-

tions during the filling of the primary instruction cache (outside the critical path of the pro-

cessor). This approach demonstrates another tradeoff between functionality, cost, and

performance.

 References

122

References

[Aho et al. 1986]

A.V. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[Bernstein and Rodeh 1991]

David Bernstein and Michael Rodeh. Global Instruction Scheduling for Supersca-
lar Machines. In Proceedings of the ACM SIGPLAN ‘91 Conference on Program-
ming Language Design and Implementation, pp. 241–255, June 1991.

[Bernstein et al. 1991]

David Bernstein, Doron Cohen, and Hugo Krawczyk. Code Duplication: An Assist
for Global Instruction Scheduling. InProceedings of the 24th Annual International
Symposium on Microarchitecture, pp. 103–113, November 1991.

[Bradlee et al. 1991]

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating Register
Allocation and Instruction Scheduling for RISCs. In theProceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 122–131, April, 1991.

[Case 1991]

Brian Case. Superscalar Techniques: SuperSPARC vs. 88110.Microprocessor
Report, 5(22):1–11, December 1991.

[Chang and Hwu 1991]

Pohua Chang and Wen-mei Hwu. Profile-Guided Automatic Inline Expansion for
C Programs. Center for Reliable and High-Performance Computing Report
CRHC-91-13, Univ. of Illinois at Urbana-Champaign, Urbana, IL, April, 1991.

[Chang et al. 1991a]

Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. Using Profile Informa-
tion to Assist Classic Code Optimizations. Center for Reliable and High-Perfor-
mance Computing Report CRHC-91-12, University of Illinois at Urbana-
Champaign, Urbana, IL, April, 1991.

 References

123

[Chang et al. 1991b]

Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and Wen-mei
W. Hwu. IMPACT: An Architectural Framework for Multiple-Instruction-Issue
Processors. In theProceedings of the 18th Annual International Symposium on
Computer Architecture, pp. 266–275, May 1991.

[Chow 1989]

Paul Chow, editor.The MIPS-X RISC Microprocessor. Kluwer Academic Publish-
ers, Boston, MA, 1989.

[Chow and Hennessy 1990]

F.C. Chow and J.L. Hennessy. The Priority-Based Coloring Approach to Register
Allocation. ACM Transactions on Programming Languages and Systems, 12(4),
October 1990.

[Colwell et al. 1987]

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, P. K. Rodman. A VLIW
Architecture for a Trace Scheduling Compiler. In theProceedings of the Second
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 180–192, October, 1987.

[Crawford 1986]

J. Crawford. Architecture of the Intel 80386. In theProceedings of the IEEE Inter-
national Conference on Computer Design, pp. 155–160, October 1986.

[Davidson et al. 1981]

Scott Davidson, David Landskov, Bruce D. Shriver, and Patrick W. Mallett. Some
Experiments in Local Microcode Compaction for Horizontal Machines.IEEE
Transactions on Computers, C-30(7):460–477, July 1981.

[DEC 1992]

Digital Equipment Corporation.DECChip 21064-AA RISC Microprocessor Pre-
liminary Data Sheet. Digital Equipment Corporation, Maynard, MA, April 1992.

[Ebcioğlu 1988]

Kemal Ebcioğlu. Some Design Ideas for a VLIW Architecture for Sequential-
Natured Software. InParallel Processing (Proceedings of IFIP WG 10.3 Working
Conference on Parallel Processing), edited by M. Cosnard et al., North Holland,
pp. 3–21, April 1988.

 References

124

[Ebcioğlu and Nakatani 1989]

K. Ebcioğlu and T. Nakatani. A New Compilation Technique for Parallelizing
Loops with Unpredictable Branches on a VLIW Architecture. InLanguages and
Compilers for Parallel Computing, edited by D. Gelernter et al., Research Mono-
graphs in Parallel and Distributed Computing, MIT Press, pp. 213–229, 1988.

[Ebcioğlu and Nicolau 1989]

K. Ebcioğlu and A. Nicolau. A Global Resource-Constrained Parallelization Tech-
nique. InProceedings of the Third International Conference on Supercomputing,
pp. 154–163, June 1989.

[Ellis 1985]

John R. Ellis.Bulldog: A Compiler for VLIW Architectures. Ph.D. thesis, Yale Uni-
versity, Department of Computer Science, February 1985. (Technical Report No.
YALEU/DCS/RR-364).

[Fisher 1980]

Joseph A. Fisher. 2n-Way Jump Microinstruction Hardware and an Effective
Instruction Binding Method. InThe 13th Annual Microprogramming Workshop,
pp. 64–75, November 1980.

[Fisher 1981]

Joseph A. Fisher. Trace Scheduling: A Technique for Global Microcode Compac-
tion. IEEE Transactions on Computers, C-30(7):478-490, July 1981.

[Fisher 1983]

Joseph A. Fisher. Very Long Instruction Word Architectures and ELI-512. InPro-
ceedings of the 10th Annual International Symposium on Computer Architecture,
pp. 140–150, June 1983.

[Fisher and Freudenberger 1992]

Joseph A. Fisher and Stefan M. Freudenberger. Predicting Conditional Branch
Directions From Previous Runs of a Program. InProceedings of the Fifth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 85–95, October 1992.

[Fu et al. 1987]

John Fu, James B. Keller, and Kenneth J. Haduch. Aspects of the VAX 8800 C
Box Design.Digital Technical Journal, No. 4, pp. 41–51, February 1987.

 References

125

[Gibbons and Muchnick 1986]

Phillip B. Gibbons and Steven S. Muchnick. Efficient Instruction Scheduling for a
Pipelined Architecture. InProceedings of the SIGPLAN 1986 Symposium on Com-
piler Construction, pp. 11–16, June 1986.

[Goodman and Hsu 1988]

James R. Goodman and Wei-Chung Hsu. Code Scheduling and Register Alloca-
tion in Large Basic Blocks. InProceedings of the 1988 International Conference
on Supercomputing, pp. 442–452, July 1988.

[Gross 1983]

Thomas Gross. Code Optimization of Pipeline Constraints. Technical Report No.
83-255, Stanford University, Stanford, California 94305, December 1983.

[Gross and Ward 1991]

T. Gross and M. Ward. The Suppression of Compensation Code. InAdvances in
Languages and Compilers for Parallel Processing, The MIT Press, Cambridge,
MA, pp. 260–273, 1991.

[Hennessy and Patterson 1990]

J.L. Hennessy and D.A. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[Hsu and Davidson 1986]

Peter Y. T. Hsu and Edward S. Davidson. Highly Concurrent Scalar Processing. In
Proceedings of the 13th Annual International Symposium on Computer Architec-
ture, pp. 386–395, June 1986.

[Hwu and Patt 1987]

Wen-mei W. Hwu and Yale N. Patt. Checkpoint Repair for Out-of-order Execution
Machines. InProceedings of the 14th Annual International Symposium on Com-
puter Architecture, pp. 18–26, June 1987.

[Johnson 1990]

Mike Johnson.Superscalar Microprocessor Design. Prentice Hall, Englewood
Cliffs, NJ, 1990.

 References

126

[Jouppi and Wall 1989]

Norman P. Jouppi and David W. Wall. Available Instruction-Level Parallelism for
Superscalar and Superpipelined Machines. InProceedings of the Third Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 272–282, April 1989.

[Kane 1987]

Gerry Kane.MIPS R2000 RISC Architecture. Prentice Hall, Englewood Cliffs,
New Jersey, 1987.

[Keller 1975]

Robert M. Keller. Look-Ahead Processors.Computing Surveys, 7(4):177–195,
December 1975.

[Lam 1988]

Monica S. Lam. Software Pipelining: An Effective Scheduling Technique for
VLIW Machines. InProceedings of the SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation, pp. 318–328, June 1988.

[Lam 1990]

Monica S. Lam. Instruction Scheduling for Superscalar Architectures.Annual
Review of Computer Science, Vol. 4, pp. 173–201, 1990.

[Lam and Wilson 1992]

Monica S. Lam and Robert P. Wilson. Limits of Control Flow on Parallelism. In
theProceedings of the 19th Annual International Symposium on Computer Archi-
tecture, pp. 46–57, May 1992.

[Mahlke et al. 1992]

Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna Rau, and
Michael S. Schlansker. Sentinel Scheduling for VLIW and Superscalar Processors.
In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 238–247, October 1992.

[Melvin and Patt 1991]

Stephen Melvin and Yale Patt. Exploiting Fine-Grained Parallelism Through a
Combination of Hardware and Software Techniques. InProceedings of the 18th
Annual International Symposium on Computer Architecture, pp. 287–296, May
1991.

 References

127

[Moon and Ebcioğlu 1988]

Soo-Mook Moon and Kemal Ebcio˘glu. An Efficient Resource-Constrained Global
Scheduling Technique for Superscalar and VLIW Processors. Computer Science
Reseach Report RC 17962 (#78691), IBM Research Division, Yorktown Heights,
NY, April 1992.

[Nicolau and Fisher 1984]

Alexandru Nicolau and Joseph A. Fisher. Measuring the Parallelism Available for
Very Long Instruction Word Architectures.IEEE Transactions on Computers, C-
33(11):968–976, November 1984.

[Nicolau 1985]

A. Nicolau. Percolation Scheduling: A Parallel Compilation Technique. Computer
Sciences Technical Report 85-678, Cornell University, May 1985.

[Nicolau 1989]

A. Nicolau. Run-Time Disambiguation: Coping with Statically Unpredictable
Dependencies.IEEE Transactions on Computers, C-38(5):663–678, May 1989.

[JESmith 1982]

James E. Smith. Decoupled Access/Execute Computer Architectures. In Proceed-
ings of the 9th Annual International Symposium on Computer Architecture, pp.
112-119, April 1982.

[JESmith and Pleszkun 1985]

James E. Smith and Andrew R. Pleszkun. Implementation of Precise Interrupts in
Pipelined Processors. InProceedings of the 12th Annual International Symposium
on Computer Architecture, pp. 36–44, June 1985.

[MDSmith et al. 1989]

Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on Multiple
Instruction Issue. InProceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 290–
302, April 1989.

[MDSmith et al. 1990]

Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. Boosting Beyond
Static Scheduling in a Superscalar Processor. In theProceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 344–354, May
1990.

 References

128

[MDSmith 1991]

Michael D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford
University, Stanford, California 94305, November 1991.

[MDSmith et al. 1992]

Michael D. Smith, Mark Horowitz, and Monica S. Lam. Efficient Superscalar Per-
formance through Boosting. InProceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
248–259, October 1992.

[Smotherman et al. 1991]

Mark Smotherman, Sanjay Krishnamurthy, P.S. Aravind, and David Hunnicutt.
Efficient DAG Construction and Heuristic Calculation for Instruction Scheduling.
In Proceedings of the 24th Annual International Symposium on Microarchitecture,
pp. 93–102, November 1991.

[Sohi and Vajapeyam 1987]

Gurindar S. Sohi and Sriram Vajapeyam. Instruction Issue Logic for High-Perfor-
mance, Interruptible Pipelined Processors. InProceedings of the 14th Annual
International Symposium on Computer Architecture, pp. 27-34, July 1987.

[SPEC 1990]

SPEC.The SPEC Benchmark Report. Waterside Associates, Fremont, CA, January
1990.

[Thornton 1964]

J.E. Thornton. Parallel Operation in the Control Data 6600. InProc. AFIPS FJCC,
26(2):33-40, 1964.

[Tjiang et al. 1991]

S. Tjiang, M.E. Wolf, M.S. Lam, K.L. Pieper, and J.L. Hennessy. Integrating Sca-
lar Optimization and Parallelization. In4th Workshop on Languages and Compil-
ers for Parallel Computing, August 1991.

[Tjiang and Hennessy 1992]

S.W.K. Tjiang and J.L. Hennessy. Sharlit—A Tool for Building Optimizers. In
Proceedings of the ACM SIGPLAN ‘92 Conference on Programming Language
Design and Implementation, pp. 82–93, June 1992.

 References

129

[Tokoro et al. 1981]

M. Tokoro, E. Tamura, and T. Takizuka. Optimization of Microprograms.IEEE
Transactions on Computers, C-30(7):491–504, July 1981.

[Tomasulo 1967]

R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.
IBM Journal, 11(1):25–33, January 1967.

[Uvieghara et al. 1992]

Gregory A. Uvieghara et al. An Experimental Single-Chip Data Flow CPU.IEEE
Journal of Solid-State Circuits, 27(1):17-28, January 1992.

[Wall 1991]

David W. Wall. Limits of Instruction-Level Parallelism. InProceedings of the
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 176–188, April 1991.

