
SKEW-TOLERANT CIRCUIT DESIGN

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David Harris

February 1999

ii

(c) Copyright 1999 by David Harris

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Principal Advisor

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Bruce Wooley

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Abbas El-Gamal

Approved for the University Committee on Graduate Studies:

iv

Abstract

As cycle times in high-performance digital systems shrink faster than simple process

improvement allows, sequencing overhead consumes an increasing fraction of the clock

period. In particular, the overhead of traditional domino pipelines can consume 25% or

more of the cycle time in aggressive systems. Fortunately, the designer can hide much of

this overhead through better design techniques. The key to skew-tolerant design is avoid-

ing hard edges in which data must setup before a clock edge but will not continue propa-

gating until after the clock edge. Skew-tolerant domino circuits use multiple overlapping

clocks to eliminate latches, removing hard edges and hiding the sequencing overhead.

This thesis presents a systematic approach to skew-tolerant circuit design, combining both

static and domino circuits. It describes the tradeoffs in clocking schemes and concludes

that four phases is a reasonable design choice which can tolerate nearly a quarter cycle of

skew and is simple to implement. Four-phase skew-tolerant domino integrates easily with

static logic using transparent or pulsed latches and shares a consistent scan methodology

providing testability of all cycles of logic. Timing types are defined to help understand and

verify legal connectivity between static and domino logic. While clock skew across a large

die are an increasing problem, we can exploit locality to budget only the smaller skews

seen between pairs of communicating elements. To verify such systems with different

skews between different elements, we present an improved timing analysis algorithm.

Skew-tolerant circuits will facilitate the design of complex synchronous systems well into

the GHz regime.

v

Acknowledgments

This thesis is dedicated to my parents, Dan and Sally Harris, who have inspired me to

teach and write.

Many people contributed to the work in this thesis. My advisor, Mark Horowitz, gave me a

framework to think about circuit design and has been a superb critic. He taught me to

never accept that a research solution is “good enough” but rather to look for the best possi-

ble answer. Ivan Sutherland has been an terrific mentor, giving me the key insight to I need

to break out of writer’s block: “A thesis is a document to which three professors will sign

their names saying it is. It is well to remember that it is nothing more lest you take too

long to finish.” Bruce Wooley, on my reading committee, gave the thesis a careful reading

and had many useful suggestions. My officemate Ron Ho has been a great help, sounding

out technical ideas and saving me many times when I had computer crises. I have enjoyed

collaborating with other members of the research group and especially thank Jaeha Kim,

Dean Liu, Jeff Solomon, Gu Wei, and Evelina Yeung. Zeina Daoud supplied both techni-

cal assistance and good conversation. I always learn more when trying to teach, so I would

like to thank my students at Stanford, Berkeley, and in various industrial courses. Finally, I

would like to thank my high school teachers who taught me to write through extensive

practice, especially Mrs. Stephens, Mr. Roseth, and Mr. Phillips.

This work has been supported through funding from NSF, Stanford, and DARPA. I have

also been supported, both financially and intellectually, through work with Sun Microsys-

tems, Intel Corporation, and HAL Computer.

vi

Table of Contents

Chapter 1 Skew-Tolerant Circuit Design..1
1.1 Overhead in Flip-Flop Systems... 1

1.2 Throughput and Latency Trends ... 4
1.2.1 Impact of Overhead on Throughput and Latency ... 5
1.2.2 Historical Trends... 6
1.2.3 Future Predictions ... 9
1.2.4 Conclusions... 10

1.3 Skew-Tolerant Static Circuits.. 10

1.4 Domino Circuits .. 12
1.4.1 Domino Gate Operation.. 13
1.4.2 Traditional Domino Clocking ... 18
1.4.3 Skew-Tolerant Domino ... 19

1.5 A Look Ahead ... 22

Chapter 2 Skew-Tolerant Domino Circuits ..24
2.1 Skew-Tolerant Domino Timing... 24

2.1.1 General Timing Constraints .. 25
2.1.2 Clock Domains.. 28
2.1.3 50% Duty Cycle.. 30
2.1.4 Single Gate per Phase ... 31
2.1.5 Min-Delay Constraints.. 32
2.1.6 Recommendations and Design Issues... 34

2.2 Simulation Results... 36

2.3 Summary ... 38

Chapter 3 Circuit Methodology..39
3.1 Static / Domino Interface .. 40

3.1.1 Static to Domino Interface .. 40
3.1.2 Domino to Static Interface .. 41
3.1.3 Timing Types .. 43
3.1.4 Qualified Clocks.. 57
3.1.5 Min-Delay Checks .. 58

3.2 Clocked Element Design... 61
3.2.1 Latch Design ... 61
3.2.2 Domino Gate Design... 62
3.2.3 Special Structures.. 63

3.3 Testability .. 65
3.3.1 Static Logic ... 66
3.3.2 Domino Logic ... 67

3.4 Summary ... 70

Chapter 4 Clocking...71
4.1 Clock Waveforms .. 72

4.1.1 Physical Clock Definitions.. 72
4.1.2 Clock Skew ... 74
4.1.3 Clock Domains.. 76

4.2 Skew-Tolerant Domino Clock Generation .. 77
4.2.1 Delay Line Clock Generators.. 78
4.2.2 Feedback Clock Generators .. 84
4.2.3 Putting It All Together .. 86

4.3 Summary ... 87

vii

Chapter 5 Timing Analysis...89
5.1 Background..90

5.2 Timing Analysis without Clock Skew ...91

5.3 Timing Analysis with Clock Skew ..94
5.3.1 Single Skew Formulation ..95
5.3.2 Exact Skew Formulation..96
5.3.3 Clock Domain Formulation...98
5.3.4 Example...102

5.4 Extension to Flip-Flops and Domino Circuits ...103
5.4.1 Flip-Flops ..103
5.4.2 Domino Gates..104

5.5 Min-Delay..105

5.6 A Verification Algorithm ...107

5.7 Results..110

5.8 Summary..112

5.9 Appendix: Timing Constraints...112
5.9.1 Skewless Formulation..112
5.9.2 Single Skew Formulation ..113
5.9.3 Exact Formulation ...113
5.9.4 Clock Domain Formulation...115

Chapter 6 Conclusions..116
Bibliography 119

viii

1

Chapter 1 Skew-Tolerant Circuit Design

Most digital systems today are constructed using static CMOS logic and edge-triggered

flip-flops. Although such techniques have been adequate in the past and will remain ade-

quate in the future for low-performance designs, they will become increasingly inefficient

for high-performance components as the number of gates per cycle dwindles and clock

skew becomes a greater problem. Designers will therefore need to adopt circuit techniques

that can tolerate reasonable amounts of clock skew without an impact on the cycle time.

Transparent latches offer a simple solution to the clock skew problem in static CMOS

logic. Unfortunately, static CMOS logic is inadequate to meet timing objectives of the

highest performance systems. Therefore, designers turn to domino circuits which offer

greater speed. Unfortunately, traditional domino clocking methodologies [77] lead to cir-

cuits which have even greater sensitivity to clock skew and thus can defeat the raw speed

advantage of the domino gates. This thesis formalizes and analyzes skew-tolerant domino

circuits, a method of controlling domino gates with multiple overlapping clock phases.

Skew-tolerant domino circuits eliminate clock skew from the critical path, hiding the over-

head and offering significant performance improvement.

In this chapter, we begin by examining conventional systems built from flip-flops. We see

how these systems have overhead that eats into the time available for useful computation.

We then examine the trends in throughput and latency for high-performance systems and

see that, although the overhead has been modest in the past, flip-flop overhead now con-

sumes a large and increasing portion of the cycle. We turn to transparent latches and show

that they can tolerate reasonable amounts of clock skew, reducing the overhead. Next, we

examine domino circuits and look at traditional clocking techniques. These techniques

have overhead even more severe than that paid by flip-flops. However, by using overlap-

ping clocks and eliminating latches, we find that skew-tolerant domino circuits eliminate

all of the overhead.

1.1 Overhead in Flip-Flop Systems

Most digital systems designed today use positive edge-triggered flip-flops as the basic

memory element. A positive edge-triggered flip-flop is often referred to simply as an edge-

2

triggered flip-flop, a D flip-flop, a master-slave flip-flop, or colloquially, just a flop. It has

three terminals: inputD, clockφ, and outputQ. When the clock makes a low to high tran-

sition, the inputD is copied to the outputQ. The clock-to-Q delay,∆CQ, is the delay from

the rising edge of the clock until the outputQ becomes valid. The setup time,∆DC, is how

long the data inputD must settle before the clock rises for the correct value to be captured.

Figure 1-1 illustrates part of a static CMOS system using flip-flops. The logic is drawn

underneath the clock corresponding to when it operates. Flip-flops straddle the clock edge

because input data must setup before the edge and the output becomes valid sometime

after the edge. The heavy dashed line at the clock edge represents the cycle boundary.

After the flip-flop, data propagates through combinational logic built from static CMOS

gates. Finally, the result is captured by a second flip-flop for use in the next cycle.

Figure 1-1 Static CMOS system with positive edge-triggered flip-flops

How much time is available for useful work in the combinational logic,∆logic? If the cycle

time isTc, we see that the time available for logic is the cycle time minus the clock-to-Q

delay and setup time:

(1-1)

Unfortunately, real systems have imperfect clocks. On account of mismatches in the clock

distribution network and other factors which we will examine closely in Chapter 4, the

clocks will arrive at different elements at different times. This uncertainty is called clock

skew and is represented in Figure 1-2 by a hash of widthtskew indicating a range of possi-

F
lop

clk

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

F
lop

clk

clk

Cycle 1

∆logic

Tc

∆CQ

∆DC

∆logic Tc ∆CQ ∆DC––=

3

ble clock transition times. The bold clock lines indicate the latest possible clocks, which

define worst-case timing. Data must setup before the earliest the clock might arrive, yet we

cannot guarantee data will be valid until the clock-to-Q delay after the latest clock.

Figure 1-2 Flip-flops including clock skew

Now we see that the clock skew appears as overhead, reducing the amount of time avail-

able for useful work:

(1-2)

Flip-flops suffer from yet another form of overhead: imbalanced logic. In an ideal

machine, logic would be divided into multiple cycles in such a way that each cycle had

exactly the same logic delay. In a real machine, the logic delay is not known at the time

cycles are partitioned, so some cycles have more logic and some have less logic. The clock

frequency must be long enough for the longest cycles to work correctly, meaning excess

time in shorter cycles is wasted. The cost of imbalanced logic is difficult to quantify and

can be minimized by careful design, but is nevertheless important.

In summary, systems constructed from flip-flops have overhead of the flip-flop delay (∆DC

and∆CQ), clock skew (tskew), and some amount of imbalanced logic. We will call this total

penalty the sequencing overhead1. In the next section, we will examine trends in system

objectives that show sequencing overhead makes up an increasing portion of each cycle.

1. We also use the term clocking overhead, but such overhead occurs even in asynchronous, unclocked sys-
tems, so sequencing overhead is a more accurate name.

F
lop

clk

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

F
lop

clk

clk

Cycle 1

∆logic

Tc

∆CQ

∆DC
tskew

∆logic Tc ∆CQ ∆DC– tskew––=

4

1.2 Throughput and Latency Trends

Designers judge their circuit performance by two metrics: throughput and latency.

Throughput is the rate at which data which can pass through a circuit; it is related to the

clock frequency of the system, so we often discuss cycle time instead. Latency is the

amount of time for a computation to finish. Simple systems complete the entire computa-

tion in one cycle so latency and throughput are inversely related. Pipelined systems break

the computation into multiple cycles called pipeline stages. Because each cycle is shorter,

new data can be fed to the system more often and the throughput increases. However,

because each cycle has some sequencing overhead from flip-flops or other memory ele-

ments, the latency of the overall computation gets longer. For many applications, through-

put is the most important metric. However, when one computation is dependent on the

result of the previous, the latency of the previous computation may limit throughput

because the system must wait until the computation is done. In this section, we will review

the simple relationships among throughput, latency, computation length, cycle time, and

overhead. We will then look at the trends in cycle time and find that the impact of over-

head is becoming more severe.

When measuring delays, it is often beneficial to use a process-independent unit of delay so

that intuition about delay can be carried from one process to another. For example, if I am

told that the Hewlett Packard PA8000 64-bit adder has a delay of 840 ps, I have difficulty

guessing how fast an adder of similar architecture would work in my process. However, if

I am told that the adder delay is equal to seven times the delay of a fanout-of-4 (FO4)

inverter, where a FO4 inverter is an inverter driving four identical copies, I can easily esti-

mate how fast the adder will operate in my process by measuring the delay of a FO4

inverter. Similarly, if I know that microprocessor A runs at 50 MHz in a 1.0 micron pro-

cess and that microprocessor B runs at 200 MHz in a 0.6 micron process, it is not immedi-

ately obvious whether the circuit design of B is more or less aggressive than A. However,

if I know that the cycle time of microprocessor A is 40 FO4 inverter delays in its process

and that the cycle time of microprocessor B is 25 FO4 inverter delays in its process, I

immediately see that B has significantly fewer gate delays per cycle and thus required

more careful engineering. The fanout-of-4 inverter is particularly well-suited to expressing

5

delays because it is easy to determine, many designers have a good idea of the FO4 delay

of their process, and because the theory of logical effort [70] predicts that cascaded invert-

ers drive a large load fastest when each inverter has a fanout of about 4.

1.2.1 Impact of Overhead on Throughput and Latency

Suppose a computation involves a total combinational logic delayX. If the computation is

pipelined intoN stages, each stage has a logic delay∆logic = X/N. As we have seen in the

previous section, the cycle time is the sum of the logic delay and the sequencing overhead:

(1-3)

The latency of the computation is the sum of the logic delay and the total overhead of all

the cycles:

(1-4)

Equations 1-3 and 1-4 show how the impact of a fixed overhead increases as a computa-

tion is pipelined into more and more stages of shorter length. The overhead becomes a

greater portion of the cycle timeTc, so less of the cycle is used for useful computation.

Moreover, the latency of the computation actually increases with the number of pipe

stagesN because of the overhead. Because latency matters for some computations, system

performance can actually decrease as the number of pipe stages increases.

For example, consider a system built from static CMOS logic and flip-flops. Let the setup

and clock-to-Q delays of the flip-flop be 1.5 FO4 inverter delays. Suppose the clock skew

is 2 FO4 inverter delays. The sequencing overhead is 1.5 + 1.5 + 2 = 5 FO4 delays. The

percentage of the cycle consumed by overhead depends on the cycle time, as shown in

Table 1-1.:

Table 1-1 Clocking overhead

Cycle Time % overhead

40 13

24 21

16 31

12 42

Tc
X
N
---- overhead+=

latency=X+N overhead•

6

This example shows that although the sequencing overhead was small as a percentage of

cycle time when cycles were long, it becomes very severe as cycle times shrink.

The exponential increase in microprocessor performance, doubling about every 18 months

[32], has been caused by two factors: better microarchitectures which increase the average

number of instructions executed per cycle (IPC), and shorter cycle times. The cycle time

improvement is a combination of steadily improving transistor performance and better cir-

cuit design using fewer gate delays per cycle. To evaluate the importance of sequencing

overhead, we must tease apart these elements of performance increase to identify the

trends in gates per cycle. Let us look both at the historical trends of Intel microprocessors

and at industry predictions for the future.

1.2.2 Historical Trends

Figure 1-3 shows a plot of Intel microprocessor performance from the 16 MHz 80386

introduced in 1985 to the 400 MHz Pentium II processors selling today [36], [50]. The

performance has increased at an incredible 53% per year, thus doubling every 19.5

months.

Figure 1-3 Intel microprocessor performance1

1. Performance is measured in SpecInt95. For processors before the 90 MHz Pentium, SpecInt95 is esti-
mated from published MIPS data with the conversion 1 MIPS = 0.0185 SpecInt95 for these processors.

0.01

0.1

1

10

100

Jan-85 Jan-88 Jan-91 Jan-94 Jan-97

80386
80486
Pentium
Pentium II

S
pe

cI
nt

95

7

Figure 1-4 shows a plot of the processor clock frequencies, increasing at a rate of 30% per

year. Some of this increase comes from faster transistors and some comes from using

fewer gates per cycle.

Figure 1-4 Intel microprocessor clock frequency

Because we are particularly interested in the number of FO4 inverters per cycle, we need

to estimate how FO4 delay improves as transistors shrink. Figure 1-5 shows the FO4

inverter delay of various MOSIS processes over many years. The delays are linearly scal-

ing with the feature size and, averaging across voltages commonly used at each feature

size, are well fit by the equation:

FO4 delay = 475f (1-5)

wheref is the minimum drawn channel length measured in microns and delay is measured

in picoseconds.

10

100

1000

Jan-85 Jan-88 Jan-91 Jan-94 Jan-97

80386
80486
Pentium
Pentium II

M
H

z

8

Figure 1-5 Fanout-of-4 inverter delay trends

Using this delay model and data about the process used in each part, we can determine the

number of FO4 delays in each cycle, shown in Figure 1-6. Notice that for a particular

product, the number of gate delays in a cycle is initially high and gradually decreases as

engineers tune critical paths in subsequent revisions on the same process and jumps as the

chip is compacted to a new process which requires retuning. Overall, the number of FO4

delays per cycle has decreased at 12% per year.

Figure 1-6 Intel microprocessor cycle times (FO4 delays)

1.2 0.8 0.6 0.35 2.0

Process

100

200

500
VDD = 5 VDD = 3.3

VDD = 2.5

50F
an

ou
t-

of
-4

 (
F

O
4)

 In
ve

rt
er

 D
el

ay
 (

ps
)

10

100

Jan-85 Jan-88 Jan-91 Jan-94 Jan-97

80386
80486
Pentium
Pentium IIF

O
4

in
ve

rt
er

 d
el

ay
s

/ c
yc

le

50

20

9

Putting everything together, we find that the 1.53x annual historical performance increase

can be attributed to 1.17x from microarchitectural improvements, 1.17x from process

improvements, and 1.12x from fewer gate delays per cycle.

1.2.3 Future Predictions

The Semiconductor Industry Association (SIA) issued a roadmap in 1997 [63] predicting

the evolution of semiconductor technology over the next 15 years. While such predictions

are always fraught with peril, let us look at what the predictions imply for cycle times in

the future:

Table 1-2 lists the year of introduction and estimated local clock frequencies predicted by

the SIA for high-end microprocessors in various processes. The SIA assumes that future

chips may have very fast local clocks serving small regions, but will use slower clocks

when communicating across the die. The table also contains the predicted FO4 delays per

cycle using a formula that:

FO4 delay = 400f (1-6)

which better matches the delay of 0.25 and 0.18 micron processes. The prediction is

slightly inaccurate for 1997; the fastest shipping product was the 600 MHz Alpha 21164

shown in parenthesis.

This roadmap shows a 7% annual reduction in cycle time. The predicted cycle time of

only 5 FO4 inverter delays in a 0.05 micron process seems at the very shortest end of fea-

sibility because it is nearly impossible for a loaded clock to swing rail to rail in such a

Table 1-2 SIA Roadmap of clock frequencies

Process (µm) Year Frequency (MHz) Cycle time (FO4)

0.25 1997 750 (600) 13.3 (16.7)

0.18 1999 1250 11.1

0.15 2001 1500 11.1

0.13 2003 2100 9.2

0.10 2006 3500 7.1

0.07 2009 6000 6.0

0.05 2012 10000 5.0

10

short time. Nevertheless, it is clear that sequencing overhead of flip-flops will become an

unacceptable portion of the cycle time.

1.2.4 Conclusions

In summary, we have seen that sequencing overhead was negligible in the 1980s when

cycle times were nearly 100 FO4 delays. As cycle times measured in gate delays continue

to shrink, the overhead becomes more important and is now a major and growing obstacle

for the design of high performance systems. We have not discussed clock skew in this sec-

tion, but we will see in Chapter 4 that clock skew, as measured in gate delays, is likely to

grow in future processes, making that component of overhead even worse. Clearly, flip-

flops are becoming unacceptable and we need to use better design methods which tolerate

clock skew without introducing overhead. In the next section, we will see how transparent

latches accomplish exactly that.

1.3 Skew-Tolerant Static Circuits

We can avoid the clock skew penalties of flip-flops by instead building systems from two-

phase transparent latches, as has been done since the early days of CMOS [49]. Transpar-

ent latches have the same terminals as flip-flops: data inputD, clockφ, and data outputQ.

When the clock is high, the latch is transparent and the data at the inputD propagates

through to the outputQ. When the clock is low, the latch is opaque and the output retains

the value it last had when transparent. Transparent latches have three important delays.

The clock-to-Q delay,∆CQ, is the time from when the clock rises until data reaches the

output. The D-to-Q delay,∆DQ, is the time from when new data arrives at the input while

the latch is transparent until the data reaches the output.∆CQ is typically somewhat longer

than∆DQ. The setup time,∆DC, is how long the data input D must settle before the clock

falls for the correct value to be captured.

Figure 1-7 illustrates part of a static CMOS system using a pair of transparent latches in

each cycle. One latch is controlled by clk, while the other is controlled by its complement

clk_b. In this example, we show the data arriving at each latch midway through its half-

cycle. Therefore, each latch is transparent when its input arrives and incurs only a D-to-Q

11

delay rather than a clock-to-Q delay. Because data arrives well before the falling edge of

the clock, setup times are trivially satisfied.

Figure 1-7 Static CMOS system with transparent latches

How much time is available for useful work in the combinational logic,∆logic? If the cycle

time isTc, we see that:

(1-7)

Flip-flops are built from pairs of back to back latches so that the time available for logic in

systems with no skew are about the same for flip-flops and transparent latches. However,

transparent latch systems can tolerate clock skew without cycle time penalty, as seen in

Figure 1-8. Although the clock waveforms have some uncertainty from skew, the clock is

certain to be high when data arrives at the latch so the data can propagate through the latch

with no extra overhead. Data still arrives well before the earliest possible skewed clock

edge, so setup times are still satisfied.

clk

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

clk_b

clk

Half-Cycle 1

Tc

Latch

Latch

Half-Cycle 2

clk_b

∆DQ ∆DQ

∆logic Tc 2∆DQ–=

12

Figure 1-8 Transparent latches including clock skew

Finally, static latches avoid the problem of imbalanced logic through a phenomenon called

time borrowing, also known ascycle stealing by IBM. We see from Figure 1-8 that each

latch can be placed in any of a wide range of locations in its half-cycle and still be trans-

parent when the data arrives. This means that not all half-cycles need to have the same

amount of static logic. Some can have more and some can have less, meaning that data

arrives at the latch later or earlier without wasting time as long as the latch is transparent at

the arrival time. Hence, if the pipeline is not perfectly balanced, a longer cycle may bor-

row time from a shorter cycle so that the required clock period is the average of the two

rather than the longer value.

In summary, systems constructed from transparent latches still have overhead from the

latch propagation delay (∆DQ) but eliminate the overhead from reasonable amounts of

clock skew and imbalanced logic. This improvement is especially important as cycle times

decrease, justifying a switch to transparent latches for high performance systems.

1.4 Domino Circuits

To construct systems with fewer gate delays per cycle, designers may invent more efficient

ways to implement particular functions or may use faster gates. The increasing transistor

budgets allow parallel structures which are faster; for example, adders progressed from the

clk

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

clk_b

clk

Half-Cycle 1

Tc

Latch

Latch

Half-Cycle 2

clk_b

13

compact but slow ripple carry architectures to larger carry look-ahead designs to very fast

but complex tree structures. However, there is a limit to the benefits from using more tran-

sistors, so designers are increasingly interested in faster circuit families, in particular dom-

ino circuits. Domino circuits are constructed from alternating dynamic and static gates. In

this section, we will examine how domino gates work and see why they are faster than

static gates. Gates do not exist in a vacuum; they must be organized pipeline stages. When

domino circuits are pipelined in the same way that two-phase static circuits have tradition-

ally been pipelined, they incur a great deal of sequencing overhead from latch delay, clock

skew, and imbalanced logic. By using overlapping clocks and eliminating the latches, we

will see that skew-tolerant domino circuits can hide this overhead to achieve dramatic

speedups.

1.4.1 Domino Gate Operation

To understand the benefits of domino gates, we will begin by analyzing the delay of a gate.

Remember that the time to charge a capacitor is:

(1-8)

For now we will just consider gates which swing rail to rail, so∆V is VDD. If a gate drives

an identical gate, the load capacitance and input capacitance are equal (neglecting parasit-

ics), so it is reasonable to consider theC / I ratio of the gate’s input capacitance to the cur-

rent delivered by the gate as a metric of the gate’s speed. This ratio is called thelogical

effort [70] of the gate and is normalized to 1 for an static CMOS inverter and is higher for

more complex static CMOS gates because series transistors in complex gates must be

larger and thus have more input capacitance to deliver the same output current as an

inverter.

Static circuits are slow because inputs must drive both NMOS and PMOS transistors. Only

one of the two transistors is on, meaning that the capacitance of the other transistor loads

the input without increasing the current drive of the gate. Moreover, the PMOS transistor

must be particularly large because of its poor carrier mobility and thus adds much capaci-

tance.

∆t
C
I
----∆V=

14

A dynamic gate replaces the large slow PMOS transistors of a static CMOS gate with a

single clocked PMOS transistor that does not load the input. Figure 1-9 compares static

and dynamic NOR gates. The dynamic gates operate in two phases: precharge and evalua-

tion. During the precharge phase, the clock is low, turning on the PMOS device and pull-

ing the output high. During the evaluation phase, the clock is high, turning off the PMOS

device. The output of the gate mayevaluate low through the NMOS transistor stack.

Figure 1-9 Static and dynamic 4-input NOR gates

The dynamic gate is faster than the static gate for two reasons. One is the greatly reduced

input capacitance. Another is the fact that the dynamic gate output begins switching when

the input reaches the transistor threshold voltage,Vt. This is sooner than the static gate

output, which begins switching when the input passes roughlyVDD/2. This improved

speed comes at a cost, however: dynamic gates must obeyprecharge andmonotonicity

rules and are more sensitive to noise.

Theprecharge rule says that there must be no active path from the output to ground of a

dynamic gate during precharge. If this rule is violated, there will be contention between

the PMOS precharge transistor and the NMOS transistors pulling to ground, consuming

excess power and leaving the output at an indeterminate value. Sometimes the precharge

rule can be satisfied by guaranteeing that some inputs are low. For example, in the 4-input

NOR gate, all four inputs must be low during precharge. In a 4-input NAND gate, if any

A B C D

φ

Dynamic NOR4

A B C D

Static NOR4

YY

15

input is low during precharge, there will be no contention. It is commonly not possible to

guarantee inputs are low, so often an extraclocked evaluation transistor is placed at the

bottom of the dynamic pulldown stack, as shown in Figure 1-10. Gates with and without

clocked evaluation transistors are sometimes calledfooted andunfooted [53]. Unfooted

gates are faster but require more complex clocking to prevent both PMOS and NMOS

paths from being simultaneously active.

Figure 1-10 Footed and unfooted 4-input NOR gates

Themonotonicity rule states that all inputs to dynamic gates must make only low to high

transitions during evaluation. Figure 1-11 shows a circuit which violates the monotonicity

rule and obtains incorrect results. The circuit consists of two cascaded dynamic NOR

gates. The first computesX = NOR(1, 0) = 0. The second computes Y = NOR(X, 0) which

should be 1. NodeX is initially high and falls as the first NOR gate evaluates. Unfortu-

nately, the second NOR gate sees that inputX is high whenφ rises and thus pulls down

outputY incorrectly. Because the dynamic NOR gate has no PMOS transistors connected

to the input, it cannot pullY back high then the correct value ofX arrives, so the circuit

produces an incorrect result. The problem occurred because X violated the monotonicity

rule by making a high to low transition while the second gate is in evaluation.

A B C D

φ

Footed gate

Y

A B C D

φ

Unfooted gate

Y

φ

16

Figure 1-11 Incorrect operation of cascaded dynamic gates

It is impossible to cascade dynamic gates directly without violating the monotonicity rule

because each dynamic output makes a high to low transition during evaluation while

dynamic inputs require low to high transitions during evaluation. An easy way to solve the

problem is to insert an inverting static gate between dynamic gates, as shown in Figure 1-

12. The dynamic / static gate pair is called a domino gate, which is slightly misleading

because it is actually two gates. A cascade of domino gates precharge simultaneously like

dominos being set up. During evaluation, the first dynamic gate falls, causing the static

gate to rise, the next dynamic gate to fall, and so on like a chain of dominos toppling.

1 0

φ

φ

0

φ

φ

X Y

φ

Should be high

Actually falls low

X

Y

17

Figure 1-12 Correct operation with domino gates

Unfortunately, to satisfy monotonicity we have constructed a pair of OR gates rather than

a pair of NOR gates. In Chapter 2 we will return to the monotonicity issue and see how to

implement arbitrary functions with domino gates.

Mixing static gates with dynamic gates sacrifices some of the raw speed offered by the

dynamic gate. We can regain some of this performance by usingHI-skew1 static gates with

wider than usual PMOS transistors [70] to speed the critical rising output during evalua-

tion. Moreover, the static gates may perform arbitrary functions rather than being just

inverters [74]. All considered, domino logic runs 1.5-2 times faster than static CMOS

logic [42] and is therefore attractive enough for high speed designs to justify its extra com-

plexity.

1. Don’t confuse the wordskew in “HI-skew” gates with “clock skew.”

1 0

φ

φ

0

φ

φ

A

φ

B C D

A

B

C

D

18

1.4.2 Traditional Domino Clocking

After domino gates evaluate, they must be precharged before they can be used in the next

cycle. If all domino gates were to precharge simultaneously, the circuit would waste time

during which only precharge, not useful computation, takes place. Therefore, domino

logic is conventionally divided into two phases, ping-ponged such that one phase evaluates

while the second precharges, then the first phase precharges while the second evaluates. In

a traditional domino clocking scheme[77], latches are used between phases to sample and

hold the result before it is lost to precharge, as illustrated in Figure 1-13. The scheme

appears very similar to the use of static logic and transparent latches discussed in the pre-

vious section. Unfortunately, we will see that such a scheme has enormous sequencing

overhead.

Figure 1-13 Traditional domino clocking scheme

With ideal clocks, the first dynamic gate begins evaluating as soon as the clock rises. Its

result ripples through subsequent gates and must arrive at the latch a setup time before the

clock falls. The result propagates through the latch, so the overhead of each latch is the

maximum of its setup time andD-to-Q propagation delay. The latter time is generally

larger, so the total time available for computation in the cycle is:

(1-9)

clk

clk_b

clk

Half-Cycle 1

Tc

Half-Cycle 2

clk_b

Latch

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

Latch

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

clk

clk

clk

clk_b

clk_b

clk_b

∆logic Tc 2∆DQ–=

19

Unfortunately, a real pipeline like that shown in Figure 1-14 experiences clock skew. In

the worst case, the dynamic gate and latch may have greatly skewed clocks. Therefore, the

dynamic gate may not begin evaluation until the latest skewed clock, while the latch must

setup before the earliest skewed clock. Hence, clock skew must be subtracted not just from

each cycle, as it was in the case of a flip-flop, but from each half-cycle! Assuming the sum

of clock skew and setup time are greater than the latch D-to-Q delay, the time available for

useful computation becomes:

(1-10)

Figure 1-14 Traditional domino including clock skew

As with flip-flops, traditional domino pipelines also suffer from imbalanced logic. In sum-

mary, traditional domino circuits are slow because they pay overhead for latch delay, clock

skew, and imbalanced logic.

1.4.3 Skew-Tolerant Domino

Both flip-flops and traditional domino circuits launch data on one edge and sample it on

another. These edges are calledhard edges or synchronization points because the arrival of

the clock determines the exact timing of data. Even if data is available early, the hard

edges prevent subsequent stages from beginning early. Static CMOS pipelines with trans-

parent latches avoided the hard edges and therefore could tolerate some clock skew and

∆logic Tc 2∆DC– 2tskew–=

clk

clk_b

clk

Half-Cycle 1

Tc

Half-Cycle 2

clk_b

Latch

D
ynam

ic

S
tatic

D
ynam

ic

Latch

D
ynam

ic

S
tatic

D
ynam

ic

clk

clk

clk_b

clk_b

20

use time borrowing to compensate for imbalanced logic. Some domino designers have rec-

ognized that this fundamental idea of softening the hard clock edges can be applied to

domino circuits as well. While a variety of schemes have been invented at most micropro-

cessor companies in the mid 1990’s (e.g. [35]), the schemes have generally been held as

trade secrets. This section explains how suchskew-tolerant domino circuits operate. In

Chapters 2 and 4 we will return to more subtle choices in the design and clocking of such

circuits.

The basic problem with traditional domino circuits is that data must arrive by the end of

one half-cycle but will not depart until the beginning of the next half-cycle. Therefore, the

circuits must budget skew between the clocks and cannot borrow time. We can overcome

this problem by using overlapping clocks, as shown in Figure 1-15:

Figure 1-15 Two-phase skew-tolerant domino circuits

This figure shows a skew-tolerant domino clocking scheme with two overlapping clock

phases. Instead of using clk and its complement, we now use overlapping clocksφ1 and

φ2. We partition the logic intophases instead of half-cycles because in general we will

allow more than two overlapping phases. The clocks overlap enough that even under worst

case clock skews, the first gate in the second phase has time to evaluate before the last gate

in the first phase begins precharge. For example, in Figure 1-15 gateB has time to evaluate

before gateA precharges, even when the clocks are skewed for minimum overlap. As with

φ1 φ2

φ1

Phase 1

Tc

Phase 2

φ2
D

ynam
ic

S
tatic

D
ynam

ic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

S
tatic

D
ynam

ic

S
tatic

φ1 φ1 φ2 φ2

overlap

A B

21

static latches, the gates are guaranteed to be ready to operate when the data arrives even if

skews cause modest variation in the arrival time of the clock. Therefore we do not need to

budget clock skew in the cycle time.

Another advantage of skew-tolerant domino circuits is that latches are not necessary

within the domino pipeline. We ordinarily need latches to hold the result of the first

phase’s computation for use by the second phase when the first phase precharges. In skew-

tolerant domino, the overlapping clocks insure that the first gate in the second phase has

enough time to evaluate beforeφ1 falls and the first phase begins precharge. When the first

phase precharges, the dynamic gates will pull high and therefore the static gates will fall

low. This means that the input to the second phase falls low, seemingly violating the

monotonicity rule that inputs to dynamic gates must make only low to high transitions

while the gates are in evaluation. What are the consequences of violating monotonicity?

GateB will remain at whatever value it evaluated to based on the results of the first half-

cycle when its inputs fall low because both the pulldown transistors and the precharge

transistor will be off. This is exactly what we want: gateB will keep its value even when

phase 1 precharges. Hence, there is no need for a latch at the end of phase 1 to remember

the result during precharge. The entire cycle is available for useful computation; there is

no sequencing overhead from latch delay or clock skew:

(1-11)

Finally, skew-tolerant domino circuits can allow time borrowing if the overlap between

clock phases is large compared to the clock skew. The guaranteed overlap is the nominal

overlap minus uncertainty due to the clock skew. Gates in either phase 1 or phase 2 may

evaluate during the overlap period, allowing time borrowing by letting gates which nomi-

nally evaluate during phase 1 run late into the second phase. As usual, it is hard to quantify

the benefits of time borrowing, but it is clear the designer has greater flexibility.

In summary, skew-tolerant domino circuits use overlapping clocks to eliminate latches and

remove all three sources of overhead that plague traditional domino circuits: clock skew,

latch delay, and imbalanced logic. Two-phase skew-tolerant domino circuits conveniently

illustrate the benefits of skew-tolerant domino design, but prove to suffer from hold time

∆logic Tc=

22

problems and offer limited amounts of time borrowing and skew tolerance. Chapter 2 gen-

eralizes the idea to multiple overlapping clock phases and derives formulae describing the

available time borrowing and skew tolerance as a function of the number of phases and the

duty cycle.

1.5 A Look Ahead

In this chapter we have examined the sources of sequencing overhead and seen that it is a

growing problem in high speed digital circuits, as summarized in Table 1-3. While flip-

flops and traditional domino circuits have severe overhead, transparent latches and skew-

tolerant domino circuits hide clock skew and allow time borrowing to balance logic

between pipeline stages. In the subsequent chapters we will flush out these ideas to present

a complete methodology for skew-tolerant circuit design of static and dynamic circuits.

Chapter 2 moves on to domino circuit design. It addresses the question of how to best

clock skew-tolerant domino circuits and derives how much skew and time borrowing can

be handled as a function of the number of clock phases and their duty cycles. Given these

formulae, hold times, and practical clock generation issues, we conclude that four-phase

skew-tolerant domino circuits are a good way to build systems.

Chapter 3 puts together static and domino circuits into a coherent skew-tolerant circuit

design methodology. It looks at the interface between the two families and shows that the

static to domino interface must budget clock skew, motivating the designer to build critical

rings entirely in domino for maximum performance. It describes the use of timing types to

verify proper connectivity in static circuits, then extends timing types to handle skew-tol-

Table 1-3 Sequencing overhead

Sequencing method Sequencing overhead

Flip-flops + imbalanced logic

Transparent latches

Traditional domino + imbalanced logic

Skew-tolerant domino 0

∆CQ ∆DC 2tskew+ +

2∆DQ

2∆DC 2tskew+

23

erant domino. Finally, it addresses issues of testability and shows that scan techniques can

serve both latches and skew-tolerant domino in a simple and elegant way.

None of these skew-tolerant circuit techniques would be practical if providing the neces-

sary clocks introduced more skew than the techniques could handle. Chapter 4 addresses

clock generation and distribution. Many experienced designers reflexively cringe when

they hear schemes involving multiple clocks because it is virtually impossible to route

more than one high speed clock around a chip with acceptable skew. Instead, we distribute

a single clock across the chip and locally produce the necessary phases with the final stage

clock drivers. We analyze the skews from these final drivers and conclude that although

the delay variation is nonnegligible, skew-tolerant circuits are on the whole a benefit. In

addition to tolerating clock skew, good systems minimize the skew which impacts each

path. By considering the components of clock skew and dividing a large die into multiple

clock domains, we can budget smaller amounts of skew in most paths than we must budget

across the entire die.

By this point, we have developed all the ideas necessary to build fast skew-tolerant cir-

cuits. With a little practice, skew-tolerant circuit design is no harder than conventional

techniques. However, it is impossible to build multimillion transistor ICs unless we have

tools that can analyze and verify our circuits. In particular, we need to be able to check if

our circuits can meet timing objectives given the actual skews between clocks in various

domains. Chapter 5 addresses this problem of timing analysis, extending previous formu-

lations to handle multiple domains of clock skew.

24

Chapter 2 Skew-Tolerant Domino Circuits

Static circuits built from transparent latches remove the hard edges of flip-flops, allowing

the designer to hide clock skew from the critical path and use time borrowing to balance

logic across pipeline stages. Traditional domino circuits are penalized by clock skew even

more than are flip-flops, but by using overlapping clock phases it is possible to remove

latches and thus build domino pipelines with zero sequencing overhead. This chapter

derives the timing constraints on domino circuits which employ multiple overlapping

clocks to eliminate latches and reduce sequencing overhead. The framework for under-

standing such systems is given the nameskew-tolerant domino and is applicable to a vari-

ety of implementations, including many proprietary schemes developed by

microprocessor designers. Once the general constraints are expressed, we explore a num-

ber of special cases which are important in practical designs. By taking advantage of the

fact that clock skew tends to be less within a small region of a chip than across the entire

die, we can relax some timing requirements to obtain a greater budget for global clock

skew and for time borrowing. In fact, the “optimal” clocking waveforms provide more

time borrowing than may be necessary and a simplified clocking scheme with 50% duty

cycle clocks may be adequate and easier to employ. Another interesting case is when the

designer uses either many clock phases or few gates per cycle such that each phase con-

trols exactly one level of logic. In this case, some of the constraints can be relaxed even

further. In addition to considering long paths, we also look at short paths and find the min-

imum delay constraints through each phase. We conclude with an example illustrating the

performance benefits of skew-tolerant domino.

2.1 Skew-Tolerant Domino Timing

In general, let us consider skew-tolerant domino systems which useN overlapping clock

phases. By symmetry, each phase nominally risesTc/N after the previous phase and all

phases have the same duty cycle. Each phase is high for an evaluation periodte and low for

a precharge periodtp. Waveforms for a four-phase system are illustrated in Figure 2-1.

25

Figure 2-1 Four-phase skew-tolerant domino circuits

We will assume that logic in a phase nominally begins evaluating at the latest possible ris-

ing edge of its clock and continues forTc/N until the next phase begins. When two consec-

utive clock phases overlap, the logic of the first phase may run late into the time nominally

dedicated to the second phase. For example, in Figure 2-1, the second φ1 domino gate con-

sists of dynamic gateA and static gateB. Althoughφ1 gates should nominally complete

during phase 1, this gate runs late and borrows time from phase 2. The maximum amount

of time that can be borrowed depends on the guaranteed overlap of the consecutive clock

phases. This guaranteed overlap in turn depends on the nominal overlap minus the clock

skew between the phases. Therefore, the nominal overlap of clock phasestoverlap dictates

how much time borrowing and skew tolerance can be achieved in a domino system.

2.1.1 General Timing Constraints

We will analyze the general timing constraints of skew-tolerant domino by solving for this

precharge period, then examining the use of the resulting overlap. Figure 2-2 illustrates the

constraint on precharge time set by two consecutive domino gates in the same phase.tp is

φ1 φ3

φ1

Phase 1

Tc

Phase 2

φ3

D
ynam

ic

S
tatic

D
ynam

ic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

S
tatic

D
ynam

ic

S
tatic

φ1 φ2 φ3 φ4

toverlap

φ2

φ4

te tp

Phase 3 Phase 4

A B

26

set by the requirement that dynamic gateA must fully precharge, flip the subsequent static

gateA’, and bring the static gate’s output belowVt by some noise margin before domino

gateB reenters evaluation so that the old result fromA’ doesn’t causeB to incorrectly eval-

uate. We call the time requiredtprech and enforce a design methodology that all domino

gates can precharge in this time. The worst case occurs whenφ1a is skewed late, yetφ1b is

skewed early, reducing the effective precharge window width bytskew1, which is the skew

between two gates in the same phase. Therefore, we have a lower bound ontp to guarantee

proper precharge:

(2-1)

Figure 2-2 Precharge time constraint

The precharge time tprech depends on the capacitive loading of each gate, so it is necessary

to set an upper bound on the fanout each gate may drive. Moreover, on-chip interconnect

between domino gates introduces RC delays which must not exceed the precharge time

budget.

From Figure 2-1 it is clear that the nominal overlap between consecutive phasestoverlap is

the evaluation period minus the delay between phases,te - Tc/N. Substitutingte = Tc - tp,

we find:

t p tprech tskew1+=

φ1a

φ1a

D
ynam

ic

S
tatic

tp

φ1b

D
ynam

ic

S
tatic

φ1b

tprech

A A’ B

27

(2-2)

This overlap has three roles. Some minimum overlap is necessary to ensure that the later

phase consumes the results before the first phase precharges. This time is calledthold,

though it is a slightly different kind of hold time than we have seen with latches. Addi-

tional nominal overlap is necessary so that the phases still overlap bythold even when there

is clock skew. The remaining overlap after accounting for hold time and clock skew is

available for time borrowing. If the clock skew between consecutive phasesφ1 andφ2 is

tskew2, we therefore find:

(2-3)

The hold time is generally a small negative number because the first dynamic gate in the

later phase evaluates immediately after its rising clock edge while the precharge must rip-

ple through both the last dynamic gate and following static gate of the first phase. More-

over, the gates are generally sized to favor the rising edge at the expense of slowing the

precharge. The hold time does depend on the fanouts of each gate, so minimum and maxi-

mum fanouts must be specified in a design methodology to ensure a bound on hold time.

For simplicity, we will sometimes conservatively approximatethold as zero.

Also, now that we are defining different amounts of clock skew between different pairs of

clocks, we can no longer clearly indicate the amount skew with hashed lines in the clock

waveforms. Instead, we must think about which clocks are launching and receiving signals

and allocate skew accordingly. We will revisit this topic in Chapter 4.

How much skew can a skew-tolerant domino pipeline tolerate? Assuming no time borrow-

ing is used and that all parts of the chip budget the same skew,tskew-max, we can solve

Equation 2-3 to find:

(2-4)

toverlap Tc tprech tskew1–
Tc

N
------––=

toverlap
N 1–

N
-------------Tc tprech tskew1–– thold tskew2 tborrow+ += =

tskew-max

N 1–
N

-------------Tc thold tprech––

2
--=

28

For many phasesN and a long cycleTc, this approachesTc/2, which is the same limit as

for transparent latches. SmallN reduces the tolerable skew because phases are more

widely separated and thus overlap less. The budget for precharge and hold time further

reduces tolerable skew. Notice that if the actual skew between any two dynamic gates

exceedstskew-max, the circuit may fail to operate at any frequency, no matter how fast the

gates within the pipeline evaluate.

For a numerical example, consider a microprocessor built from skew-tolerant domino cir-

cuits with a cycle timeTc = 16 and precharge timetprech = 4 FO4 inverter delays. How

much clock skew can the processor withstand if 2, 3, 4, 6, or 8 clock phases are used? Let

us assume the hold time is 0. Figure 2-3 illustrates the clock waveforms, precharge period,

and maximum tolerable skew for each number of clock phases. Notice that the precharge

period must lengthen withN to accommodate the larger clock skews while still providing

a minimum guaranteed precharge window.

Figure 2-3 Skew-tolerance for various numbers of clock phases

2.1.2 Clock Domains

In Figure 2-4 we assumed that clock skew was equally severe everywhere. In real systems,

however, we know that the skew between nearby elements, , may be much less than

the skew between arbitrary elements, . We take advantage of this tighter bound on

local skew to increase the tolerable global skew. We therefore partition the chip into multi-

φ1 waveformN tp tskew-max

2

3

4

6

8

2

3.33

4

4.66

5

6

7.33

8

8.66

9

tskew
local

tskew
global

29

ple regions, called local clock domains, which have at most between clocks within

the domain.

If we require that all connected blocks of logic in a phase are placed within local clock

domains, we obtain . We still allow arbitrary communication across the

chip at phase boundaries, so we must budget . Substituting into Equation

2-3, we can solve for the maximum tolerable global skew assuming no time borrowing:

(2-5)

This equation shows that reducing the local skew increases the amount of time available

for global skew. In the event that local skew is tightly bounded, a second constraint must

be checked on precharge that the last gate in a phase precharges before the first gate in the

next phase begins evaluation extremely early because of huge global skew. The analysis of

this case is straightforward, but is omitted because typical chips should not experience

such large global skews.

Remember that overlap can be used to provide time borrowing as well as skew tolerance;

indeed, these two budgets trade off directly. Again using Equation 2-3, we can calculate

the budget for time borrowing assuming fixed budgets of local and global skew:

(2-6)

For another numerical example, again consider a microprocessor with a cycle timeTc = 16

and precharge time oftprech = 4 FO4 inverter delays. Further assume the global skew bud-

get is 2, the local skew budget is 1, and the hold time is 0 FO4 delays. Figure 2-4 illus-

trates the clock waveforms, precharge period, and maximum time borrowing for 2, 3, 4, 6,

and 8 clock phases. Notice that the best clock waveforms remains the same because the

clock skew is fixed, but that the amount of time borrowing available increases withN. A

two-phase system offers a small amount of time borrowing which makes balancing the

pipeline somewhat easier. A four-phase design offers more than a full phase of time bor-

rowing, granting the designer tremendous flexibility. More phases offer diminishing

returns. In Chapter 4, we will find that generating the four domino clocks is relatively

tskew
local

tskew1 tskew
local

=

tskew2 tskew
global

=

tskew-max
global N 1–

N
-------------Tc thold tprech tskew

local
–––=

tborrow
N 1–

N
-------------Tc thold tprech tskew

local
– tskew

global
–––=

30

easy. Therefore, four-phase skew-tolerant domino is a reasonable design choice which we

will use in the circuit methodology of Chapter 3.

Figure 2-4 Time borrowing for various numbers of clock phases

2.1.3 50% Duty Cycle

The previous example shows that skew-tolerant domino systems with four or more phases

and reasonable bounds on clock skew may be able to borrow huge amounts of time using

clock waveforms with greater than 50% duty cycle. As we will see in Chapter 4, it is pos-

sible to generate such waveforms with clock choppers, but it would be simpler to employ

standard 50% duty cycle clocks, withte = tp = Tc/2.

We have seen that the key metric for skew-tolerant domino is the overlap between phases,

te - Tc/N. We know that this overlap must exceed the clock skew, hold time, and time bor-

rowing. Substitutingte = Tc/2, we find:

(2-7)

From Equation 2-7, we see that again the overlap approaches half a cycle as N gets large.

Of course we must use more than 2 clock phases to obtain overlapping 50% duty cycle

clocks.

φ1 waveformN tp tborrow

2

3

4

6

8

1

3.66

5

6.33

7

5

5

5

5

5

borrowing window

tskew-max
global

tborrow+
N 2–
2N

-------------Tc thold–=

31

Another advantage of the 50% duty cycle waveforms is that a full half-cycle is available

for precharge. This may allow more time for slow precharge or may allow the designer to

tolerate more skew between precharging gates, eliminating the need to place all communi-

cating gates of a particular phase in the same local clock domain. Of course, in a system

with 50% duty cycle clocks, tighter bounds on local skew do not permit greater global

skew.

2.1.4 Single Gate per Phase

In the extreme case of using very many clock phases or very few gates per cycle, we may

consider designing with exactly one gate per phase. The precharge constraint of Equation

2-1 requires that a gate must complete precharge before the next gate in the same phase

begins evaluation so that old data from the previous cycle does not interfere with opera-

tion. Skew between the two gates in the same phase is subtracted from the time available

for precharge. Because there is no next gate in the same phase when we use exactly one

gate per phase, we can relax the constraint. The new constraints, shown in Figure 2-5, are

that the domino gate must complete precharge before the gate in the next phase reenters

evaluation, and that the dynamic gateA in the current phase must precharge adequately

before the current phase reenters evaluation. In a system with multiple gates in a phase,

bothA andB must complete precharge by the earliest skewed rising edge ofφ1.

32

Figure 2-5 Relaxed precharge constraint assuming single gate per phase

As a result of these relaxed constraints, a shorter precharge timetp may be used, permit-

ting more global skew tolerance or time borrowing. Alternatively, for a fixed duty cycle,

more time is available for precharge.

2.1.5 Min-Delay Constraints

Just as static circuits have hold time constraints to avoid min-delay failure, domino circuits

also have constraints that data must not race through too early.1 These constraints are iden-

tical in form to those of static logic: data departing one clocked element as early as possi-

ble must not arrive at the next clocked element until∆CD after the sampling, i.e. falling,

edge of the next element.

Figure 2-6 illustrates how min-delay failure could occur in skew-tolerant domino circuits

by looking at the first two phases of anN-phase domino pipeline. GateA evaluates on the

rising edge ofφ1, which in this figure is skewed early. If the gate evaluates very quickly,

data may arrive at gateB before the falling edge ofφ2 as indicated by the arrow. This can

1. Do not confuse the min-delay hold time∆CD with thold, which is the time one phase must overlap

another for the first gate of the second phase to evaluate before the last gate of the first phase precharges.

φ1

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

φ1 φ2

φ2

tp

A B

A must rise by now

B must fall by now

33

contaminate the previous cycle result of gate B, which should not have received the new

data until after the next rising edge ofφ2.

Figure 2-6 Min-delay problem in skew-tolerant domino

The min-delay constraint determines a minimum, possibly negative, delay δlogic through

each phase of domino logic to prevent such racethrough. The data must not arrive at the

next phase until a hold time after the falling edge of the previous cycle of the next phase.

This falling edge nominally occursTc/N - tp after the rising edge of the current phase.

Moreover, skew must be budgeted because the current phase might begin early relative to

the next phase. In summary:

(2-8)

The hold time∆CD is generally close to zero because data can safely arrive as soon as the

domino gate begins precharge.

If the requiredδlogic is negative, the circuit is guaranteed to be safe from min-delay prob-

lems. Applying Equation 2-8 to a few cases common cases, we find two-phase skew-toler-

ant domino has severe min-delay problems because tp < Tc/2, so the minimum logic

contamination delay will certainly be positive. Four-phase skew-tolerant domino with

50% duty cycle clocks, however, can withstand a quarter cycle of clock skew before min-

delay problems could possibly occur.

φ1

φ2

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

φ1 φ2

A B

δlogic ∆CD tskew

Tc

N
------ t p–+ +≥

34

To get around the min-delay problems in two-phase skew-tolerant domino, we can intro-

duce additional 50% duty cycle clocks at phase boundaries, as was done in Opportunistic

Time-Borrowing Domino [35] and shown in Figure 2-7. dlclk and dlclk_b play the roles

of φ1 andφ2 in two-phase skew-tolerant domino. 50% duty cycle clocks clk and clk_b are

used at the beginning of each half-cycle to alleviate min-delay problems. However, this

approach still requires four phases when the extra clocks are counted and does not provide

as much skew tolerance or time borrowing as regular four-phase skew-tolerant domino, so

it is not recommended.

Figure 2-7 Two-phase skew-tolerant domino with additional phases for min-delay safety [35]

2.1.6 Recommendations and Design Issues

In this section, we have explored how skew-tolerance, time borrowing, and min-delay vary

with the duty cycle and number of phases used in skew-tolerant domino. We have found

that four-phase skew-tolerant domino with 50% duty cycle clocks is an especially attrac-

tive choice for current designs because it provides reasonably good skew tolerance and

time borrowing, is safe from min-delay problems that of two-phase skew-tolerant domino,

and, as we will see in Chapter 4, uses a modest number of easy-to-generate clocks.

Increasing the number of phases beyond four provides diminishing returns and increases

clk

D
ynam

ic

S
tatic

D
ynam

ic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

S
tatic

D
ynam

ic

S
tatic

dlclk

clk_b

dlclk_b

clk

dlclk

clk_b

dlclk_b

dlclk

dlclk_b

35

complexity of clock generation. Therefore, we will focus on four-phase systems in the

next chapter as we develop a methodology to mix static logic with four-phase skew-toler-

ant domino. Before moving on, however, it is worth mentioning a number of design issues

faced when using skew-tolerant domino circuits.

The designer must properly balance logic among clock phases, just as with transparent

latches where logic must be balanced across half-cycles. It is generally necessary to

include at least one gate per phase because all of the timing derivations in this chapter

have worked under such an assumption. When a large number of phases are employed, it

is possible to have no logic in certain phases at the expense of skew tolerance and time

borrowing; for example, an eight-phase system with no logic in every other phase is indis-

tinguishable from a four-phase system with logic in every phase. The most common rea-

son phases contain no logic is in paths which are short. These non-critical paths can

introduce domino buffers to guarantee at least one gate per phase, or may be implemented

with static logic and latches because the speed of domino is unnecessary.

In Section 2.1.2, we showed that if we could build each phase of logic in a local clock

domain, we could shorten the precharge periodtp because less skew must be budgeted

between gates in the same phase. Unfortunately, in some cases critical paths and floorplan-

ning constraints may prevent a phase of logic from being entirely within a local domain. If

we do not handle such cases specially, we could not take advantage of local skew to

increase tolerable global skew. Two solutions are to require that the gates at the clock

domain boundary precharge more quickly or to introduce an additional phase at the clock

domain crossing delayed by an amount less than Tc/N.

A final issue encountered while designing skew-tolerant domino is the interface between

static and domino logic. Because nonmonotonic static logic must setup before the earliest

the domino clock may rise, but the domino gate may not actually begin evaluating until the

latest that its clock may rise, we have introduced a hard edge at the interface and must

budget clock skew. This encourages designers to build critical paths and loops entirely in

domino for maximum performance. The interface will be considered in more detail in

Chapter 3.

36

2.2 Simulation Results

To evaluate the performance benefits of skew-tolerant domino in the context of high speed

microprocessors, we compared two 64-bit adder self-bypass paths, one constructed using

traditional domino with latches and the other using four-phase skew-tolerant domino, as

shown in Figure 2-8 and Figure 2-9. The paths were simulated in the HP14 0.6µm 3-metal

process with an FO4 delay of 138 ps under nominal process parameters at 3.3v, 25oC. We

assume a microarchitecture and floorplan similar to the dual integer ALUs of the DEC

Alpha 21164 [4]. The adder involves two levels of carry selection implemented with dual

rail domino logic. We assumed contacted diffusion parasitics on each transistor source/

drain and worst-case capacitance on long signal lines, but did not model smaller wire par-

asitics.

Figure 2-8 Traditional domino adder self-bypass implementation

Figure 2-9 Skew-tolerant domino adder self-bypass implementation

To Data Cache
clk

x4

S
tatic

S
tatic

D
ynam

ic

D
ynam

ic

D
ynam

ic

Latch

Latch

Result Mux
Bypass Mux

1 mm 2 mm

Other
ALU Blocks

(150 fF)64-bit Adder

x2

1 mm

clk

clk

clk

clk_b

clk_b

clk_b

To Data Cache

x4

S
tatic

S
tatic

D
ynam

ic

D
ynam

ic

D
ynam

ic

Result Mux
Bypass Mux

1 mm 2 mm

Other
ALU Blocks

(150 fF)64-bit Adder

x2

1 mm

φ1 φ2 φ3 φ3 φ4

37

As shown in Figure 2-10, the traditional path has a latency of 13.0 FO4 delays (1.80 ns),

but a cycle time of 16.6 FO4 delays because the first half-cycle has more logic than the

second. This cycle time bloating is a common problem in ALU design and is often solved

in practice either by moving the latch in to the middle of the adder path, a costly choice

because the bisection width of the circuit is greater within a carry-select adder so more

latches are required, or stretching the first clock phase, anad hoc solution with an effect

similar to that systematically achieved with skew-tolerant domino.

Figure 2-10 Simulated latency and cycle time of adder self-bypass

The skew-tolerant path improves the latency because latches are replaced with fast invert-

ers. Cycle time equals latency because a modest amount of time borrowing is used to bal-

ance the pipeline. The skew-tolerant waveforms are designed withtp = 5.2 FO4 delays and

te= 6.7 in order to accommodatetprech=4.2 andtskew-local= 1. According to Equation 2-6,

+ tborrow = 3.7. In the actual circuit, we observed a global skew tolerance of 2.5 FO4

delays because some of the overlap was used for intentional time borrowing.

When a skew of 1 FO4 delay is introduced, the traditional latency increases to 15.0 FO4

delays because skew must be budgeted in both half-cycles. The skew-tolerant latency and

cycle time are unaffected. Overall, the skew-tolerant design is at least 25% faster than the

traditional design, achieving 600 MHz simulated operation.

Traditional
Latency

Traditional
Cycle Time

Skew-tolerant
Latency

Skew-tolerant
Cycle Time

T
im

e
(F

O
4

in
ve

rt
er

 d
el

ay
s)

13.0
16.6

11.9 11.9

15.0

18.6 No Skew

1 FO4 local skew

tskew
global

38

2.3 Summary

Domino gates have become very popular because they are the only proven and widely

applicable circuit family which offers significant speedup over static CMOS in commer-

cial designs, providing a 1.5-2x advantage in raw gate delay. However, speed is deter-

mined not just by the raw delay of gates, but by the overall performance of the system. For

example, traditional domino sacrificed much of the speed of gates to higher sequencing

overhead. As cycle times continue to shrink, the sequencing overhead of traditional dom-

ino circuits increases and skew-tolerant domino techniques become more important.

Skew-tolerant domino uses overlapping clocks to eliminate latches and remove the three

sources of sequencing overhead which plague traditional domino: clock skew, latch delay,

and unbalanced logic. The overlap between clock phases determines the sum of the skew-

tolerance and time borrowing. Systems with better bounds on clock skew can therefore

perform more time borrowing to balance logic between pipeline stages. Increasing the

number of clock phases increases the overlap, but also increases complexity of local clock

generation and distribution. Four-phase skew-tolerant domino, using four 50% duty cycle

clocks in quadrature, is a particularly interesting design point because it provides a quarter

cycle of overlap while minimizing the complexity of clock generation. The next chapter

will further explore the use of skew-tolerant domino in the context of an entire system,

describing a methodology compatible with other circuit techniques but which still main-

tains low sequencing overhead.

39

Chapter 3 Circuit Methodology

In this chapter, we will develop a skew-tolerant circuit design methodology. Our objective

is a coherent approach to combine domino gates, transparent latches, and pulsed latches,

while providing simple clocking, easy testability, and robust operation. This guidelines

presented are self-consistent and support the design and verification of fast systems, but

are not the only reasonable choices.

We will emphasize circuit design in this chapter while deferring discussion of the clock

network until the next chapter. Of course circuit design and clocking are intimately

related, so this methodology must make assumptions about the clocking. In particular, we

assume that we are provided four overlapping clock phases with 50% duty cycles. These

clocks will be used for both skew-tolerant domino and static latches.

Definition 1: The clocks are namedφ1, φ2, φ3, andφ4. Their nominal waveforms are
shown in Figure 3-1.

The clocks are locally generated from a single global clock gclk.φ1 andφ3 are logically

true and complementary versions of gclk.φ2 andφ4 are versions ofφ1 andφ3 nominally

delayed by a quarter cycle. The clocks may be operated at reduced frequency or may even

be stopped while low for testability or to save power.

Figure 3-1 Four-phase clock waveforms

Phase 1

Tc

Phase 2 Phase 3 Phase 4

φ1

φ2

φ3

φ4

40

The methodology primarily supports four-phase skew-tolerant domino, pulsed latches,

andφ1 andφ3 transparent latches. Other latch phases are occasionally used when interfac-

ing static and domino logic. It is recommended but not required to choose either transpar-

ent latches or pulsed latches as the primary static latch to simplify design.

3.1 Static / Domino Interface

In the previous chapters, we have analyzed systems built from static CMOS latches and

logic and systems built from skew-tolerant domino. In this section, we discuss how to

interface static logic into domino paths and domino results back into static logic. We focus

on static logic using transparent latches and pulsed latches because flip-flops are not toler-

ant of skew. We develop a set of “timing types” which determine when signals are valid

and allow checking that circuits are correctly connected. The guidelines emphasize perfor-

mance at the cost of checking min-delay conditions.

3.1.1 Static to Domino Interface

When nonmonotonic static signals are inputs to domino gates, they must be latched so that

they will not change while the domino gate is in evaluation. The interface also imposes a

hard edge because the data must setup at the domino input before the earliest the domino

gate might begin evaluation, but may not propagate through the domino gate until the lat-

est the gate could begin evaluation. Therefore, clock skew must be budgeted at the static to

domino interface. This skew budget can be minimized by keeping the path in a local clock

domain; Section 5.4 computes how much skew must be budgeted.

The latching technique at the interface depends whether transparent or pulsed latches are

used. In systems using transparent latches, static logic from one half-cycle can directly

interface to dynamic logic at the start of the next half-cycle after the transparent latch. The

static outputs will not change while the domino is in evaluation. In systems with pulsed

latches, however, the pulsed latch output may change whileφ1 domino gates are evaluat-

ing. Therefore, a modified pulsed latch must be used at the interface to produce monotonic

outputs. This is called a “pulsed domino latch” and is shown in Figure 3-2.

41

Figure 3-2 Pulsed domino latches with external and built-in pulsed generators

The pulsed domino latch essentially consists of a domino gate with a pulsed evaluation

clock. The pulse may either be generated externally or produced by two series evaluation

transistors as shown in the figure. The former scheme yields a faster latch because fewer

series transistors are necessary, but requires longer pulses.

The output of a static pulsed latch may be connected through static logic toφ2 or φ3 dom-

ino gates, so long as the static result settles before the domino enters evaluation. Master-

slave flip-flops can be interfaced the same way, but do not directly interlace toφ1 domino

gates because the output is not monotonic duringφ1.

3.1.2 Domino to Static Interface

While a signal propagates through a skew-tolerant domino path, latches are unnecessary.

However, before a domino output is sent into a block of static logic, it must be latched so

that the result is not lost when the domino gate precharges. We will use a special latch at

this interface which takes advantage of the monotonic nature of the domino outputs to

improve performance.

D

gclk

φp

φ

D

φ1

φ1

External pulse generator

Built-in pulse generator

Q

Q

42

Figure 3-3 shows the interface from domino to static logic. The dynamic gate drives a spe-

cial latch using a single clocked NMOS transistor. This latch is called an N-C2MOS stage

by Yuan and Svensson [84]; we will sometimes abbreviate it as an N-latch. When the

dynamic gate evaluates, its falling transition propagate very quickly through the single

PMOS transistor in the N-C2MOS latch. When the dynamic gate precharges and its output

rises, the latch turns off, holding the value until the next time the clock rises. A weak

keeper improves noise immunity when the clock is high. It is important to minimize the

skew between the dynamic gate and N-C2MOS latch so that precharge cannot ripple

through the latch. This is easy to do by locating the two cells adjacent to one another shar-

ing the same clock wire. In Section 3.1.3.2, we will avoid this race entirely by using a

latch clock which falls before the dynamic gate begins precharge. The only overhead at the

interface from dynamic to static logic is the latch propagation delay.

Figure 3-3 Domino to static interface

The output Q of the circuit will always fall when the clock rises, then may rise depending

on the inputD. This results in glitches propagating through the static logic whenD is held

at 1 for multiple cycles; the glitches lead to excess power dissipation. When dual-rail dom-

ino signals are available, an SR latch can be used at the domino to static interface, as

shown in Figure 3-4. The SR latch avoids glitches when the domino inputs do not change,

but is slower because results must propagate through two NAND gates.

Q

D

φ

Dynamic gate N-C2MOS latch

From domino logic

To static logic

weak keeper

43

Figure 3-4 Glitch-free, but slower domino to static interface

A regular transparent latch also can be used at the domino to static interface, but is slower

than the N-C2MOS latch and has the same glitch problems.

3.1.3 Timing Types

The rules for connecting domino and static gates are complex enough that it is worthwhile

systematically defining and checking the legal connectivity. To do this, we can generalize

the two-phase clocking discipline rules of Noice [54] to handle four-phase skew-tolerant

domino. Each signal name is assigned a suffix describing its timing. Proper connections

can be verified by examining the suffixes. We first review the classical definition of timing

types in the context of two-phase non-overlapping clocks. Most systems use 50% duty

cycle clocks, so we describe how timing types apply to such systems at the expense of

checking min-delay. We then generalize timing types to four-phase skew-tolerant domino,

including systems which mix domino, transparent latches, and pulsed latches. Timing

types also include information about monotonicity and polarity to describe domino and

dual-rail domino logic.

3.1.3.1 Two-Phase Non-Overlapping Clocks

Systems constructed from two-phase non-overlapping clocks φ1 andφ2 have the pleasant

property that as long as simple topological rules are obeyed, the system will have no setup

or hold time problems if run slowly enough with sufficient non-overlap, regardless of

D_h

φ

Dual-rail dynamic gate

D_l

φ
Q

Q_b

SR latch

From domino logic To static logic

44

clock skew [26]. They are particularly popular in student projects because no timing anal-

ysis is necessary. Timing types are used to specify the topological rules required for cor-

rect operation and allow automatic checking of legal connectivity. In later sections, we

will extend timing types to work with practical systems which do not have non-overlap-

ping clocks. The extension comes at the expense of checking min-delay violations.

Each signal is given a suffix indicating the timing type and phase. The suffixes are _s1,

_s2, _v1, _v2, _q1, and _q2. _s indicates that a signal is stable during a particular phase,

i.e., that the signal settles before the rising edge of the phase and does not change until

after the falling edge. _v means that the signal is valid for sampling during a phase; it is

stable for some setup and hold time around the falling edge of the phase. _q indicates a

qualified clock, a glitch-free clock signal which may only rise on certain cycles. These

timing types denote which clock edge controls the stability regions of the signals, i.e.

when the circuit is operated at slow speed, after which edge does the signal settle.

Figure 3-5 shows examples of stable and valid signals. Stable is a stronger condition than

valid; any stable signal can be used where a valid signal is required.

Figure 3-5 Examples of stable and valid signals

From the definitions above, we see that clocks are neither valid nor stable. They establish

the time and sequence references for data signals and are never latched by other clocks.

However, it is sometimes useful to provide a clock that only pulses on certain cycles. _q

φ1

φ2

a_s1

b_s2

c_v1

d_v2

setup hold

45

indicates that the signal is such a qualified clock, a clock gated by some control so that it

may not rise during certain cycles. Clock qualification is discussed further in

Section 3.1.4. Qualified clocks are interchangeable with normal clocks for the purpose of

analysis.

The inputs to latches must be valid a setup and hold time around the sampling edge of the

latch clock. For the purpose of verifying correct operation with timing types, it is helpful

to imagine operating the system at low frequency so all latch inputs arrive before the rising

edge of the clock and no time borrowing is necessary. Thus, a latch output will settle

sometime after the rising edge of the latch clock and will not change again until the fol-

lowing rising edge of the latch clock; hence it is stable throughout the other phase. If the

system operates correctly at low speed, one can then increase the clock frequency, borrow-

ing time until setup times no longer are met. In summary, aφ1 latch requires _v1 or _s1

inputs and produces a _s2 output. Aφ2 latch requires _v2 or _s2 inputs and produces a _s1

output. Combinational logic does not change timing types because the system can be oper-

ated slowly enough that data is still valid or stable in the specified phase. Figure 3-6 illus-

trates a general two-phase system.

46

Figure 3-6 General two-phase system

Valid signals are produced by domino gates, as shown in Figure 3-7. The outputs settle

sometime after the rising edge of the clock and do not precharge until the rising edge of

the next clock, so they are valid for sampling around the falling edge of the clock. Using

different precharge and evaluation clocks avoids any races between precharge and sam-

pling. We also tag domino signals as monotonically rising (r) or falling (f). Domino inputs

must be either stable or valid and monotonically rising during the phase the gate evaluates.

The output of the dynamic gate is monotonically falling and the output of the inverting

static gate is monotonically rising. In such a textbook domino clocking scheme, the non-

overlap also appears as sequencing overhead.

φ1

φ2

Q1_s2

Latch

LatchCL

Q1_s2 D2_s2 LatchCL

Q2_s1 D3_s1

φ1 φ2 φ1

D2_s2

Q2_s1

D3_s1

47

Figure 3-7 Domino gates produce valid outputs

As long as systems using two-phase non-overlapping clocks have inputs to domino and

latches using the proper timing types summarized in Figure 3-1, the systems will always

function at some speed. Setup time violations caused by long paths or excessive skew are

solved by increasing the clock period. Hold time violations caused by short paths or exces-

sive skew are solved by increasing the non-overlap between phases.

Table 3-1 Two-phase clocked element timing rules

Element Type Clock Input Output

Dynamic φ1, _q1 _s1, _v1r _v1f

φ2, _q2 _s2, _v2r _v2f

Transparent Latch φ1, _q1 _s1, _v1 _s2

φ2, _q2 _s2, _v2 _s1

φ1

φ2

φ1

φ2

Latch

φ1

φ1

φ2

b_v1r

d_v1r

b_v1r

d_v1r

a_v1f

c_v1f

a_v1f c_v1f

48

Most two-phase systems use 50% duty cycle clocks rather than non-overlapping clocks.

Timing types are still useful to describe legal connectivity, but clock skew can lead to hold

time failures which cannot be fixed by slowing the clock. Therefore, such systems must be

checked for min-delay. In essence, the definitions of _v and _s must change to reflect the

fact that the user can no longer control how long a signal will remain constant after the

falling edge of a sampling clock. Also, since the two clocks are now complementary, dom-

ino gates use the same clock for evaluation and precharge. This leads to another hold time

race as domino gates precharge at the same time the latch samples. Timing types are still

useful to indicate legal inputs to dynamic gates and transparent latches, but no longer

guarantee immunity to min-delay problems.

3.1.3.2 Four-Phase Skew-Tolerant Domino

We can generalize the idea of timing types to four-phase skew-tolerant domino. Again, we

will construct timing rules assuming that duty cycles can be adjusted to eliminate min-

delay problems. Specifically, to avoid min-delay problems, each phase overlaps the next,

but non-adjacent phases must not overlap, as shown in Figure 3-8. For example,φ1 andφ3

are non-overlapping. In Section 3.1.5 we will consider the min-delay races that must be

checked when the non-adjacent phases may overlap. We also use timing types to describe

the interface of four-phase skew-tolerant domino with transparent latches, pulsed latches,

and N-C2MOS latches.

Figure 3-8 Ideal non-overlapping clock waveforms

Phase 1

Tc

Phase 2 Phase 3 Phase 4

φ1

φ2

φ3

φ4

non-overlap

49

Guideline 1: Each signal name must have a suffix which describes the timing, phase,
monotonicity, and polarity.

The timing is s, v, or q and the phase is 1, 2, 3, 4, 12, 23, 34, or 41. This is similar to two-

phase timing types, but extends the definitions to describe signals which are stable through

more than one phase. The monotonicity may be r for monotonically rising, f for monoton-

ically falling, or omitted if the signal is not monotonic during the phase. These suffixes are

primarily applicable to domino circuits and skewed gates. Polarity may be any one of

(blank), b, h, or l. b indicated a complementary signal. h and l are used for dual-rail dom-

ino signals; when h is asserted, the result is a 1, while when l is asserted, the result is a 0.

When neither is asserted, the result is not yet known, and when both are asserted, your cir-

cuit is in trouble. The signal is asserted when it is 1 for monotonically rising signals (r)

and 0 for monotonically falling signals (f). Therefore, dual-rail dynamic gates produce fh

and fl signals, while the subsequent dual-rail inverting static gates produce rh and rl sig-

nals. The suffix is written in the form:

signalname_TP[M][Pol]

where T is the timing type, P is the phase, M is the monotonicity (if applicable) and Pol is

the polarity (if applicable). A simple path following these conventions is shown in

Figure 3-9.

Figure 3-9 Path illustrating timing types and static to domino interface

In addition to checking for correct timing and phase, we use timing types to verify mono-

tonicity for domino gates.

Note that, unlike Figure 3-7, we now use the same clock for precharge and evaluation of

dynamic gates. Therefore, the definition of a valid signal changes; a valid signal settles

D
ynam

ic

Latch

S
tatic

D
ynam

ic

v_s23 w1_s41w2_s41b w_s41

w_s41b

x_v1fh

x_v1fl

y_v1rh

y_v1rl

z_v2fh

z_v2fl

φ3 φ1 φ2

50

before the falling edge of the clock and does not change until shortly after the falling edge

of the clock. This is exactly the same timing rule as a qualified clock, so _v and _q signals

are now in principle interchangeable. Nevertheless, we are much more concerned about

controlling skew on clocks, so we reserve the _q timing type for clock signals and con-

tinue to use _v for dynamic outputs with the understanding that the length of the validity

period is not as great as it was in a classical 2-phase system. In particular, a _v1 signal is

not a safe input to aφ1 static latch because the dynamic gate may precharge at the same

time the latch samples. For example, Figure 3-10 illustrates how latchB’s output might

incorrectly fall when dynamic gateA precharges if there is skew between the clocks of the

two elements.

Figure 3-10 Potential race at interface of _v1 signal to φ1 static latch

Definition 2: The _v inputs to a domino gate must be monotonically rising (r). The output
of a domino gate is monotonically falling (f).

This definition formalizes the requirement of monotonicity. _s inputs to a domino gate sta-

bilize before the gate begins evaluation, so do not have to be monotonic.

φ1a

φ1a

D
ynam

ic

φ1b

φ1b

Latch

A B

A

B

B should remain high, but
might latch precharge and fall

51

Definition 3: Inverting static gates which accept exclusively monotonically rising inputs
(r) produce monotonically falling outputs (f) and vice versa.

Guideline 2:Static gates should be skewed HI for monotonically falling (f) inputs and LO
for monotonically rising (r) inputs.

Skewed gates may use different P/N ratios to favor the critical transitions and improve

speed. In Section 1.4.1 we saw HI-skew gates with large P/N ratios should follow mono-

tonically falling dynamic outputs. When a path built with static logic is monotonic, alter-

nating HI- and LO-skew gates can be used for speed.

Guideline 3: _s and _v signals are the only legal data inputs to gates and latches. _q andφ
are the only legal clock inputs.

This is identical to traditional two-phase conventions. Clocks and gates should not mix

except at clock qualifiers (see Rule 7).

Guideline 4: The output timing types of static gates is the intersection of the input phases.
If the intersection is empty, the gate is receiving an illegal set of inputs.

Remember that a _v signal can be sampled for a subset of the time that a _s signal of the

same phase is stable. For example, a gate receiving _s12 and _v2 inputs produces a _v2

output. A gate receiving _s12 and _s34 inputs has no legal output timing type, so the

inputs are incompatible.

Guideline 5: Table 3-2 summarizes timing rules for the most common elements in a sys-
tem mixing skew-tolerant domino and transparent latches.

52

Clocked elements set the output timing type and require inputs which are valid when they

may be sampled. The types depend on the clock phase used by the clocked element. See

Table 3-3 for a complete list of timing rules covering more special cases.

The output of a dynamic gate is valid and monotonically rising during the phase the gate

operates, just as we have seen for two-phase systems. The input can come from static or

domino logic. Static inputs must be stable _s while the gate is in evaluation to avoid

glitches. Inputs from domino logic are monotonic rising (see Rule 2) and thus only must

be valid _v. The key difference between conventional timing types and skew-tolerant tim-

ing types is that valid inputs to the first dynamic gate in each phase come from the previ-

ous phase, while inputs to later dynamic gates come from the current phase. Technically,

different series stacks may receive _v inputs from different phases.

N-latches are used at the interface of domino to static logic. Although transparent latches

could also be used, they are slower and present more clock load, so are not suggested in

this methodology. Notice that N-latches use a clock from one phase earlier than the

dynamic gate they are latching to avoid race conditions by which that dynamic gate may

precharge before the latch becomes opaque. Because of the single PMOS pullup in the N-

latch, dynamic gate outputA evaluating late can borrow time through the N-latch even

after the latch clock falls, as shown in Figure 3-11.

Table 3-2 Simplified clocked element timing guidelines

Element Type Clock Input Output

Dynamic φ1, _q1 _s1, _v4r (first), _v1r (others) _v1f

φ2, _q2 _s2, _v1r (first), _v2r (others) _v2f

φ3, _q3 _s3, _v2r (first), _v3r (others) _v3f

φ4, _q4 _s4, _v3r (first), _v4r (others) _v4f

Transparent Latch φ1, _q1 _s1 _s23

φ3, _q3 _s3 _s41

N-C2MOS Latch φ1, _q1 _v2f _s3r

φ3, _q3 _v4f _s1r

53

Figure 3-11 Domino to static interface using N-latch

The N-latch outputB settles after the rising clock edge evaluating the preceding dynamic

gate and remains stable until the next rising edge of the latch clock, so it is stable for one

phase (phase 3, in this example). Because the interface between dynamic and static logic

normally occurs at half-cycle boundaries, theφ2 andφ4 N-latches are rarely used.

The output of a transparent latch stabilizes after the latch becomes transparent and remains

stable until the latch becomes transparent again; for example, the output of aφ1 transpar-

ent latch is _s23. Signals stable for multiple phases are legal as inputs to elements requir-

ing stability in either phase. For example, an _s23 signal is a legal input to aφ3 transparent

latch which requires _s3. While transparent latches technically can accept certain _v

inputs as we saw with two-phase timing types, N-latches are preferred at this interface of

domino to static so only the _s inputs are shown in the table for transparent latches.

Figure 3-12 illustrates legal connections between static and domino gates. The top row of

gates are a pipeline of static logic, while the bottom row are domino. Domino outputs

φ1 φ3

Phase 1 Phase 2
D

ynam
ic

S
tatic

D
ynam

ic

Latch

S
tatic

S
tatic

D
ynam

ic

φ1 φ2

Phase 3 Phase 4
A B

φ1

φ2

φ3

S
tatic

S
tatic

S
tatic

S
tatic

N
-Latch

φ1

A

B

54

must pass through N-C2MOS latches before driving static logic. Static signals can directly

drive appropriate domino gates.

Figure 3-12 Examples of legal static and domino connections

Figure 3-13 illustrates illegal connections between static and domino gates. ConnectionA

is bad because the dynamic output will precharge while theφ3 latch is transparent, allow-

ing incorrect data to propagate into the static logic. An N-latch should have been used at

the interface. ConnectionB is bad because the static path skips over a latch. ConnectionC

is bad because theφ4 domino gate receives both _v3 and _v4 inputs. By the time the _v4

input arrives, the _v3 result may have precharged. Each of these illegal connections vio-

lates the possible inputs of Table 3-2, so an automatic tool could flag these errors.

S
tatic

φ1

D
ynam

ic

S
tatic

Latch

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

N
C

2M
O

S

Latch

N
C

2M
O

S

D
ynam

ic

S
tatic

S
tatic

S
tatic

S
tatic

Latch

S
tatic

S
tatic

S
tatic

S
tatic

φ1 φ2 φ2 φ3 φ3 φ4 φ4 φ1

φ3φ1

φ1 φ3 φ1

s23

v1

s23

s3

s23 s23 s3 s41 s41 s41 s41 s41 s23

s1

v1 v1 v1 v2 v2 v2 v2 v3 v3 v3 v3 v4 v4 v4 v4 v1

φ1

φ2

φ3

φ4

55

Figure 3-13 Examples of illegal static and domino connections

Now that we have seen how timing types work, we can expand them to handle pulsed

latches and uncommon phases of latches. The complete guidelines are summarized in

Table 3-3.

S
tatic

φ1

D
ynam

ic

S
tatic

Latch

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

Latch

D
ynam

ic

S
tatic

S
tatic

S
tatic

S
tatic

Latch

S
tatic

S
tatic

S
tatic

S
tatic

φ1 φ2 φ2 φ3 φ3 φ4 φ4 φ1

φ1 φ3 φ1

s23

v1

s23 s23 s23 s3 s41 s41 s41 s41 s41 s23

v1 v1 v1 v2 v2 v2 v2 v3 v3 v3 v3 v4 v4 v4 v4 v1

φ1

φ2

φ3

φ4

B
A

C

56

Guideline 6: Inputs and outputs of clocked elements should match the timing types
defined in Table 3-3.

φ2 andφ4 transparent latches are not normally used. They occasionally are useful, how-

ever, in short paths to avoid min-delay problem as we shall see in Section 3.1.5.φ2 andφ4

N-latches are also rare, but may be used to interface from the middle of a half-cycle of

domino logic back to static logic. These rare latches have timing analogous to their more

common counterparts.

Pulsed latches are controlled by a brief pulse derived from the rising edge ofφ1. They

accept any signal which will not change on or immediately after this edge, i.e. _s4, _s1,

and _v4. The output has the same stable time as the output of aφ1 transparent latch

because it stabilizes after the rising edge ofφ1 and does not change until after the next ris-

ing edge ofφ1. Unfortunately, we see that the output of a pulsed latch is _s23 but neither

_s2 nor _s3 signals are safe inputs to pulsed latches to it is unsafe for one pulsed latch to

drive another. This matches our understanding that pulsed latches cannot be directly cas-

Table 3-3 Complete clocked element timing guidelines

Element Type Clock Input Output

Domino φ1, _q1 _s1, _v4r (first), _v1r (others) _v1f

φ2, _q2 _s2, _v1r (first), _v2r (others) _v2f

φ3, _q3 _s3, _v2r (first), _v3r (others) _v3f

φ4, _q4 _s4, _v3r (first), _v4r (others) _v4f

Transparent Latch φ1, _q1 _s1 _s23

φ2, _q2 (rare) _s2 _s34

φ3, _q3 _s3 _s41

φ4, _q4 (rare) _s4 _s12

Pulsed Latch φ1, _q1 _s1, (_s2, _s3,) _s4, _v4 _s23

Pulsed Domino Latch φ1, _q1 _s1, (_s2, _s3,) _s4, _v4 _v1r

N-C2MOS Latch φ1, _q1 _v2f _s3r

φ2, _q2 (rare) _v3f _s4r

φ3, _q3 _v4f _s1r

φ4, _q4 (rare) _v1f _s2r

57

caded without logic between them because of hold time problems. In order to build sys-

tems with pulsed latches, we relax the timing rules to permit _s2 and _s3 inputs to pulsed

latches, then check for min-delay on such inputs. Such checks are discussed further in

Section 3.1.5.

Pulsed domino latches have the same input restrictions as pulsed latches, but produce a

_v1r output suitable for domino logic because their outputs become valid after the rising

edge ofφ1 and remain valid until the falling edge ofφ1 when the gate precharges.

3.1.4 Qualified Clocks

Qualified clocks are used to save power by disabling units or to build combination multi-

plexer-latches in which only one of several parallel latches is activated each cycle. Qualifi-

cation must be done properly to avoid glitches.

Guideline 7: Qualified clocks are produced by ANDingφi with a _s(i-1) signal in the
clock buffer.

To avoid problems with clock skew, it is best to qualify the clock with a signal that will

remain stable long after the falling edge of the clock. For example, Figure 3-14 shows two

ways to generate a _q1 clock. The _s qualification signal must setup beforeφ1 rises and

should not change until afterφ1 falls. In the left circuit, we ANDφ1 with a _s41 signal. If

there is clock skew, the _s41 signal may change beforeφ1 falls, allowing the _q1 clock to

glitch. Glitching clocks are very bad, so the right circuit in which we ANDφ1 with a _s12

signal is much preferred. This problem is analogous to min-delay. Like min-delay, it could

also be solved by delaying the _s41 signal so that it would not arrive at the AND gate

before the falling edge ofφ1. However, clock qualification signals are often critical, so it is

unwise to delay them unnecessarily. Like min-delay, it could also be solved by making the

skew between theφ1 andφ3 clocks in the left circuit small.

58

Figure 3-14 Good and bad methods of qualifying a clock

3.1.5 Min-Delay Checks

We have noted that a 2-phase systems usually use complementary clocks rather than non-

overlapping clocks and thus lose their strict safety properties, requiring explicit checks for

min-delay violations. Similarly, the 4-phase timing types of Section 3.1.3.2 use non-over-

lappingφ1 andφ3 to achieve safety, but real systems typically would use 50% duty cycle

clocks. In this section, we describe where min-delay risks arise with 50% duty cycle

clocks. We also examine the min-delay problems caused by pulsed latches.

φ1

φ3

φ2

φ4

Latch

Latch

Bad: x_q1 may glitch Good: y_q1 won’t glitch

x_s41

φ3 φ1

x_q1
y_s12

φ4 φ1

y_q1

y_s12

y_q1

x_q1

x_s41

59

Min-delay is a serious problem because unlike setup time violations, hold time violations

cannot be fixed by adjusting the clock frequency. Instead, the designer must conservatively

guarantee adequate delay through logic between clocked elements. Min-delay problems

should be checked at the interfaces listed in Table 3-4. The top half of the table lists com-

mon cases encountered in typical designs. The bottom half of the table lists combinations,

which while technically legal according to Table 3-2, would not occur in normal use

becauseφ2 andφ4 transparent latches and N-latches are seldom used.

Min-delay problems can be solved in two ways. One approach is to add explicit delay to

the data. For example, a buffer made from two long-channel inverters is a popular delay

element. Another is to add a latch between the elements controlled by an intervening

phase. Both approaches prevent races by slowing the data until the hold time of the second

element is satisfied. Examples of these solutions are shown in Figure 3-15. In path (a)

there is no logic between latches. Ifφ1 andφ3 are skewed as shown, data may depart theφ1

latch when it becomes transparent, then race through theφ3 latch before it becomes

opaque. Path (b) solves this problem by adding logic delayδlogic. Path (c) solves the prob-

lem by adding aφ2 latch. If the minimum required delay is large, the latch may occupy

less area than a string of delay elements

Table 3-4 Interfaces prone to min-delay problems

Source Element Source Phase Destination Element Destination Phase

Transparent Latch
or N-Latch or
Pulsed Latch

φ1 Transparent Latch or
Dynamic Gate

φ3

Transparent Latch

or N-Latch

φ3 Transparent Latch or
Dynamic Gate

φ1

Transparent Latch
or N-Latch or
Pulsed Latch

φ1 Pulsed Latch or
Pulsed Domino Latch

φ1

Transparent Latch

or N-Latch

φ2 Transparent Latch

or Dynamic Gate

φ4

Transparent Latch

or N-Latch

φ4 Transparent Latch

or Dynamic Gate

φ2

60

Figure 3-15 Solution to min-delay problem betweenφ1 and φ3 transparent latches

Min-delay problems can actually occur at any interface, not just those listed in Table 3-4.

For example, if clock skew were greater than a quarter cycle, min-delay problems could

occur betweenφ1 andφ2 transparent latches. Because it is very difficult to design systems

when the clock skew exceeds a quarter cycle, we will avoid such problems by requiring

that the clock have less than a quarter cycle of skew between communicating elements.

Depending on the clock generation method, a few other connections may incur races. It is

possible to construct clock generators with adjustable delays so that as the frequency

reduces, the delay between each phase does not change. However, as we will see in

Section 4.2.1, it may be more convenient to produceφ2 andφ4 by delayingφ1 andφ3,

respectively, by a fixed amount. Such clock generators introduce the possibility of races

which are frequency-independent because the delay between phases is fixed.

φ1

φ2

φ3

φ1

Latch

Latch

φ3

Latch

Latch

Latch

Latch

Latch

(a) min delay risk

(b) extra gates

(c) extra latch

overlap:
min-delay risk

φ2

δlogic

61

One such risky connection is aφ1 pulsed latch feeding aφ2 domino gate. There is a max-

delay condition that data must setup at the input of the domino gate before the gate enters

evaluation. Clock skew betweenφ1 andφ2 reduces the nominally available quarter cycle.

Since the delay fromφ1 to φ2 is constant, if domino input does not set up in time, the cir-

cuit will fail at any clock frequency. The same problem occurs at the interface of aφ1

transparent latch toφ2 domino and of aφ3 transparent latch toφ4 domino.

Another min-delay problem occurs betweenφ2 transparent latches andφ1 pulsed latches or

pulsed domino latches. Again, if the delay between phases is independent of frequency,

hold time violations cannot be fixed by adjusting the clock frequency.

3.2 Clocked Element Design

This section offers guidelines on the design of fast clocked elements. Remember that static

CMOS logic uses either transparent latches or pulsed latches. Domino logic uses no

latches at all, except at the interface back to static logic where N-latches should be used.

We postpone discussion of supporting scan in clocked elements until Section 3.3.

Critical paths should be entirely domino wherever possible because one must budget skew

and latch propagation delay when making a transition from static back into domino logic;

moreover time borrowing is not possible through the interface. Because most functions are

nonmonotonic, this frequently dictates using dual-rail domino. In certain cases, dual-rail

domino costs too much area, routing, or power. For high speed systems, going entirely

static may be faster than mixing domino and static and paying the interface overhead. If

the overhead is acceptable because skew is tightly controlled, try combining as much of

the nonmonotonic logic into static gates at the end of the block.

3.2.1 Latch Design

Guideline 8: Generally use only pulsed latches orφ1 andφ3 transparent latches.

We select two phases to be the primary static latch clocks to resemble traditional two-

phase design. Theφ2 and φ4 clocks would be confusing if generally used, so they are

restricted to use to solve min-delay problems in short paths.

62

Guideline 9: Use a N-C2MOS latch on the output of domino logic driving static gates as
shown in Figure 3-3. Use a full keeper on the output for static operation.

Again, the output is a dynamic node and must obey dynamic node noise rules. The N-latch

is selected because it is faster and smaller than a tri-state latch and doesn’t have the charge

sharing problems seen if a domino gate drove a transmission gate latch.

Guideline 10:The domino gate driving an N-latch should be located adjacent to the latch
and should share the same clock wire andVDD as the latch.

The N-latch has very little noise margin for noise on the positive supply. This noise can be

minimized by keeping the latch adjacent to the domino output, thereby preventing signifi-

cant noise coupling orVDD drop. The latch is also sensitive to clock skew because if it

closed too late, it could capture the precharge edge of the domino gate. Therefore, the

same clock wire should be used to minimize skew.

3.2.2 Domino Gate Design

The guidelines in this section cover keepers, charge sharing noise, and unfooted domino

gates.

Guideline 11:All dynamic gates must include a keeper.

The keeper is necessary for static operation onφ3 andφ4 dynamic gates when the clock is

stopped low. It is also necessary on all gates to achieve reasonable noise immunity. Break-

ing this guideline requires extremely careful attention to dynamic gate input noise mar-

gins.

Guideline 12:The first dynamic gate of phase 3 must include a full keeper.

This is necessary to prevent the outputs of the first phase 3 gates from floating when the

clock is stopped low and the phase 2 gates precharge. Note that because the first dynamic

gate of phase 1 does not include a full keeper, the clock should not be stopped high long

enough for the output to be corrupted by subthreshold leakage. Of course, this guideline is

63

an artifact of the methodology: an alternative methodology which stopped the clock high

or allowed clock stopping both high and low would require the full keeper on phase 1. In

Section 3.3.2 we will see that the last dynamic gate of phase 4 may also need a full keeper

to support scan.

Guideline 13:The output of a dynamic gate must drive the gate, not source/drain input of
the subsequent gate.

The result of a dynamic gate is stored on the capacitance of the output node, so this guide-

line prevents charge-sharing problems. An important implication is that dynamic gates

cannot drive transmission gate multiplexer data inputs, although they could drive tri-state

based multiplexers.

Guideline 14:Use footed dynamic gates exclusively.

This guideline is in place to avoid excess power consumption which may occur when the

pulldown transistors are all on while the gate is still precharging. It may be waived on the

first φ2 andφ4 gates of each cycle so long as the inputs of the gates come fromφ1 or φ3

domino logic which does not produce a rising output until theφ2 or φ4 gates have entered

evaluation. Aggressive designers may waive the guideline on other dynamic gates if power

consumption is tolerable.

3.2.3 Special Structures

In a real system, skew-tolerant domino circuits must interface to special structures such as

memories, register files, and programmable logic arrays (PLAs). Precharged structures

like register files are indistinguishable in timing from ordinary domino gates. Indeed, stan-

dard 6-transistor register cells can produce dual-rail outputs suitable for immediate con-

sumption by dual-rail domino gates.

Certain very useful dynamic structures such as wide comparators and dynamic PLAs are

inherently non-monotonic and are conventionally built for high performance using self-

timed clocks to signal completion. The problem is that these structures are most efficiently

implemented with cascaded wide dynamic gates because the delay of a dynamic NOR

64

structure is only a weak function of the number of inputs. Generally, dynamic gates cannot

be directly cascaded. However, if the second dynamic gate waits to evaluate until the first

gate has completed evaluation, the inputs to the second gate will be stable and the circuit

will compute correctly. The challenge is creating a suitable delay between gates. If the

delay is too long, time is wasted. If the delay is too short, the second gate may obtain the

wrong result.

A common solution is to locally create a self-timed clock by sensing the completion of a

model of the first dynamic gate. For example, Figure 3-16 shows a dynamic NOR-NOR

PLA integrated into a skew-tolerant pipeline. The AND plane is illustrated evaluating dur-

ing φ2 and adjacent logic can evaluate in the same or nearby phases.andclk is nominally in

phase withφ2, but has a delayed falling edge to avoid a precharge race with the OR plane.

The latest inputx to the AND plane is used by a dummy row to produce a self-timed clock

orclk for the OR plane that rises after AND plane outputy has settled. Notice how the fall-

ing edge oforclk is not delayed so that wheny precharges high the OR plane will not be

corrupted. The outputz of the OR plane is then indistinguishable from any other dynamic

output and can be used in subsequent skew-tolerant domino logic.

65

Figure 3-16 Domino / PLA interface

3.3 Testability

As integrated circuits use ever more transistors and overlay the transistors with an increas-

ing number of metal layers, debug and functional test become more difficult. Packaging

advances such as flip-chip technology make physical access to circuit nodes harder.

Hence, engineers employ design for testability methods, trading area and even some

amount of performance to facilitate test. The most important testability technique is scan,

in which memory elements are made externally observable and controllable through a

scan chain [58]. Scan generally involves modifying flip-flops or latches to add scan sig-

nals.

φ2

D
ynam

ic

S
tatic

S
tatic

D
ynam

ic

S
tatic

φ2

φ2

Matched Delay

φ1 or φ2 φ2 or φ3

AND Plane OR Plane

x

y z

orclk

x

y

z

orclk

φ2

PLA

φ2 andclk

andclk

66

Because scan provides no direct value to most customers, it should impact a design as lit-

tle as possible. A good scan technique has:

• minimal performance impact

• minimal area increase

• minimal design time increase

• no timing-critical scan signals

• little or no clock gating

• minimal tester time

The area criteria implies that scan should add little extra cell area and also few extra wires.

The timing-critical scan signal criteria is important because scan should not introduce crit-

ical paths or require analysis and timing verification of the scan logic. Clock gating is

costly because it increases clock skew and may increase the setup on already critical clock

enable signals such as global stall requests.

We will assume that scan is performed by stopping the global clock low (i.e.φ1 andφ2 low

andφ3 andφ4 high), then toggling scan control signals to read out the current contents of

memory elements and write in new contents. We will first review scan of transparent and

pulsed latches, then extend the method to scan skew-tolerant domino gates in a very simi-

lar fashion.

3.3.1 Static Logic

Systems built from transparent latches or pulsed latches can be made more testable by

adding scan circuitry to every cycle of logic. Figure 3-17 shows a scannable latch. Normal

latch operation involves inputD, outputQ, and clockφ. When the clock is stopped low,

the latch is opaque. The circuits shown in the dashed boxes are added to the basic latch for

scan. The contents of latch can be scanned out toSDO (scan data out) and loaded from

SDI (scan data in) by toggling the scan clocksSCA andSCB. While it is possible to use a

single scan clock, the two-phase non-overlapping scan clocks shown are more robust and

simplify clock routing. The small inverters represent weak feedback devices; they must be

ratioed to allow proper writing of the cell. Note that this means the gate driving the data

input D must be strong enough to overpower the feedback inverter. While a tristate feed-

67

back gate may be used instead, it must still be weak enough to be overpowered bySDI

during scan.

Figure 3-17 Scannable latch

We assume that scan takes place while the clock is stopped low. Therefore, transparent

latch systems make the first half-cycle latch scannable and pulsed latch systems make the

pulsed latch scannable. The procedure for scan is:

1.1 Stop gclk low

1.2 ToggleSCA andSCB to march data through the scan chain

1.3 Restart gclk

Guideline 15:Make all pulsed latches andφ1 transparent latches scannable.

3.3.2 Domino Logic

Because skew-tolerant domino does not use latches, some other method must be used to

observe and control one node in each cycle. Controlling a node requires cutting off the

normal driver of the node and activating an access transistor. For example, latches are con-

trolled during scan by being made opaque, then activating theSCB access transistor in

Figure 3-17. A dynamic gate with a full keeper can be controlled in an analogous way by

turning off both the evaluation and precharge transistors and turning on an access transis-

tor, as shown in Figure 3-18. Notice that separate evaluation and precharge signals are

necessary to turn off both devices so a gated clockφs is introduced. A slave latch con-

nected to the full keeper provides observability without loading the critical path, just as it

does on a static latch. Note that this is a ratioed circuit and the usual care must be taken

that feedback inverters are sufficiently weak in all process corners to be overpowered.

φ

SDI

SDOSCA

SCB

D

Q

φ slave latch

68

Also, note that only a PMOS keeper is required on the dynamic output node ifSCA and

SCB are toggled quickly enough that leakage is not a problem.

Figure 3-18 Scannable dynamic gate

Which dynamic gate in a cycle should be scannable? The gate should be chosen so that

during scan, the subsequent domino gate is precharging so that glitches will not contami-

nate later circuits. The gate should also be chosen so that when normal operation resumes,

the output will hold the value loaded by scan until it is consumed.

Let us assume that scan is done while the global clock is stopped low, thus with theφ1 and

φ2 domino gates in the first half-cycle precharging and theφ3 andφ4 gates in the second

half-cycle evaluating. Then a convenient choice is to scan the lastφ4 domino gate in the

cycle. This means that the lastφ4 domino gate must include a full keeper. Scan is done

with the following procedure:

2.1 Stop gclk low

2.2 Stopφs low

2.3 ToggleSCA andSCB to march data through the scan chain

2.4 Restart gclk

2.5 Releaseφs once scannable gate begins precharge

When gclk is stopped, the scannable gate will have evaluated to produce a result. Stopping

φs low will turn off the evaluation transistor to the scannable gate, leaving the output on

the dynamic node held only by the full keeper. TogglingSCA andSCB will advance the

SDOSCA

slave latch
SDI

SCB
φ

φs

pulldown
network

69

result down the scan chain and load a new value into the dynamic gate. When gclk restarts,

it rises, allowing the gates in the first half-cycle to evaluate with the data stored on the scan

node. Once the scannable gate begins precharging,φs can be released because the gate no

longer needs to be cut off from its inputs.

Unfortunately, this scheme requires releasingφs in a fraction of a clock cycle. It would be

undesirable to do this with a global control signal because it is difficult to get a global sig-

nal to all parts of the chip in a tightly controlled amount of time. It is better to use a small

amount of logic in the local clock generator to automatically perform steps (2.2) and (2.5).

We will examine such a clock generator supporting four-phase skew-tolerant domino with

clock enabling and scan in Section 4.2.3.

A potential difficulty with scanning dynamic gates is that it could double the size of a

dynamic cell library if both scannable and normal dynamic gates are provided. A solution

to this problem is to provide a special scan cell that “bolts on” to an ordinary dynamic

gate. The scan cell adds a full keeper and scan circuitry to the ordinary gate’s PMOS

keeper, as shown in Figure 3-19. In ordinary usage, the two clock inputs of the dynamic

gate are shorted toφ4, while in a scannable gateφ4 andφ4s are connected.

Figure 3-19 Dynamic gate and scan cell

Guideline 16:Make the last domino gate of each cycle scannable with bolt-on scan logic.

A cycle may combine static and domino logic. As long as all first half-cycle latches and

the last domino gate in each second half-cycle are scanned, the cycle is fully testable.

φ

φs

pulldown
network

out

out_b
SDO

SCA

SDI

SCB

out_b

out

Dynamic gate with PMOS keeper Scan cell

70

Static and domino scan nodes are compatible and may be mixed in the same scan chain.

Note that pulsed domino latches are treated as first half-cycle domino gates and are not

scanned.

3.4 Summary

This chapter has described a method for designing systems with transparent and pulsed

latches and skew-tolerant domino. It uses a single globally distributed clock from which

four local overlapping clock phases are derived. The methodology supports stopping the

clock low for power savings and testability and describes a low-overhead scan technique

compatible with both domino and static circuits. Timing types are used to verify proper

connectivity among the clocked elements.

The methodology hides sequencing overhead everywhere except at the interface between

static and domino logic. At the interface of domino to static logic, a latch is necessary to

hold the result, adding a latch propagation delay to the critical path. More importantly, at

the interface of static to domino logic, clock skew must be budgeted so that inputs settle

before the earliest the evaluation clock might rise, yet the domino gate may not begin eval-

uation until the latest time the clock might rise. This overhead makes it expensive to

switch between static and domino logic. Designers who need domino logic to meet cycle

time targets should therefore consider implementing their entire path in domino. Because

single-rail domino cannot implement nonmonotonic functions, dual-rail domino is usually

necessary. Therefore, we should expect to see more critical paths built entirely from dual-

rail domino as sequencing overhead becomes a greater portion of the cycle time.

71

Chapter 4 Clocking

Clocking is a key challenge for high speed circuit designers. Circuit designers specify a

modest number oflogical clocks which ideally arrive at all points on the chip at the same

time. For example, flip-flop-based systems use a single logical clock, while skew-tolerant

domino might use four logical clocks. Unfortunately, mismatched clock network paths

and processing and environmental variations make it impossible for all clocks to arrive at

exactly the same time, so the designer must settle for actually receiving a multitude of

skewedphysical clocks. To achieve low clock skew, it is important to carefully match all

of the paths in the clock network and to minimize the delay through the network because

random variations lead to skews which are a fraction of the mismatched delays. Previ-

ously, we have focused on hiding skew where possible and budgeting where necessary. We

must be careful, however, that our skew-tolerant circuit techniques do not complicate the

clock network so much that they introduce more skew than they tolerate.

This chapter begins by defining the nominal waveforms of physical clocks. The interar-

rival time of two clock edges is the delay between the edges. Clock skew is the absolute

difference between the nominal and actual interarrival times of a pair of physical clock

edges. Clock skew displays both spacial and temporal locality; by considering such local-

ity, we only must budget or hide the actual skew experienced between launching and

receiving clocks of a particular path. Skew budgets for min-delay checks must be more

conservative than for max-delay because of the dire consequences of hold time violations;

fortunately, min-delay races are set by pairs of clocks sharing a common edge in time, so

min-delay budgets need not include jitter or duty cycle variation. Since it may be impracti-

cal to tabulate the skew between every pair of physical clocks on a chip, we lump clocks

into domains for simplified, though conservative analysis.

Having defined clock skew, we turn to skew-tolerant domino clock generation schemes for

two, four, and more phases. We see that the clock generators introduce additional delays

into the clock network and hence increase clock skew. Nevertheless, the extra clock skew

is small compared to the skew tolerance, so such generators are acceptable. Four-phase

skew-tolerant domino proves to be a reasonable design point combining good skew toler-

72

ance and simple clock generation, so we present a complete four-phase clock generation

network supporting clock enabling and scan.

4.1 Clock Waveforms

We have relied upon an intuitive definition of clock skew while discussing skew-tolerant

circuit techniques. In this chapter, we will develop a more precise definition of clock skew

which takes advantage of the myriad correlations between physical clocks. Physical

clocks may have certain systematic timing offsets caused by different numbers of clock

buffers, clock gating, etc. We can plan for these systematic offsets by placing more logic

in some phases and less in others than we would have if all physical clocks exactly

matched the logical clocks; the nominal offsets between physical clocks do not appear in

our skew budget. The only term which must be budgeted as skew is the variability, the dif-

ference between nominal and actual interarrival times of physical clocks.

4.1.1 Physical Clock Definitions

A system has a small number of logical clocks. For example, flip-flops or pulsed latches

use a single logical clock, transparent latches use two logical clocks, and skew-tolerant

domino usesN, often four, logical clocks. A logical clock arrives at all parts of the chip at

exactly the same time. Of course logical clocks do not exist, but they are a useful fiction to

simplify design.

Conceptually, we envision a unique physical clock for each latch, but one can quickly

group physical clocks that represent the same logical clock and have very small skew rela-

tive to each other into one clock to reduce the number of physical clocks. For example, a

single physical clock might serve a bank of 64 latches in a datapath. By defining wave-

forms for physical clocks rather than logical clocks, we set ourselves up to budget only the

skew actually possible between a pair of physical clocks rather than the worst case skew

experienced across the chip.

We define the set of physical clocks to beC={φ1, φ2, ..., φk}. We assume that all clocks

have the same cycle time Tc
1. Variables describing the clock waveforms are defined below

73

and illustrated in Figure 4-1 for a two-phase system with four 50% duty cycle physical

clocks.

• : the clock cycle time, or period

• : the duration for whichφi is high

• : the start time, relative to the beginning of the common clock cycle, ofφi being high

• : a phase shift operator describing the difference in start time fromφi to the next

occurrence ofφj. , whereW is a wraparound variable indicat-

ing the number of cycle crossings between the sending and receiving clocks.W is 0 or 1

except in systems with multi-cycle paths. Note that = -Tc because it is the shift

between consecutive rising edges of clock phaseφi.

Figure 4-1 Two-phase clock waveforms

Note that Figure 4-1 labels the clocksC={φ1a, φ1b, φ2a, φ2b} rather thanC={φ1, φ2, φ3, φ4}

to emphasize that the four physical clocks correspond to only two logical clocks. The

former labeling will be used for examples, while the later notation is more convenient for

expressing constraints in timing analysis in Chapter 5. The phase shifts between these

clocks seen at consecutive transparent latches are shown in Table 4-1. Notice that the sys-

1. In extremely fast systems, clocks may operate at very high frequency in local areas, but at lower fre-
quency when communicating between remote units. We presently see this in systems where the CPU
operates at high speed but the motherboard operates at a fraction of the frequency. This clocking analysis
may be generalized to clocks with different cycle times.

Tc

Tφi

sφi

Sφiφ j

Sφiφ j
sφi

sφ j
WTc+()–≡

Sφiφi

φ1a

0 1.0 nsTφ1a = 0.5

sφ1a = 0

φ1b

φ2a

φ2b

Tφ1b = 0.5

Tφ2a = 0.5

Tφ2b = 0.5

sφ1b = 0.05

sφ2a = 0.48

sφ2b = 0.55

74

tematic offsets between clocks appear as different phase shifts rather than clock skew. It is

possible to design around such systematic offsets, intentionally placing more logic in one

half-cycle than another. Indeed, designers sometimes intentionally delay clocks to extend

critical cycles of logic in flip-flop based systems where time borrowing is not possible. We

save the term skew for uncertainties in the clock arrival times.

4.1.2 Clock Skew

If the actual delay between two phasesφi andφj equalled the nominal delay , the

phases would have zero skew. Of course, delays are seldom nominal, so we must define

clock skew. There are many sources of clock skew. When a single physical clock serves

multiple clocked elements, delay between the clock arrival at the various elements appears

as skew. Cross-die variations in processing, temperature, and voltage also lead to skew.

Electromagnetic coupling and load capacitance variations [16] lead to further skew in a

data-dependent fashion. If all clock paths sped up or slowed down uniformly, the interar-

rival times would be unaffected and no skew would be introduced. Therefore, we are only

concerned with differences between delays in the clock network.

In previous chapters, we have used a single skew budgettskew which is the worst case

skew across the chip, i.e., largest absolute value of the difference between the nominal and

actual interarrival times of a pair of clocks anywhere on the chip. Whentskew can be held

to about 10% of the cycle time, it is simple and not overly limiting to budget this worst

case skew everywhere. As skews are increasing relative to cycle time, we would prefer to

only budget the actual skew encountered on a path, so we define skews between specific

pairs of physical clocks. For example, is the skew betweenφi andφj, the absolute

Table 4-1 Phase shift between clocks of Figure 4-1

Receiving clockφi

φ1a φ1b φ2a φ2b

Launching clock
φ

j

φ1a -0.48 -0.55

φ1b -0.43 -0.50

φ2a -0.52 -0.57

φ2b -0.45 -0.50

Sφiφ j

Sφiφ j

tskew
φi φ j,

75

value of the difference between the nominal and actual interarrival times of these edges

measured at any pair of elements receiving these clocks. For a given pair of clocks, certain

transitions may have different skew than others. Therefore, we also define skews between

particular edges of pairs of physical clocks. For example, is the skew between

the rising edge ofφi and the falling edge ofφj. is the maximum of the skews between

any edges of the clocks.

Notice that skew is a positive difference between the actual and nominal interarrival times,

rather than being plus or minus from a reference point. When using this information in a

design, we assume the worst: for maximum delay (setup time) checks, that the receiving

clock is skewed early relative to the launching clock; and for minimum delay (hold time)

checks, that the receiving clock is skewed late relative to the launching clock. If skews are

asymmetric around the reference point, we may define separate values of skew for min and

max delay analysis.

Also, note that the cycle count between edges is important in defining skew. For example,

the skew between the rising edge of a clock and the same rising edge a cycle later is called

the cycle-to-cycle jitter. The skew between the rising edge and the same rising edge many

cycles later may be larger and is called the peak jitter. Generally, we will only consider

edges separated by at most one cycle when defining clock skew because including peak

jitter is overly pessimistic. This occasionally leads to slightly optimistic results in latch-

based paths in which a signal is launched on the rising edge of one latch clock and passes

through more than one cycle of transparent latches before being sampled. The jitter

between the launching and sampling clocks is greater than cycle-to-cycle jitter in such a

case, but the error is unlikely to be significant.

Since clock skew depends on mismatches between nominally equal delays through the

clock network, skews budgets tend to be proportional to the absolute delay through the

network. Skews between clocks which share a common portion of the clock network are

smaller than skews between widely separated clocks because the former clocks experience

no environmental or processing mismatches through the common section. However, even

two latches sharing a single physical clock experience cycle-to-cycle skew from jitter and

duty-cycle variation, which depend on the total delay through the clock network.

tskew
φi r() φ j f(),

tskew
φi φ j,

76

The designer may use different skew budgets for minimum and maximum delay analysis

purposes. Circuits with hold time problems will not operate correctly at any clock fre-

quency, so designers must be very conservative. Fortunately, min-delay races occur

between clocks in a single cycle, so jitter and duty cycle variation are not part of the skew

budget. Circuits with setup time problems operate properly at reduced frequency. There-

fore, the designer may budget an expected skew, rather than a worst case skew, for max-

delay analysis, just as designers may target TT processing instead of SS processing. This

avoids overdesign while achieving acceptable yield at the target frequency. Unfortunately,

calculating the expected skew requires extensive statistical knowledge of the components

of clock skew and their correlations.

On account of larger chips, greater clock loads, and wire delays which are not scaling as

well as gate delays, it is very difficult to hold clock skew across the die constant in terms

of gate delays. Indeed, Horowitz predicted that keeping global skews under 200 ps is hard

[34]. Moreover, as cycle times measured in gate delays continue to shrink, even if clock

skew were held constant in gate delays, it would tend to become a larger fraction of the

cycle time. Therefore, it will be very important to take advantage of skew-tolerant circuit

techniques and to exploit locality of clock skew when building fast systems.

4.1.3 Clock Domains

While one may conceptually specify an array of clock skews between each pair of physi-

cal clocks in a large system, such a table may be huge and mostly redundant. In practice,

designers usually lump clocks into a hierarchy of clock domains. For example, we have

intuitively discussed local and global clock domains; pairs of clocks in a particular local

domain experience local skew which is smaller than the global skew seen by clocks in dif-

ferent domains. We can extend this notion to finer granularity by defining a skew hierarchy

with more levels of clock domains, as shown in Figure 4-2 for a system based on an H-

tree. In Section 5.9.4 we will formalize the definitions of skew hierarchies and clock

domains for the purpose of timing analysis.

77

Figure 4-2 H-Tree clock distribution network illustrating multiple levels of clock domains

In Figure 4-2, level 1 clock domains contain a single physical clock. Therefore, two ele-

ments in the level 1 domain will only seek skew from RC delays along the clock wire and

from jitter of the physical clock. Level 2 clock domains contain a clock and its comple-

ment and see additional skew caused by differences between the nominal and actual clock

generator delays. Remember that systematic delay differences which are predictable at

design time can be captured in the physical clock waveforms; only delay differences from

process variations or environmental differences between the clock generators appear as

skew. Higher levels clock domains see progressively more skew as delay variations in the

global clock distribution network appear as skew.

4.2 Skew-Tolerant Domino Clock Generation

In most high frequency systems, a single clock gclk is distributed globally using a modi-

fied H-tree or grid to minimize skew. Skew tolerant domino can use this same clock distri-

bution scheme with a single global clock. Within each unit or functional block, local clock

generators produce the multiple phases required for latches and skew-tolerant domino.

φ1ltl

φ2ltl

φ1ltr

φ2ltr

φ1lbr

φ2lbr

φ1lbl

φ2lbl

From PLL

Level 1
Clock Domain

Level 2
Clock Domain

Level 3
Clock Domain

Level 4
Clock Domain

Level 5
Clock Domain

φ1rtl

φ2rtl

φ1rtr

φ2rtr

φ1rbr

φ2rbr

φ1rbl

φ2rbl

78

These local generators inevitably increase the delay of the distribution network and hence

increase clock skew. This section describes several local clock generation schemes and

analyzes the skews introduced by the generators. The simplest schemes involve simple

delay lines and are adequate for many applications. Lower skews can be achieved using

feedback systems with delays that track with process and environmental changes. We con-

clude with a full-featured local clock generator supporting transparent latches and four-

phase skew-tolerant domino, clock enabling, and scan.

4.2.1 Delay Line Clock Generators

Overlapping clocks for skew-tolerant domino can be easily generated by delaying one or

both edges of the global clock with chains of inverters. Figure 4-3 shows a simple two-

phase skew-tolerant domino local generator, while Figure 4-4 extends the design to sup-

port four phases. The two-phase design uses a low-skew complement generator to produce

complementary signals from the global clock. For example, Shoji showed how to match

the delay of 2 and 3 inverters to match independently of relative PMOS/NMOS mobilities

[68]. The falling clock edges are stretched with clock choppers to produce waveforms with

greater than 50% duty cycle. Using a fanout of 3-4 on each inverter delay element sets rea-

sonable delay and minimizes the area of the clock buffer while preserving sharp clock

edges.

Figure 4-3 Two-phase clock generator

gclk

φ1 φ2

Low-skew

generator
complement

79

The four-phase design is very similar, but uses an additional chain of inverters to produce

a nominal quarter cycle delay. At first it would seem such a clock generator would suffer

from terrible clock skews because between best and worst case processing and environ-

ment, its delay may vary by a factor of 2! Fortunately, we are concerned not with the abso-

lute delay of the inverter chain, but rather with its tracking relative to critical paths on the

chip. In the slow corner, the delay chain will have a greater delay, but the critical paths will

also be slower and the operating frequency will be correspondingly reduced. Hence, to

first order the delay chain tracks the speed of the logic on the chip; we are now concerned

about skew introduced by second order mismatches.

Figure 4-4 Four-phase clock generator

4.2.1.1 Local Generator Induced Clock Skew

Since the local generators are not replicas of the circuits they are tracking, and indeed are

static gates tracking the speed of dynamic paths, their relative delays may vary over pro-

cess corners as well as due to local variation in voltage and temperature and local process

variations. Simulation finds that when most of the chip is operating under nominal pro-

cessing and worst case environment but a local clock generator sees a temperature 30oC

lower and supply voltage 300 mV higher, the local generator will run 13% faster than

nominal (6% from temperature, 7% from voltage). The relative delay of simple domino

gates with respect to fanout-of- four inverters varied up to about 6% across process cor-

ners. Finally, process tilt, i.e., fluctuation inLe, tox, etc., across the die, may speed the local

gclk

φ1 φ3 φ2 φ4

Low-skew

generator

1/4 cycle delay
complement

80

clock generator more than nearby logic. Little data is available on process tilt, but if we

guess it causes similar 13% variation, we conclude that nearly a third of the total local

clock generator delay appears as clock skew.

Four-phase clock generators have a quarter cycle more delay than two-phase generators,

so are subject to more skew. However, they can also tolerate a quarter cycle more skew

than their two-phase counterparts, which is significantly more than the extra skew of the

generators. For example, consider two and four-phase systems like those described in

Section 2.1.2 with cycle times of 16 FO4 delays and precharge times of 4 FO4 delays. If

the local skew is 1 FO4 delay, the nominal overlap between phases is 3 FO4 delays for the

two-phase system and 7 FO4 delays for the four-phase system. These overlaps can be used

to tolerate clock skew and allow time borrowing. From the overlap we must subtract the

skews introduced by the local clock generators. If the complement generator, clock chop-

per, and quarter cycle delay lines have nominal delays of 2, 3, and 4 FO4 delays, respec-

tively, we must budget 32% of these delays as additional skew. Figure 4-5 compares the

remaining overlaps of each system, showing that although the four-phase system pays a

larger skew penalty, the remaining overlap is proportionally much greater than that of the

two-phase system. The four-phase clock generator can be simplified to use 50% duty cycle

clocks as shown in Figure 4-6, eliminating the clock choppers at the expense of smaller

overlaps. The four-phase system with 50% duty cycle waveforms still provides more over-

lap than the two-phase system and avoids the min-delay problems associated with overlap-

ping two-phase clocks. Therefore, it is a reasonable design choice, especially considering

the drawbacks of clock choppers which we will shortly note. In Section 4.2.3 we will look

at a complete four-phase clock generator including clock gating and scan capability.

The four-phase clock generator with clock choppers appears to offer substantial benefits

over the design with no choppers. A closer look reveals several liabilities in the design

with choppers. Variations in the clock chopper delay cause duty cycle errors which cut

into the precharge time, necessitating a lower smaller overlaps than our first-order analysis

predicted. The extended duty cycle also increases the susceptibility to min-delay prob-

lems, especially when coupled with the large skews introduced by the clock generator.

Finally, the designer may still desire to use 50% duty cycle clocks for transparent latches.

81

Therefore, the chopperless four-phase scheme is preferred when it offers enough overlap

to handle the expected skews and time borrowing requirements.

Figure 4-5 Overlap between phases for two- and four-phase systems after clock generator skews

Figure 4-6 Simplified four-phase clock generator

In addition to having adequate overlap for time borrowing and hiding clock skew, domino

clocks must have sufficiently long precharge times in all process corners. The local clock

generators are subject to duty cycle variation, which might change the amount of time

available for precharging. Fortunately, if we design the system to have adequate precharge

time in the worst case environment under TT processing, environmental changes will only

lead to more precharge time and faster precharge operation. In the SS corner, the clock

must be slowed to accommodate precharge, but it is slowed anyway because of the longer

critical paths.

Complement Skew

Clock Chopper Skew

Delay Line Skew

Remaining OverlapO
verlap (F

O
4)

2-Phase 4-Phase

2

4

6

1.3

4.0
2.0

4-Phase
No Chopper

clk φ1

φ2

φ3

φ4

clk_b

82

4.2.1.2 N-Phase Local Clock Generators

Another popular skew-tolerant domino clocking scheme is to provide one phase for each

gate. This offers maximum skew-tolerance and more precharge time, as discussed in

Section 2.1.4, at the expense of generating and distributing more clocks and roughly

matching gate and clock delays. Figures 4-7 and 4-8 show such clock generation schemes.

Figure 4-7 uses both edges of the clock and is the simplest scheme. The exact delay of the

buffers is not particularly important so long as the clocks arrive at each gate before the

data. Figure 4-8 delays a single clock edge, as used on the IBM guTS experimental GHz

processor [53]. To make sure the last phase overlaps the first phase of the next cycle, a

pulse stretcher, such as an SR latch, must be used. The stretcher is especially important at

low frequency; the first guTS test chip accidentally omitted a stretcher, making the chip

only run at a narrow range of frequencies. Another disadvantage of delaying a single edge

is that the precharge time of the last phase becomes independent of clock frequency, creat-

ing another timing constraint which cannot be fixed by slowing the clock. Finally, the

longer delays of the single-edge design lead to greater clock skew. Therefore, the design

delaying both edges is simpler and more robust.

83

F
ig

ur
e

4-
7

 N
-p

ha
se

 c
lo

ck
 g

en
er

at
or

 d
el

ay
in

g
bo

th
 e

dg
es

Dynamic

Static

Dynamic

Dynamic

Static

Dynamic

Static

Dynamic

Static

Static

Dynamic

Static

gc
lk

φ 1
φ 2

φ 3
φ 4

φ 5
φ 6

φ 1 φ 2 φ 3 φ 4 φ 5 φ 6

Dynamic

Static
φ 1

84

Figure 4-8 N-phase clock generator delaying a single edge

4.2.2 Feedback Clock Generators

To reduce the skew and duty cycle uncertainty of the local clock generators, we may also

use local delay-locked loops [12] to produce skew-tolerant domino clocks. Such a system

is shown in Figure 4-9. The local loop receives the global clock and delays it by exactly 1/

4 cycle by adjusting a delay line to have a 1/2 cycle delay and tapping off the middle of the

delay line. The feedback controller compensates for process and low-frequency environ-

mental variations and even for a modest range of different clock frequencies. The art of

DLL design is beyond the scope of this work; the illustration should be considered to be

conceptual only.

D
ynam

ic

S
tatic

D
ynam

ic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

D
ynam

ic

S
tatic

S
tatic

D
ynam

ic

S
tatic

gclk

φ1 φ2 φ3 φ4 φ5 φ6

S
R

φ1

φ2

φ3

φ4

φ5

φ6

D
ynam

ic

S
tatic

φ1

tp independent of Tc

Pulse stretcher

85

Figure 4-9 Four-phase clock generator using feedback control

Unfortunately, the DLL itself introduces skew. In particular, power supply noise in the

delay line at frequencies above the controller bandwidth appear as jitter onφ2 andφ4. In a

system without feedback, power supply variation fromV+∆V to V-∆V causes delay varia-

tion from t+∆t to t-∆t. In the DLL, a supply step fromV+∆V to V-∆V after the system had

initially stabilized atV+∆V causes delay variation fromt to t-2∆t. Similarly, a rising step

causes delay variation fromt to t+2∆t. Therefore, the DLL has twice the voltage sensitiv-

ity of the system without feedback. PLLs are even more sensitive to voltage noise because

they accumulate jitter over multiple cycles; therefore, they are not a good choice for local

clock generators.

Fortunately, the local high frequency voltage noise causing jitter is a fraction of the total

voltage noise. If we assume the high frequency noise in each DLL is half as large as the

total voltage noise, the jitter of the DLL will equal the skew introduced by voltage errors

on a regular delay line system. Using the numbers from the example in Section 4.2.1.1,

this corresponds to 7% of the quarter cycle delay to the line tap. The local clock generator

also is subject to variations in the complement generator. If the DLL is designed to achieve

negligible static phase offset, the skew improvement of the feedback system over the delay

φ1

φ3

φ2

φ4
Low-skew

generator
complement

Control
Control voltage

Delay-Locked Loop

gclk

86

line system is predicted to be the difference in delay sensitivity, 32%-7%, times the quarter

cycle delay, or about 6% of the cycle time. This comes at the expense of building a small

DLL in every local clock generator. The DLL may use an improved delay element with

reduced supply sensitivity, but the same delay elements may be used in delay lines. The

designer must weigh the potential skew improvement of DLL-based clock generators

against the area, power, and design complexity they introduce. In today’s systems, simple

delay lines are probably good enough, but in future systems with even tighter timing mar-

gins, DLLs may offer enough advantages to justify their costs.

4.2.3 Putting It All Together

So far we have only considered generating periodic clock waveforms. Most systems also

require the ability to stop the clock and to scan data in and out of each cycle. We saw in

Section 3.3.2 that scan required precise release of the scan enable signal. By building the

release circuitry into the clock generator, we avoid the need to route timing-critical global

scan signals. In this section we integrate such scan circuitry and clock enabling with four-

phase skew-tolerant domino to illustrate a complete local clock generator.

Local clocks are often gated with an enable signal to produce a qualified clock. Qualified

clocks can be used to save power by disabling inactive units, to prevent latching new data

during a pipeline stall, or to build combined multiplexer-latches. Clock enable signals are

often critical because they come from far away or are data-dependent. Therefore, it is use-

ful to minimize the setup time of the clock enable before the clock edge.

Figure 4-10 illustrates a complete local clock generator for a four-phase skew-tolerant

domino system. It receives gclk from global clock distribution network and an enable sig-

nal for the local logic block. It generates the four regular clock phases along with a variant

of φ4 used for scan. Different clock enables can be used for different gates or banks of

gates as appropriate. Using a 2-input NAND gate in all local clock generators provides

best matching between phases to minimize clock skew; the enable may be tied high on

some clocks which never stop. The last domino gate in each cycle usesφ4 for precharge

andφ4s for evaluation. Two-phase static latches useφ1 andφ3 as clk and clk_b. The clock

generator uses delay chains to produce domino phasesφ2 andφ4 delayed by one quarter of

87

the nominal clock period. Scan is built into static latches and domino gates as described in

Section 3.3. Notice that whenSCA is asserted, a SR latch forcesφ4s low to disable the

dynamic gate being scanned. Whenφ4 falls to begin precharge, the SR latch releasesφ4s to

resume normal operation. Therefore, we avoid distributing any high speed global scan

enable signals and can use exactly the same scan procedure as we used with static latches:

3.1 Stop gclk low

3.2 ToggleSCA andSCB to march data through the scan chain. The

first pulse of SCA will forceφ4s low.

3.3 Restart gclk. The falling edge ofφ4 will releaseφ4s to trackφ4.

Figure 4-10 Local four-phase clock generators supporting scan and clock enabling

4.3 Summary

Circuit designers wish to receive a small number of logical clocks simultaneously at all

points of the die. They must instead accept a huge number of physical clocks arriving at

slightly different times to different receivers. Clock skew is the difference between the

nominal and actual interarrival times of two clocks. It depends on numerous sources which

are difficult or impossible to accurately model, so it is typically budgeted using conserva-

tive engineering estimates. Because clock skew is an increasing problem, it is important to

gclkclken

φ1

φ2

φ3

φ4

Fanout-of-3
Final Stages

φ4s

R
S

SCA
φ4

88

understand the sources and avoid unnecessary conservatism. Skew budgets therefore may

depend on the phases of and distance between the physical clocks, the particular edges of

the clocks, and the number of cycles between the edges. Clocks may be grouped into a

hierarchy of clock domains according to their relative skews; communication within a

domain experiences less skew than communication across domains.

The designer has three tactics to deal with skew: budget, hide, and minimize. Taking

advantage of the smaller amounts of skew between nearby elements is a powerful way to

minimize skew, but requires improved timing analysis algorithms which are the subject of

Chapter 5. Skew-tolerant circuit techniques hide clock skew, but the local clock generators

necessary to produce multiple overlapping clock phases for skew-tolerant domino intro-

duce skew of their own. Fortunately, the skews introduced are less than the tolerance pro-

vided, so skew-tolerant domino is an overall improvement.

89

Chapter 5 Timing Analysis

It is impractical to build complex digital systems without CAD tools to analyze and verify

the designs. Therefore, novel circuit techniques are of little use without corresponding

CAD tools. Although most standard circuit tools such as simulators, layout-vs.-schematic

checkers, ERC and signal integrity verifiers, etc., work equally well for skew-tolerant and

non-skew-tolerant circuits, timing analyzers must be enhanced to understand and take

advantage of different amounts of clock skew between different clocks.

Timing analysis addresses the question of whether a particular circuit will meet a timing

specification. The analysis must check maximum delays to verify that a circuit will meet

setup times at the desired frequency, and minimum delays to verify that hold times are sat-

isfied. This chapter describes how to extend a traditional formulation of timing analysis to

handle clock skew, including different budgets for skew between different regions of a

system.

Our formulation of timing analysis is built on an elegant framework from Sakallahet. al.

[62] for systems with transparent latches. Although the framework assumes zero clock

skew, we can easily support systems with a single clock domain by adding worst case

skew to the setup time of each latch. We then develop an exact set of constraints for ana-

lyzing systems with different amounts of skew between different elements. This exact

analysis leads to an explosion of the number of timing constraints. By introducing a hier-

archy of clock domains with tighter bounds on skews within smaller domains, we offer an

approximate analysis which is conservative, but less pessimistic than the single skew sce-

nario and with many fewer constraints than the exact analysis. Once we understand how to

analyze latches in a system with multiple clock domains, we find analyzing flip-flops is

even easier. Domino gates also fit nicely into the framework, sometimes behaving as

latches and sometimes as flip-flops. Having solved the problem of max-delay, we show

that min-delay is much easier because it does not involve time borrowing. We conclude by

presenting algorithms for verifying the timing constraints and showing that, for a large test

case, the exact analysis is only slightly more expensive than the skewless analysis.

90

5.1 Background

Early efforts in timing analysis, surveyed in [33], only considered edge-triggered flip-

flops. Thus they had to analyze just the combinational logic blocks between registers

because the cycle time is set by the longest combinational path between registers. Netlist-

level timing analyzers, such as CRYSTAL [55] and TV [39], used switch-level RC models

[61] to compute delay through the combinational blocks.

Many circuits use level-sensitive latches instead of flip-flops. Latches complicate the anal-

ysis because they allow time borrowing: a signal which reaches the latch input while the

latch is transparent does not have to wait for a clock edge, but rather can immediately

propagate through the latch and be used in the next phase of logic. Analysis of systems

with latches was long considered a difficult problem [55] and various netlist-level timing

analyzers applied heuristics for latch timing, but eventually Unger [76] developed a com-

plete set of timing constraints for two-phase clocking with level-sensitive latches. LEAD-

OUT [71], by Szymanski, checked timing equations to properly handle multiphase

clocking and level-sensitive latches. Champernowneet al. [7] developed a set of latch to

latch timing rules which allow a hierarchy of clock skews but did not permit time borrow-

ing.

Sakallah, Mudge, and Olukotun [62] provide a very elegant formulation of the timing con-

straints for latch-based systems. They show that maximum delay constraints can be

expressed with a system of inequalities. They then use a linear programming algorithm to

minimize the cycle time and to determine an optimal clock schedule. Because the clock

schedule is usually fixed and the user is interested in verifying that the circuits can operate

at a target frequency, more efficient algorithms can be used to process the constraints, such

as the relaxation approach suggested by Szymanski and Shenoy [73]. Moreover, many of

the constraints in the formulation may be redundant, so graph-based techniques proposed

by Szymanski [72] can determine the relevant constraints. Ishiiet al [38] offer yet another

efficient algorithm for verifying the cycle time of two-phase latched systems. Burks et al.

[6] express timing analysis in terms of critical paths and support clock skew in limited

ways.

91

5.2 Timing Analysis without Clock Skew

We will begin by describing a formulation of timing analysis for latch-based systems from

Sakallahet al. [62]. The simplicity of the formulation stems from a careful choice of time

variables describing data inputs and outputs of the latches. In this section, we consider

only D-type latches with data in, data out, and clock terminals. Section 5.4 extends the

model to include other clocked elements such as flip-flops and domino gates.

A system contains a set of physical clocksC={φ1, φ2, ..., φk} with a common cycle time

Tc, and a set of latchesL={L1, L2, ..., Ll}. As defined in Section 4.1.1, the clocks have a

duration , start time , and phase shift operator . For each of thel latches in the

system, we define the following variables and parameters which describe which clock is

used to control each latch, when data arrives and departs each latch, and the setup time and

propagation delay of each latch:

• pi: the clock phase used to control latchi

• Ai: the arrival time, relative to the start time ofpi, of a valid data signal at the input to

latch i

• Di: the departure time, relative to the start time ofpi, at which the signal available at the

data input of latchi starts to propagate through the latch

• Qi: the output time, relative to the start time ofpi, at which the signal at the data output

of latchi starts to propagate through the succeeding stages of combinational logic

• : the setup time for latchi required between the data input and the trailing edge of

the clock input

• : the maximum propagation delay of latchi from the data input to the data output

while the clock input is high

Finally, define the propagation delays between pairs of latches:

• : the maximum propagation delay through combinational logic between latchi and

latch j. If there are no combinational paths from latchi to latchj, effectively

eliminates the path from consideration.

Using these definitions we can express constraints on the propagation of signals between

latches and the setup of signals before the sampling edges of the latches. Setup time con-

Tφi
sφi

Sφiφ j

∆DCi

∆DQi

∆ij

∆ij ∞–≡

92

straints require that a signal arrive at a latch some setup time before the sampling clock

edge. Thus:

(5-1)

The propagation constraints relate the departure, output, and arrival times of latches. Data

departs a latch input when the data arrives and the latch is transparent:

(5-2)

The latch output becomes valid some latch propagation delay after data departs the input:

(5-3)

Finally, the arrival time at a latch is the latest of the possible arrival times from data leav-

ing other latches and propagating through combinational logic to the latch of interest.

Notice that the phase shift operatorS must be added to translate between relative times of

the launching and receiving latch clocks.

(5-4)

Observe that bothDi andQi will always be nonnegative quantities because a signal may

not begin propagating through a latch until the clock has risen.Ai is unrestricted in sign

because the input data may arrive before or after the latch clock. By assuming that clock

pulse widthsTi are always greater than latch setup times and eliminating theQ and

A variables, we can rewrite these constraints as L1 and L2 exclusively in terms of signal

departure times and the clock parameters.

L1. Setup Constraints:

(5-5)

L2. Propagation Constraints:

(5-6)

From these constraints, one can either verify if a design will operate at a target frequency

or compute the minimum possible frequency at which the design functions. Szymanski

i L∈∀ Ai ∆DCi Tpi
≤+

i L∈∀ Di max 0 A, i()=

i L∈∀ Qi Di ∆DQi+=

i j, L∈∀ Ai max Qj ∆ ji Spj pi
+ +()=

∆DCi

i L∈∀ Di ∆DCi Tpi
≤+

i j, L∈∀ Di max 0 max D j ∆DQj ∆ ji Spj pi
+ + +〈 〉,()=

93

and Shenoy presents a relaxation algorithm for the timing verification problem [73] while

Sakallahet al. reformulates the constraints as a linear program for cycle time optimization

[62]. We will return to these algorithms in Section 5.6.

In the meantime, let us consider an example to get accustomed to the notation. Consider

the microprocessor core shown in Figure 5-1. The circuit consists of two clocks {φ1, φ2}

and five latches {L3, L4, ...,L7} with logic blocks with propagation delays∆4 through∆7.

LatchesL4 andL5 comprise the ALU, whileL6 andL7 comprise the data cache. The ALU

results may be bypassed back for use on a subsequent ALU operation or may be sent as an

input to the data cache. The data cache output may be returned as an input to the ALU.

Assume that the latch setup time and propagation delay are 0, and that the

external input toL3 arrives early enough so that it can depart the latch atD3 = 0. The

clocks have a target cycle timeTc = 10 units and 50% duty cycle giving phase lengthTp =

Tφ1 = Tφ2 = Tc/2. The complete set of setup and propagation constraints are listed in

Section 5.9.1. Let us see how logic delays determine latch departure times.

Figure 5-1 Example circuit for timing analysis

If the logic delays are∆4 = 5;∆5 = 5;∆6 = 5;∆7 = 5, the latch departure times are:D4 =

0; D5 = 0; D6 = 0; D7 = 0. This case illustrates perfectly balanced logic. Each combina-

∆DCi ∆DQi

L3

∆4

L4

∆5

L5

∆6

L6

∆7

L7

φ1

φ2

φ1

φ2

φ2

ALU Data Cache

D4

D5

D3

D6

D7

94

tional block contains exactly half a cycle of logic. Data arrives at each latch just as it

becomes transparent. Therefore, all the departure times are 0.

If the logic delays are∆4 = 7;∆5 = 3;∆6 = 5;∆7 = 4, the departure times are: D4 = 2; D5

= 0; D6 = 0; D7 = 0. This case illustrates time borrowing between half-cycles. Combina-

tional block 4 contains more than half a cycle of logic, but it can borrow time from combi-

national block 5 to complete the entire ALU operation in one cycle. Combinational block

7 finishes early, but cannot depart latch 7 until the latch becomes transparent; this is

known as clock blocking. The positive departure time indicates the time borrowing

through L4.

5.3 Timing Analysis with Clock Skew

Recall from Section 4.1.1 that a system has a small number of logical clocks, but possibly

a much greater number of skewed physical clocks. Sakallah’s formulation, discussed in

the previous section, does not account for clock skew; in other words, it assumes that all

clocked elements receive their ideal logical clock. Because clock skews are becoming

increasingly important, we now examine how to include skew in timing analysis. We first

describe a simple modification to the setup constraints which account for a single clock

skew budget across the chip. Unfortunately, this is very pessimistic because most clocked

elements see much less than worst case skew. Next we develop an exact analysis allowing

for different skews between each pair of clocks. This leads to an explosion in the number

of timing constraints for large circuits. By making a simple approximation of clock

domains, we finally formulate the problem with fewer constraints in a way which is con-

servative, yet less pessimistic than the single skew approach.

To illustrate systems with clock skew, we use a more elaborate model of the ALU from

Figure 5-1. Our new model, shown in Figure 5-2, contains clocksC={φ1a, φ1b, φ2a, φ2b}

where physical clocksφ1a and φ1b are nominally identical to logical clockφ1, but are

located in different parts of the chip and subject to skew. Only a small exists between

clocks in the same domain, but the larger may occur between clocks in different

domains.

tskew
local

tskew
global

95

Figure 5-2 Example circuit with clock domains

5.3.1 Single Skew Formulation

The simplest and most conservative way to accommodate clock skew in timing analysis is

to use a single upper bound on clock skew. Suppose that we assume a worst case amount

of clock skew, , may exist between any two clocked elements on an integrated cir-

cuit. Shenoy [65] shows that such skew can be accommodated in the analysis by modify-

ing the setup time constraint. Data must setup before the falling edge of the clock, yet

there may be skew between launching and receiving elements such that the data was

launched off a late clock edge and is sampled on an early edge. Therefore, we must add

clock skew to the effective setup time:

L1S. Setup Constraints with Single Skew:

(5-7)

The propagation constraints are unchanged.

∆4

∆5

∆6

∆7

φ1a

φ2a

φ1b

φ2b

φ2a

ALU Data Cache

D4

D5

D3

D6

D7

L3

L4

L5

L6

L7

(clock domain a) (clock domain b)

tskew
global

i L∈∀ Di ∆DCi tskew
global

Tpi
≤+ +

96

5.3.2 Exact Skew Formulation

In a real clock distribution system, clock skews between adjacent elements are typically

much less than skews between widely separated elements. We can avoid budgeting global

skew in all paths by considering the actual launching and receiving elements and only

budgeting the possible skew which exists between the elements.

Unfortunately, the transparency of latches makes this a complex problem. Consider the

setup time on a signal arriving at latchL4 in Figure 5-2. How much skew must be bud-

geted in the setup time? The answer depends on the skew between the clock which origi-

nally launched the signal and the falling edge ofφ1a, the clock which is receiving the

signal. For example, the signal might have been launched fromL7 on the rising edge of

φ2b, in which case must be budgeted. On the other hand, the signal might

have been launched fromL5 on the rising edge ofφ2a, then propagated throughL6 andL7

while both latches were transparent. In such a case, only the smaller skew

must be budgeted because the launching and receiving clocks are in the same local domain

despite the fact that the signal propagated through transparent elements in a different

domain. We see that exact timing analysis with varying amounts of skew between ele-

ments must track not only the accumulated delay to each element, but also the clock of the

launching element.

To track both accumulated delay and launching clock, we can define a vector of arrival and

departure times at each latch, with one dimension per physical clock in the system. These

times are still nominal, not including skew.

• : the arrival time, relative to the beginning ofpi, of a valid data signal launched by

clockc and now at the input to latchi

• : the departure time, relative to the beginning ofpi, at which the signal launched by

clockc and available at the data input of latchi starts to propagate through the latch

The setup constraints must budget the skew between the rising edge of the

launching clockc and the falling edge of the clockpi controlling the sampling element:

(5-8)

tskew
φ2b r() φ1a f(),

tskew
φ2a r() φ1a f(),

Ai
c

Di
c

tskew
c r() pi f(),

i L c C∈,∈∀ Di
c ∆DCi tskew

c r() pi f(),
Tpi

≤+ +

97

The arrival time at latchi for a path launched by clockc depends on the propagation delay

and departure times from other latches for signals also launched by clockc:

(5-9)

If a latch is transparent when its input arrives, data should depart the latch at the same time

it arrives and with respect to the same launching clock. If a latch is opaque when its input

arrives, the path from the launching clock will never constrain timing and a new path

should be started departing at time 0, launched by the latch’s clock. Because of skew

between the launching and receiving clocks, the receiving latch may be transparent even if

the input arrives at a slightly negative time. To model this effect, we allow departure times

with respect to a clock other than that which controls the latch to be negative, equal to the

arrival times. Departure times with respect to the latch’s own clock are strictly nonnega-

tive. To achieve this, we define an identity operator on a pair of clocksφ1 andφ2

which is the minimum departure time for a signal launched by one clock and received by

the other: 0 ifφ1 = φ2 and negative infinity if the clocks are different.

These setup and propagation constraints are summarized below. Notice that the number of

constraints is proportional to the number of distinct clocks in the system. Also, notice that

the constraints are orthogonal; there is no mixing of constraints from different launching

clocks.

L1E. Setup Constraints with Exact Skew Analysis:

(5-10)

L2E. Propagation Constraints with Exact Skew Analysis:

(5-11)

A brief example may help explain negative departure times. Consider a path launched

from L6 in Figure 5-2 on the rising edge ofφ1b: = 0. Let the cycle timeTc be 10 units,

and be 1. Therefore,φ2b may transition up to one unit of time earlier or later than

nominal, relative toφ1b, as shown in Figure 5-3. Also, suppose the latch propagation delay

is 0, so . If∆7 is less than 4, the signal arrives atL7 before the latch

i j, L c C∈,∈∀ Ai
c

max D j
c ∆DQj ∆ ji Spj pi

+ + +()=

I φ1 φ2,

i L c C∈,∈∀ Di
c ∆DCi tskew

c r() pi f(),
Tpi

≤+ +

i j, L c C∈,∈∀ Di
c

max I c pi, max D j
c ∆DQj ∆ ji Spj pi

+ + +(),()=

D6
φ1b

tskew
φ1b φ2b,

A7
φ1b ∆7 5–=

98

becomes transparent, even under worst case clock skew. If∆7 is between 4 and 6 units,

corresponding to in the range of -1 to 1, the signal arrives atL7 when the latch might

be transparent, depending on the actual skew betweenφ1b andφ2b. If ∆7 is between 6 and

9 units, the signal arrives atL7 when the latch is definitely transparent. Because the signal

may depart the latch at the same time as it arrives when the latch is transparent, the depar-

ture time may physically be as early as -1. We allow the departure time to be arbi-

trarily negative; if it is more negative than -1, it will always be less critical than the path

departingL7 on the rising edge ofφ2b. In Section 5.6, we will consider pruning departure

times that are negative enough to always be noncritical for the sake of computational effi-

ciency. Departure times must be nonnegative with respect to the clock controlling the

latch; for example, .

Figure 5-3 Clock waveforms including local skew

5.3.3 Clock Domain Formulation

The exact timing analysis formulation leads to an explosion in the number of constraints

required for a system with many clocks; a system withk clocks hask times as many con-

straints as the single skew formulation. We would like to develop an approximate analysis

which gives more accurate results than the single skew formulation, yet has fewer con-

straints than the exact formulation. To do this, we will formalize the concepts of skew

hierarchies and clock domains.

A skew hierarchy is a collection of sets of clocks in the system. The sets are called clock

domains. Each clock domain of the hierarchy has an associated numberh which is

called the level of the clock domain. A skew hierarchy hasn levels, where level 1 clock

domains are the smallest domains and the leveln domain contains all the clocksC of the

system. DefineH={1, ..., n} to be the set of levels. To be a strict hierarchy, clock domains

A7
φ1b

D7
φ1b

D7
φ2b 0≥

φ1b

φ2b

0 105

5

1 1

d C⊂

99

must not partially overlap; in other words, for any pair of clock domains, either one is a

subset of the other or the domains are disjoint. If one domain contains another, the larger

domain has the higher level.n = 1 corresponds assuming worst case skew everywhere.n =

2 is another interesting case, corresponding to a system with local and global skews. We

define the following skew hierarchy variables:

• : the upper bound on skew between two clocks in a levelh clock domain. This

quantity monotonically increases withh. The top level domain experiences global

skew: = .

• hij : the level of the smallest clock domain containing clocksi andj, i.e., the minimumh

such that

We can also refer to skew between individual edges of clocks within a clock domain. For

example, is the skew between rising edges of two clocks within a local clock

domain. Because duty cycle variation occurs independently of clock domains, such skew

between the same pair of edges is likely to be much smaller than the skew between differ-

ent edges, such as .

Skew hierarchies apply especially well to systems constructed in a hierarchical fashion.

For example, Figure 4-2 illustrates an H-tree clock distribution network. It attempts to pro-

vide a logical two-phase clock consisting ofφ1 andφ2 to the entire chip with zero skew.

Although there are only two phases, the system actually contains 16 physical clocks for

the purpose of modeling skew. All of the wire lengths in principle can be perfectly

matched, so it is ideally possible to achieve zero systematic clock skew in the global distri-

bution network. Even so, there is some RC delay along the final clock wires. Also, process

and environmental variation in the delays of wires and buffers in the distribution network

cause random clock skew. The clock skews between various phases depend on the level of

their common node in the H-tree. For example,φ1ltl andφ2ltl only see a small amount of

skew, caused by the final stage buffers and local routing. On the other hand,φ1ltl andφ1rbr

on opposite corners of the chip may experience much more skew. The boxes show how the

clocks could be collected into a five level skew hierarchy.

tskew
h

tskew
n

tskew
global

tskew
h

tskew
i j,≥

tskew
1 r r,()

tskew
1 r f,()

100

The concept of skew hierarchies also applies to other distribution systems. For example, in

a grid-based clock system, as used on the DEC Alpha 21164 [24], local skew is defined to

be the RC skew between elements in a 500µm radius, while global skew is defined to be

the RC skew between any clocked elements on the die. Global skew is 90 ps, while local

skew is only 25ps. Therefore, the chip could be partitioned into distinct 500µm blocks so

that elements communicating within blocks only see local skew, while elements commu-

nicating across blocks experience global skew.

The huge vector of timing constraints in the exact analysis are introduced because we

track the launching clock of each path so that when the path crosses to another clock

domain, then returns to the original domain, only local skew must be budgeted at the

latches in the original domain. An alternative is to only track whether a signal is still in the

same domain as the launching clock or if it has ever crossed out of the local domain. In the

first case, we budget only local clock skew. In the second case, we always budget global

clock skew, even if the path returns to the original domain. This is conservative; for exam-

ple, in Figure 5-2, a path which starts in the ALU, then passes through the data cache

while the cache latches are transparent and returns to the ALU would unnecessarily budget

global skew upon return to the ALU. However, it greatly reduces the number of con-

straints, because we must only track whether the path should budget global or local skew,

leading to only twice as many constraints as the single skew formulation. In general, we

can extend this approach to handlen levels of hierarchical clock domains.

Again, we define multiple departure times, now referenced to the clock domain level of

the signal rather than to the launching clock.

• : the arrival time, relative to the beginning ofpi, of a valid data signal on a path

which has crossed clock domains at levelh of the clock domain hierarchy and is now at

the input to latchi

• : the departure time, relative to the beginning ofpi, at which the signal which has

crossed clock domains at levelh of the clock domain hierarchy and is now available at

the data input of latchi starts to propagate through the latch

Ai
h

Di
h

101

When a path crosses clock domains, it is bumped up to budget the greater skew; in other

words, the skew level at the receiver is the maximum of the skew level of the launched sig-

nal and the actual skew level between the clocks of the departing and receiving latches. As

usual, departure times with respect to the latch’s own clock are strictly nonnegative while

departure times with respect to other clocks may be negative. Because we do not track the

actual launching clock, but treat all clocks within a level 1 clock domain the same, we

require that departure times from level 1 domains be nonnegative. To achieve this, we

define an identity operator on a level of the skew hierarchy which is the minimum

departure time for a departure time at that level of the hierarchy: 0 for departures with

respect to level 1, and negative infinity for departures with respect to higher levels.

The setup and propagation constraints are listed below. Notice that the number of con-

straints is now proportional only to the number of levels of the clock domain hierarchy, not

the number of clocks or even the number of domains. For a system with two levels of

clock domains, i.e. local and global, this requires only twice as many constraints as the

single skew formulation.

L1D. Setup Constraints with Clock Domain Analysis:

(5-12)

L2D. Propagation Constraints with Clock Domain Analysis:

(5-13)

Yet another option is to lump clocks into a modest number of local clock domains, then

perform an exact analysis on paths which cross clock domains. The number of constraints

in such an analysis is proportional to the number of local clock domains, which is smaller

than the number of physical clocks required for exact analysis, but larger than the number

of levels of clock domains. Paths within a local domain always budget local skew. This

hybrid approach avoids unnecessarily budgeting global skew for paths which leave a local

domain but return a receiver in the local domain.

I h

i L h H∈,∈∀ Di
h ∆DCi tskew

h r f,()
Tpi

≤+ +

i j, L h1 H h2,∈,∈∀ max h1 hpi pj
,()=

Di
h2 max I h2

max D j
h1 ∆DQj ∆ ji Spj pi

+ + +(),()=

102

5.3.4 Example

Let us return to the microprocessor example of Figure 5-2 to illustrate applying timing

analysis to systems with four clocks and a two-level skew hierarchy. We will enumerate

the timing constraints for each formulation, then solve them to obtain minimum cycle

time. This example will illustrate time borrowing, the impact of global and local skews,

and the conservative approximations made by the inexact algorithms.

Suppose the nominal clock and latch parameters are identical to those in the example of

Section 5.2, but that the system experiences of skew between clocks in a partic-

ular domain and of skew between clocks in different domains.

The timing constraints are tabulated in Section 5.9 for each formulation and were entered

into a linear programming system. Various values of∆4 to ∆7 were selected to test the

analysis. The values were all selected so that a cycle time of 10 could be achieved in the

case of no skew. The examples illustrate well-balanced logic, time borrowing between

phases and across cycles, cycles limited by local and global skews, and a case in which the

clock domain analysis yields conservative results.

Table 5-1 shows the values of combinational logic delay and cycle times achieved in each

example. Bold data indicates conservative results caused by inexact analysis throwing

away information. The clock domains results match the exact results in all cases but one,

in which a path started in the ALU, passed through the cache while the latches were trans-

parent, and returned to the ALU. Only local skew must be budgeted on return, but the

clock domain analysis method conservatively budgeted global skew, leading to a pessimis-

tic cycle time. The single skew formulation is conservative in three cases which used large

tskew
local

1=

tskew
global

3=

103

amounts of time borrowing where only local skew actually applied but global skew was

unnecessarily budgeted.

5.4 Extension to Flip-Flops and Domino Circuits

So far, we have addressed the question of timing analysis for transparent latches. Pulsed

latches have identical cycle time constraints as transparent latches and therefore are also

handled. We can easily extend the framework to mix latches and edge-triggered flip-flops,

which are simpler because they do not allow time borrowing. We can also extend the

framework to handle domino circuits, which may have the timing requirements of latches

or flip-flops, depending on usage. The main change introduced in this section is to track

both arrival and departure times, because inputs to edge-triggered devices must arrive

some setup time before the edge and do not depart until after the edge. We present only the

exact analysis; the simplified formulation assuming clock domains is very similar.

5.4.1 Flip-Flops

For flip-flops, data must arrive before the rising edge of the clock phase, rather than the

falling edge. LetF={F1, F2, ...,Ff} be the set of flip-flops. Data always departs the flop at

the rising edge. We must therefore separately track arrival and departure times and intro-

duce a set of departure constraints which relate arrival and departure times and nonnega-

tivity. The setup and departure constraints are written differently for flip-flops and latches:

Setup Constraints for flip-flops

(5-14)

Table 5-1 Examples of timing analysis results

∆4 ∆5 ∆6 ∆7
Tc

exact
Tc

clock domains
Tc

single skew Notes

5 5 5 5 10 10 10 balanced logic

6 3 6 5 10 10 10 time borrowing

0.5 9.5 2.5 5 10.5 10.5 12.5 local skew limit

2 8 5 5 10.67 10.67 11 global skew limit

8 2 5 5 11 11 11 global skew limit

7 2 6 5 10 10.5 10.5 conservative result

i F∈ c C∈,∀ Ai
c ∆DCi tskew

c r() pi r(),
0≤+ +

104

Note that the sampling edge for a flip-flop is the rising edge, so the skew is between two

rising edges, rather than between the rising edge of the launching clock and the falling

edge of the sampling clock as is the case for latches.

Setup Constraints for latches

(5-15)

Departure constraints for flip-flops

(5-16)

Note that there is no departure constraint from clocks other than the flop’s launching clock

because flip-flops are not transparent.

Departure constraints for latches

(5-17)

These departure constraints now capture the non-negativity constraint of the latch.

Propagation Constraints for all elements

(5-18)

Although this formulation has more variables than the formulations including only

latches, it actually involves less computation because the arrival times of latches are just

intermediate variables requiring no more computation and because flip-flop analysis is

simpler than latch analysis because time borrowing never occurs. Also note that we can

use the same setup constraints for flip-flops as for latches if we substituteTi = 0 for flip-

flop clocks.

5.4.2 Domino Gates

Domino gates can easily be extended to this framework. When inputs to a domino gate are

monotonically rising, they may arrive after the gate has entered evaluation and the domino

gate may be modeled exactly as a latch. When the inputs to the domino gate are nonmono-

tonic, they must arrive before the gate has entered evaluation and the gate may be modeled

i L∈ c C∈,∀ Ai
c ∆DCi tskew

c r() pi f(),
Tpi

≤+ +

i F∈∀ Di
pi 0=

i L c C∈,∈∀ Di
c

max I c pi, Ai
c,()=

i L F∪ j, L F∪∈ ∈ c C∈,∀ Ai
c

D j
c≥ ∆DQj ∆ ji Spj pi

+ + +

105

as a flip-flop for cycle-time calculations, with the additional caveat that the inputs must not

change while the gate is evaluating; i.e. the hold time is quite long. Hold times only appear

in min-delay calculations and are discussed in the next section. Additional constraints can

be added to ensure precharge finishes in time. The amount of skew budgeted at the inter-

face of nonmonotonic to domino logic depends on the skew between launching and

receiving clocks. In the case of a path which starts at a domino gate, passes through some

non-monotonic logic, and loops back to the same domino gate, the skew may be only the

cycle-to-cycle jitter of the domino clock. In summary, one can determine the monotonicity

of inputs from the timing type labels described in Section 3.1.3 and model domino gates

as latches or flip-flops, accordingly, with additional constraints to ensure precharge is fast

enough.

5.5 Min-Delay

Timing analyzers must not only compute long paths, but also short paths. Indeed, short

paths are more serious because a chip can operate at reduced clock frequency if paths are

longer than predicted, but will not operate at any frequency if min-delay constraints are

not met. Such min-delay analysis checks that data launched from one latch or flip-flop will

not propagate through logic so quickly as to violate the hold time of the next clocked ele-

ment. Therefore, min-delay analysis only must check from one element to its successor;

this is much easier than cycle time analysis in which a path may borrow time through

many transparent latches.

To avoid min-delay failure, data departing one element must pass through enough delay

that it does not violate the hold time of the next element. The earliest data could possibly

depart an element is at time 0 with respect to the element’s local clock; this earliest time is

guaranteed to occur if the chip is run at reduced frequency where no time borrowing

occurs. We define minimum propagation delays through the clocked element and combi-

national logic:

• : the hold time for latchi required between the trailing edge of the clock input and

the time data changes again

∆CDi

106

• : the minimum propagation delay of latchi from the data input to the data output

while the clock input is high

• : the minimum propagation delay through combinational logic between latchi and

latch j. If there are no combinational paths from latchi to latchj, .

Equation 5-19 describes this min-delay constraint between adjacent latches and flip-flops.

A circuit is safe from race-through if, for every consecutive pair of clocked elements, data

from the earlier element cannot arrive at the later element until some hold time after the

previous sampling edge of the later element. In the worst case, data departs one element on

the rising edge of its clock at time zero and arrives at the next after the minimum propaga-

tion delay through the element and combinational logic. Time is adjusted by the phase

shift operator to be relative to the receiver’s clock. Data must not arrive at the receiver

until a hold time after its sampling edge of the previous cycle; clock skew between the

launching and receiving clocks effectively increases the hold time. Note that the sampling

edge is the falling edge for latches, but the rising edge for flip-flops. As in Section 5.4, we

substituteTi = 0 for edge-triggered flip-flops.

(5-19)

Better estimates of the skew between launching and receiving clocks makes guaranteeing

min-delay constraints easier. A conservative design may assume a single worst-case skew

between all elements on the chip; this leads to excessive minimum propagation delay

requirements between elements. By using a skew hierarchy or computing actual skews

between each clock, smaller skews can be budgeted between nearby elements.

As discussed in Section 4.1.2, excess skew causes complete failure in the case of hold time

violations, but only reduced operating frequency in setup time violations. Therefore, the

designer may use a more conservative skew budget for min-delay than max-delay analysis.

Fortunately, min-delay races occur between clocks launched from the same global clock

edge on the same cycle, so the skew budget does not include cycle-to-cycle jitter or duty

cycle variation.

δDQi

δij

δij ∞≡

i j L F∪∈,∀ δDQj δ ji Spj pi
Ti ∆CDi tskew

pj r() pi r f⁄(),
Tc–+ +≥+ +

107

5.6 A Verification Algorithm

Szymanski and Shenoy present a relaxation algorithm for verifying that timing constraints

are met at a given cycle time assuming no clock skew [73]. We extend the algorithm to

handle arbitrary skews between elements and prune unnecessary constraints, as shown in

the pseudo-code of Figure 5-4. A key aspect of the algorithm is the introduction of extra

variables for each latch, and , which track the latest departure from a latch with

respect to any launching clock so that other paths through the latch can be pruned if they

cannot be critical.

Figure 5-4 Pseudocode for timing verification

1 For each latch i : ; Initialization

2

3 ;

4 Enqueue

5 For each flip-flop i :

6

7 Enqueue

8 While queue is not empty ; Iteration

9 Dequeue

10 For each latch i in fanout of j

11

12 If AND

13 If

14 Report setup time violation
15 Else

16

17 Enqueue

18 If

19 ;

20 For each flip-flop i in fanout of j

Di
max

ci
max

Di
pi 0=

Di
max

0= ci
max

pi=

Di
pi

Di
pi 0=

Di
pi

D j
c

A D j
c ∆DQj ∆ ji Spj pi

+ + +=

A Di
c>() A tdiff

ci
max r() c r(),

Di
max>+ 

 

A ∆DCi tskew
c r() pi f(),

Tpi
>+ +()

Di
c

A=

Di
c

A Di
max>()

Di
max

A= ci
max

c=

108

21

22 If

23 Report setup time violation

Let us first see how this algorithm handles latches, then return to the simpler case of flip-

flops. The algorithm initializes the departure times from each latch with respect to its own

clock to be zero. It also initializes a variable to track the latest departure time from

the latch with respect to any clock and a variable to track the clock that launched that

latest departure (Step 3). The algorithm then follows paths from each latch to its succes-

sors and computes the arrival time at the successors with respect to the launching clock

(Step 11).

A key idea of the algorithm is to prune paths which arrive early enough that they could not

possibly be more critical than existing paths. To be potentially more critical and hence

avoid pruning, an arrival time must satisfy two conditions (Step 12). One is that the arrival

time must be later than all other departure times with respect to the same clock. The other

is that the arrival time must potentially be as critical as the latest previously discovered

departure time. If there were no clock skew or a single global skew budget everywhere, an

arrival would only be more critical than the latest existing departure time if it actually

were later: . However, we allow different amounts of skew between different

clocks. Figure 5-5 shows how this complicates our pruning:

Figure 5-5 Pruning of paths with different clock skews

A D j
c ∆DQj ∆ ji Spj pi

+ + +=

A ∆DCi tskew
c r() pi r(),

0>+ +()

Di
max

ci
max

A Di
max>

Latch
Latch

Latch

Latch

φ1a

φ1b

φ1cφ2

L1

L2

L3 L4
D3

1b

D3
1a

109

Suppose that , while . Suppose that the departure time fromL3

 on a path launched fromL2 is 2 units and that we find a path arrives atL3 from L1 at

time 1 unit. Can we prune this path? If the clock skews were the same, we could because

the path fromL1 arrives earlier than the path fromL2. Because the clock skews are differ-

ent, however, data launched fromL1 must arrive atL4 earlier than data launched fromL2.

Therefore, the path fromL1 may also be critical even though its departure time is earlier.

Clearly, if one path arrives at a latch more than the worst case global clock skew before

another, the early path cannot possibly be critical and may be trimmed. We can prune

more aggressively by computing the difference in clock skews between a pair of launching

clocksφi andφj and any possible receiving clock, :

(5-20)

From this definition, we can show that . Moreover, in a system budgeting a

single global skew between all clocks, tdiff is 0 and negative departure times never occur,

agreeing with the single skew formulation.

We check this criteria (Step 12), pruning all paths with arrival times before the latest

departure by more than the clock skew between the launching clockc of the path under

consideration and the launching clock of the path causing the latest departure time. If

the path is not pruned, it is checked for setup time violations and added to the queue so

that paths to subsequent latches can be checked. Also, if it is later than the latest previ-

ously discovered departure time, it replaces the previous time (Step 19).

Flip-flops are handled in a similar fashion, but are much simpler because no time borrow-

ing takes place. As discussed in Section 5.4.2, domino gates are analyzed either as latches

or flip-flops, depending on the monotonicity of the inputs.

The algorithm performs a depth first path search if elements are enqueued at the head of

the queue and a breadth first search if elements are enqueued at the tail. Breadth first is

likely to be faster because it can prune paths earlier.

tskew
φ1a φ1c,

3= tskew
φ1b φ1c,

1=

D3
1b

tdiff
φi φ j,

tdiff
φi φ j,

max tskew
φi φr,

tskew
φ j φr,

–()= φr C∈∀

tdiff
φi φ j,

tskew
φi φ j,

≤

ci
max

110

The algorithm is very similar to one which assumes no clock skew, but may take longer

because it may trace multiple paths through the same latch. This occurs when paths origi-

nating at different latches with skew between them all arrive at a common latch at nearly

the same time. Fortunately real systems tend to have a relatively small number of critical

paths passing through any given latch so the runtime is likely to increase by much less

than the number of constraints. Timing analysis with clock domains is similar to analysis

with exact skew. The runtime may be somewhat improved because a hierarchy ofh levels

of clock domains must trace at mosth paths through any given latch. Of course, the results

are more conservative.

So far, we have addressed the question of verifying that a design meets a cycle time goal

because this is the primary question asked by designers. It is also straightforward to com-

pute the minimum cycle time of a design using Sakallah’s linear programming approach

[62]. The constraints as presented are not quite linear because they involve the max func-

tion. The max function can be replaced by multiple inequalities, transforming the con-

straints into linear inequalities while preserving the minimum cycle time. These

inequalities can be solved by linear programming techniques. Although conventional lin-

ear programming is much slower than the relaxation algorithm for verifying cycle time,

new interior point methods [83] may be quite efficient.

5.7 Results

To evaluate the costs and benefits of the exact formulation, we analyzed a timing model of

MAGIC, the Memory and General Interconnect Controller of the FLASH supercomputer

[43], implemented in a 0.6 micron CMOS process. MAGIC includes a 2-way superscalar

RISC processing engine and several large data buffers. We extracted a timing model from

the Standard Delay Format (SDF) data produced by LSI Logic tools, then trimmed long

paths such as those involving reset or scan. After trimming, we found 1819 latches and

10559 flip-flops connected by 593153 combinational paths (Model A). To obtain an

entirely latch-based design, we replaced each flip-flop with a pair of latches and divided

the path delay between the two latches, obtaining a system with 22937 latches (Model B).

111

The chip was partitioned into ten units, each a local clock domain. We assumed 500 ps of

global skew between domains and 250 ps of local skew within domains.

We applied the timing analysis algorithm of Section 5.6 to the timing model. Table 5-2

shows the minimum cycle times achievable and number of latch departures enqueued in

each run, a measure of the analysis cost. Model B is uniformly faster than Model A

because latches allows the system to borrow time across cycles, solving some critical

paths. The exact analysis shows that the system can run 50-90 ps faster than a single skew

analysis conservatively predicts. Each latch departure is enqueued at least once when its

departure time is initialized to 0. Paths borrowing time enqueue later departure times. The

exact analysis also enqueues more latch departures because potentially critical paths from

multiple launching clocks may pass through a single latch. The exact analysis enqueues

143 more than the single skew analysis in Model A and 333 more in Model B. These dif-

ferences are less than 4% of the total number of departures, indicating that pruning makes

the exact analysis only slightly more expensive than the single skew approximation. In all

cases, the CPU time for analysis is under a second, much shorter than the time required to

read the timing model from disk.

These results indicate that the exact skew formulation works well in practice because only

a small fraction of paths require time borrowing, as noted by Szymanski and Shenoy [73],

and because an even smaller fraction of paths involve negative departure times. In this par-

ticular problem, no critical paths depart a clock domain and return to it, so the clock

domain formulation would have found equally good cycle times. However, the cost of the

exact skew formulation is low enough that no approximations are necessary.

Table 5-2 Timing Analysis Results

Model A Model B

Single Skew 9.43 ns

3866 departures

8.05 ns

24995 departures

Exact Skew 9.38 ns

4009 departures

7.96 ns

25328 departures

112

5.8 Summary

In this chapter, we have extended the latch-based timing analysis formulation of Sakallah,

Mudge, and Olukotun to handle clock skew, especially different amounts of clock skew

between different elements. Allowing a single amount of clock skew everywhere effec-

tively increases the setup time of each latch. An exact analysis allowing different amounts

of skew between different elements involves tracking the clock which launched each path

so that paths which leave a local skew domain and then return only budget the local skew.

This leads to a multiplication of constraints proportional to the number of clocks. By mak-

ing a conservative approximation that the chip is hierarchically divided into clock domains

with bounded skew within a level of the clock domain hierarchy and that once a path

leaves a domain, it continues to budget the larger skew even upon return, the number of

constraints only increases proportionally to the number of levels of the domain hierarchy.

In particular, a two-level hierarchy, consisting of local and global clock domains, provides

less pessimistic timing analysis at a modest computational cost. Most practical systems

use clocked elements besides just transparent or pulsed latches, so we also incorporate

edge-triggered flip-flops and domino gates into the timing analysis formulation by sepa-

rately tracking arrival and departure times at each clocked element. In addition to verify-

ing cycle time, we check for min-delay violations, effectively increasing the hold time of

each element by the potential clock skew between launching and receiving elements.

Finally, we presented an relaxation algorithm for verifying the timing constraints. The

uncertainty from the clock skew may increase the number of paths that must be searched,

but results on the MAGIC chip show that this increase is very modest because most paths

do not borrow time.

5.9 Appendix: Timing Constraints

To illustrate the formulations described in Section 5.2 and Section 5.3, we present a com-

plete set of the timing constraints of each formulation, applied to the simple microproces-

sor example from Figure 5-1 and Figure 5-2.

5.9.1 Skewless Formulation

The timing constraints with no skew are:

113

Setup Constraints

Propagation Constraints

5.9.2 Single Skew Formulation

The timing constraints budgeting global skew everywhere are very similar to those with no

skew:

Setup Constraints

Propagation Constraints

5.9.3 Exact Formulation

Because there are four clocks, there are four times as many setup and propagation con-

straints for the exact analysis:

0 0 0 0

0 0 0 0

D4 Tφ1
≤ D5 Tφ2

≤ D6 Tφ1
≤ D7 Tφ2

≤

D4 max of:= D5 max of:= D6 max of:= D7 max of:=

D3 ∆4 Tp–+ D4 ∆5 Tp–+ D5 ∆6 Tp–+ D6 ∆7 Tp–+

D5 ∆4 Tp–+

D7 ∆4 Tp–+

D4 Tskew
global

+ Tφ1a
≤ D5 Tskew

global
+ Tφ2a

≤ D6 Tskew
global

+ Tφ1b
≤ D7 Tskew

global
+ Tφ2b

≤

D4 max of:= D5 max of:= D6 max of:= D7 max of:=

D3 ∆4 Tp–+ D4 ∆5 Tp–+ D5 ∆6 Tp–+ D6 ∆7 Tp–+

D5 ∆4 Tp–+

D7 ∆4 Tp–+

114

Setup Constraints

Propagation Constraints

0

0

0

D4
φ1a Tskew

local
+ Tφ1a

≤ D5
φ1a Tskew

local
+ Tφ2a

≤ D6
φ1a Tskew

global
+ Tφ1b

≤ D7
φ1a Tskew

global
+ Tφ2b

≤

D4
φ2a Tskew

local
+ Tφ1a

≤ D5
φ2a Tskew

local
+ Tφ2a

≤ D6
φ2a Tskew

global
+ Tφ1b

≤ D7
φ2a Tskew

global
+ Tφ2b

≤

D4
φ1b Tskew

global
+ Tφ1a

≤ D5
φ1b Tskew

global
+ Tφ2a

≤ D6
φ1b Tskew

local
+ Tφ1b

≤ D7
φ1b Tskew

local
+ Tφ2b

≤

D4
φ2b Tskew

global
+ Tφ1a

≤ D5
φ2b Tskew

global
+ Tφ2a

≤ D6
φ2b Tskew

local
+ Tφ1b

≤ D7
φ2b Tskew

local
+ Tφ2b

≤

D4
φ1a max of:= D5

φ1a max of:= D6
φ1a max of:= D7

φ1a max of:=

D3
φ1a ∆4 Tp–+ D4

φ1a ∆5 Tp–+ D5
φ1a ∆6 Tp–+ D6

φ1a ∆7 Tp–+

D5
φ1a ∆4 Tp–+

D7
φ1a ∆4 Tp–+

D4
φ2a max of:= D5

φ2a max of:= D6
φ2a max of:= D7

φ2a max of:=

D3
φ2a ∆4 Tp–+ D4

φ2a ∆5 Tp–+ D5
φ2a ∆6 Tp–+ D6

φ2a ∆7 Tp–+

D5
φ2a ∆4 Tp–+

D7
φ2a ∆4 Tp–+

D4
φ1b max of:= D5

φ1b max of:= D6
φ1b max of:= D7

φ1b max of:=

D3
φ1b ∆4 Tp–+ D4

φ1b ∆5 Tp–+ D5
φ1b ∆6 Tp–+ D6

φ1b ∆7 Tp–+

D5
φ1b ∆4 Tp–+

D7
φ1b ∆4 Tp–+

115

5.9.4 Clock Domain Formulation

Finally, we write the constraints with the approximation of clock domains. Because there

are two levels of the clock domain hierarchy, this requires only twice as many constraints

as the single skew formulation. The timing constraints are:

Setup Constraints

Propagation Constraints

0

0 0 0 0

D4
φ2b max of:= D5

φ2b max of:= D6
φ2b max of:= D7

φ1a max of:=

D3
φ2b ∆4 Tp–+ D4

φ2b ∆5 Tp–+ D5
φ2b ∆6 Tp–+ D6

φ1a ∆7 Tp–+

D5
φ2b ∆4 Tp–+

D7
φ2b ∆4 Tp–+

D4
1

Tskew
local

+ Tφ1a
≤ D5

1
Tskew

local
+ Tφ2a

≤ D6
1

Tskew
local

+ Tφ1b
≤ D7

1
Tskew

local
+ Tφ2b

≤

D4
2

Tskew
global

+ Tφ1a
≤ D5

2
Tskew

global
+ Tφ2a

≤ D6
2

Tskew
global

+ Tφ1b
≤ D7

2
Tskew

global
+ Tφ2b

≤

D4
1

max of:= D5
1

max of:= D6
1

max of:= D7
1

max of:=

D3
1 ∆4 Tp–+ D4

1 ∆5 Tp–+ D6
1 ∆7 Tp–+

D5
1 ∆4 Tp–+

D4
2

max of:= D5
2

max of:= D6
2

max of:= D7
2

max of:=

D7
1 ∆4 Tp–+ D5

1 ∆6 Tp–+

D3
2 ∆4 Tp–+ D4

2 ∆5 Tp–+ D5
2 ∆6 Tp–+ D6

2 ∆7 Tp–+

D5
2 ∆4 Tp–+

D7
2 ∆4 Tp–+

116

Chapter 6 Conclusions

Prediction is very difficult, especially if it’s about the future.

--Nils Bohr

Digital system clock frequencies have been exponentially increasing at a remarkable rate

and are expected to continue this increase for the foreseeable future. Part of the increase

comes from process improvements, but part arises from using fewer gates per cycle and

more speedy domino logic. As the number of gate delays per cycle shrinks, fixed amounts

of sequencing overhead consume a greater fraction of the clock period. Traditional dom-

ino circuits, while offering fast raw gate delays, suffers particularly large overhead from

clock skew, latch delay, and the inability to balance logic between cycles through time

borrowing. This overhead can waste 25% or more of the cycle time in aggressive systems.

Fortunately, the designer can hide such overhead through better design techniques. Skew-

tolerant domino circuits use overlapping clocks and eliminate latches to hide the overhead

and allow modest amounts of time borrowing. Four-phase skew-tolerant circuits use sim-

ple clock generation circuits and can handle about a quarter cycle of clock skew, so they

are attractive for current designs.

Adopting skew-tolerant domino has a number of design implications. Since overhead must

still be budgeted at each interface from glitchy static logic into domino pipelines, critical

paths are best built entirely from domino logic. Without the availability of static logic to

perform nonmonotonic functions, dual-rail domino is usually required. This increases the

number of wires, the area, and the power consumption of such domino blocks; however,

static logic may be unable to attain the target operating frequency at any area or power.

Skew-tolerant domino must be cleanly integrated with the rest of a design for best perfor-

mance. Static inputs are latched to remain stable while driving domino. Domino outputs

use a fast N-latch before driving static logic so precharge does not ripple through the static

gates. Signal names may be tagged with suffixes, called timing types, to remind the

designer when the information is available for sampling and to permit static checking of

legal connectivity among latches and domino gates. Systems cannot be economically built

117

unless they can also be easily tested during debug and manufacturing. To assist test, skew-

tolerant domino can be incorporated onto the same scan chain as static logic.

Unfortunately, global clock skew tends to track as a fraction of clock distribution network

delay. Since integrated circuits are getting larger, the ratio of wire to gate delay is rising,

and the clock load of chips is increasing, clock distribution delays are not improving as

fast as cycle times, leading to greater clock skew as a fraction of cycle time. Systems oper-

ating above 1 GHz may not be able to achieve acceptably low global skew across the

entire die at reasonable cost. Instead of abandoning the synchronous paradigm entirely for

an asynchronous approach, designers will divide the die into local clock domains offering

tolerable amounts of skew within each domain. Communication between clock domains

may occur at reduced frequency, through source-synchronous FIFOs, or with via an asyn-

chronous interface [9], [20].

The more one examines clock skew, the more special cases can be found to less conserva-

tively budget skew. Of course, local skew is smaller than global skew. Skew between com-

mon edges of a clock is smaller than skew between different edges because of duty cycle

variation in the clock network. Skews between clocks on a particular cycle are smaller

than skews between consecutive cycles because of jitter; this is particularly important

because it reduces the skews that might cause min-delay violations. Much like process

variation, skew is a statistical effect. Therefore, for max-delay analysis one may budget

expected, rather than worst case skew, just as one designs to typical, rather than SS pro-

cessing, when seeking to get reasonable yield at target frequency. However, min-delay

analysis should more conservatively budget worst case skew because min-delay violations

prevent the chip from operating at any frequency.

In order to take advantage of different skew budgets between different pairs of clocks,

improved timing analysis tools are necessary. Arrival times of data cease to have absolute

meaning in such systems. Instead, arrival times must be specified relative to a particular

launching clock which determines the skew to the receiver. Timing analysis requires a vec-

tor of arrival times at each latch with respect to different launching clocks. Skew hierar-

chies can be used to reduce the size of these vectors at the expense of some conservatism

in timing analysis.

118

By adopting skew-tolerant circuit techniques and more carefully modeling skews between

communicating blocks, designers will continue building clocked systems into the multi-

GHz regime. Ultimately, systems may be limited more by power consumption than clock-

ing: only a finite amount of heat can be removed from a die with a reasonably priced cool-

ing system. Improvements in clock gating will disable some inactive domino gates to

reduce the activity factor, but domino will continue to burn large amounts of power. Will

domino gates become too expensive from a power perspective, or will designers find it

better to build simpler machines with fewer transistors running at extreme domino speeds

than very complex machines churning along at the speed of static logic? Domino presents

other challenges as well. The aspect ratios of wires continues to grow, making coupling

problems greater. The design time of domino also can be high, possibly increasing time to

market. Will static circuits become a better choice for teams with finite resources, or will

advances in CAD tools improve domino productivity? Circuit design should remain an

exciting field as these issues are explored in the coming decade.

119

Bibliography

[1] D. Bailey and B. Benschneider, “Clocking Design and Analysis for a 600-MHz

Alpha Microprocessor,”IEEE J. Solid-State Circuits, Nov. 1998, vol. 33, no. 11, pp.

1627-1633.

[2] D. Bearden,et al., “A 133 MHz 64b Four-Issue CMOS Microprocessor,”ISSCC

Dig. Tech. Papers, pp. 174-175, Feb. 1995.

[3] L. Boonstra.,et al., “A 4096-b One-Transistor per Bit Random-Access Memory

with Internal Timing and Low Dissipation,” IEEE J. Solid-State Circuits, Oct. 1973,

vol. SC-8, no. 5, p. 305-10.

[4] W. Bowhill et al., “A 300 MHz 64 b Quad-Issue CMOS Microprocessor,”ISSCC

Dig. Tech. Papers, Feb. 1995, pp. 182-183.

[5] W. Bowhill, et al., “Circuit Implementation of a 300-MHz 64-bit Second-generation

CMOS Alpha CPU,”Digital Technology Journal, vol. 7, no. 1, pp. 100-119, 1995.

[6] T. Burks, K. Sakallah, and T. Mudge, “Critical Paths in Circuits with Level-Sensi-

tive Latches,”IEEE Trans. VLSI Sys., vol. 3, no. 2, pp. 273-291, June 1995.

[7] A. Champernowne, L. Bushard, J. Rusterholtz, and J. Schomburg, “Latch-to-Latch

Timing Rules,”IEEE Trans. Comput., vol. 39, no. 6, pp. 798-808, June 1990.

[8] T. Chao, et al., “Zero Skew Clock Routing with Minimum Wirelength,” IEEE Trans.

Circuits Syst.-II, vol. 39, no. 11, pp. 799-814, Nov. 1992.

[9] D. Chapiro,Globally-Asynchronous Locally Synchronous Systems, Ph.D. disserta-

tion, CS Department, Stanford University, Stanford, CA, May 1984.

[10] K. Chu and D. Pulfrey, “Design Procedures for Differential Cascode Voltage Switch

Circuits,” IEEE J. Solid-State Circuits, vol. SC-21, no. 6, pp. 1082-1087, Dec. 1986.

[11] R. Colwell and R. Steck, “A 0.6µm BiCMOS Processor with Dynamic Execution,”

ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 1995.

120

[12] W. Dally and J. Poulton,Digital Systems Engineering, Cambridge University Press,

1998.

[13] S. DasGupta, E. Eichelberger, and T. Williams, “LSI Chip Design for Testability,”

ISSCC Dig. Tech. Papers, pp. 216-217, Feb. 1978.

[14] D. Dobberpuhlet al., “A 200 MHz 64 b Dual-Issue CMOS Microprocessor,”IEEE

J. Solid-State Circuits, vol. 27, no. 11, pp. 1555-1567, Nov. 1992.

[15] D. Dobberpuhl,et al., “A 200-MHz 64-bit Dual-issue CMOS Microprocessor,”Dig-

ital Technology Journal, vol. 4, no. 4, pp. 35-50, 1992.

[16] H. Fair and D. Bailey, “Clocking Design and Analysis for a 600 MHz Alpha Micro-

processor,”ISSCC Dig. Tech. Papers, pp. 398-399, Feb. 1998.

[17] E. Friedman, editor,Clock Distribution Networks in VLSI Circuits and Systems,

New York: IEEE Press, 1995.

[18] N. Gaddis and J. Lotz, “A 64-b Quad-Issue CMOS RISC Microprocessor,” IEEE J.

Solid-State Circuits, vol. 31, no. 11, Nov. 1996, pp. 1697-1702.

[19] B. Gieseke,et al., “A 600 MHz Superscalar RISC Microprocessor with Out-of-

Order Execution,”ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 1997.

[20] R. Ginosar and R. Kol, “Adaptive Synchronization,”Proc. Intl. Conf. Comp. Design,

pp. 188-189, Oct. 1998.

[21] N. Gonclaves and H. De Man, “NORA: A Racefree Dynamic CMOS Technique for

Pipelined Logic Structures,” IEEE J. Solid-State Circuits, vol. SC-18, no. 3, pp. 261-

266, June 1983.

[22] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose microproces-

sors,” IEEE J. Solid-State Circuits, Sept. 1996, vol. 31, no. 9, pp. 1277-84.

[23] P. Gronowski and B. Bowhill, “Dynamic Logic and Latches - Part II,” inProceed-

ings of VLSI Circuits Workshop, VLSI Circuits Symp., June 1996.

121

[24] P. Gronowski,et al., “A 433-MHz 64-b Quad-Issue RISC Microprocessor,”IEEE J.

Solid-State Circuits, vol. 31, no. 11, pp. 1687-1696, Nov. 1996.

[25] P. Gronowski,et al., “High-Performance Microprocessor Design,”IEEE J. Solid-

State Circuits, vol. 33, no. 5, pp. 676-686, May 1998.

[26] A. Hall, Synthesis of Double Rank Sequential Circuits, Tech. Report #53, EE Digital

Systems Lab, Princeton University, Dec. 1966.

[27] D. Harris, S. Oberman, and M. Horowitz, “SRT Division Architectures and Imple-

mentations,” inProc. 13th IEEE Symposium on Computer Arithmetic, July 1997.

[28] D. Harris and M. Horowitz, “Skew-Tolerant Domino Circuits,”IEEE J. Solid-State

Circuits, vol. 32, no. 1, pp. 1702-1711, Nov. 1997.

[29] C. Heikes, “A 4.5 mm2 Multiplier Array for a 200MFLOP Pipelined Coprocessor,”

ISSCC Dig. Tech. Papers, pp. 290-291, Feb. 1994.

[30] C. Heikes and G. Colon-Bonet, “A Dual Floating Point Coprocessor with an FMAC

Architecture,”ISSCC Dig. Tech. Papers, pp. 354-355, Feb. 1996

[31] L. Heller, et al., “Cascode Voltage Switch Logic: a Differential CMOS Logic Fam-

ily,” ISSCC Dig. Tech. Papers, pp. 16-17, Feb. 1984.

[32] J. Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach,

San Francisco: Morgan Kauffman, 1999, Chapter 1.

[33] R.Hitchcock, “Timing Verification and Timing Analysis Program,” in 25 Years of

Electronic Design Automation, IEEE/ACM, 1988.

[34] M. Horowitz, “High Frequency Clock Distribution,” inProceedings of VLSI Circuits

Workshop, VLSI Circuits Symp., June 1996.

[35] Intel Corporation,Opportunistic Time-Borrowing Domino Logic, US Patent

#5,517,136, May 14, 1996.

122

[36] Intel Corporation, “Intel Microprocessor Quick Reference Guide,” courtesy of Intel

Museum, Santa Clara, CA, 1997.

[37] Special issue on soft errors,IBM J. Research & Dev., vol. 40, no. 1, Jan. 1996.

[38] A. Ishii, C. Leiserson, and M. Papaefthymiou, “Optimizing Two-Phase, Level-

Clocked Circuitry,” inJ. ACM, vol. 44, no. 1, pp. 148-199, Jan. 1997.

[39] N. Jouppi,Timing Verification and Performance Improvement of MOS VLSI

Designs, Ph.D. thesis, Stanford University, 1984.

[40] V. von Kaenel,et al, “A 600 MHz CMOS PLL Microprocessor Clock Generator

with a 1.2 GHz VCO,” ISSCC Dig. Tech. Papers, pp. 396-397, Feb. 1998.

[41] F. Klass, “Semi-Dynamic and Dynamic Flip-Flops with Embedded Logic,”Sympo-

sium on VLSI Circuits Dig. Tech. Papers, pp. 108-109, June 1998.

[42] R. Krambeck, C. Lee, and H. Law, “High-Speed Compact Circuits with CMOS,”

IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp. 614-619, 1982.

[43] J. Kuskin,et al., “The Stanford FLASH Multiprocessor,” inProc. Intl. Symp. Comp.

Arch., pp. 302-313, Apr. 1994.

[44] P. Larsson and C. Svensson, “Noise in Digital Dynamic CMOS Circuits,”IEEE J.

Solid-State Circuits, vol. 29, no. 6, June 1994.

[45] L. Lev, et al., “A 64-b Microprocessor with Multimedia Support,”IEEE J. Solid-

State Circuits, vol. 30, no. 11, Nov. 1995.

[46] L. Lev, “Signal and Power Network Integrity,” inProceedings of VLSI Circuits

Workshop, VLSI Circuits Symp., June 1996.

[47] J. Lotz,et al., “A Quad-Issue Out-of-Order RISC CPU,” inISSCC Dig. Tech.

Papers, Feb. 1996, pp. 210-211.

123

[48] M. Matsui,et al., “A 200-MHz 13 mm2 2-D DCT Macrocell Using Sense-Amplifier

Pipeline Flip-Flop scheme,”IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1482-

91, Dec. 1994.

[49] C. Mead and L. Conway,Introduction to VLSI Systems, Reading, MA: Addison-

Wesley, 1980.

[50] Microprocessor Report, Sebastopol, CA: MicroDesign Resources, 1995-1998.

[51] J. Montanaro,et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,”IEEE

J. Solid-State Circuits, vol. 31, no. 11, 1703-14, Nov. 1996.

[52] A. Mukherjee,Introduction to nMOS and CMOS VLSI Systems Design, Englewood

Cliffs, NJ: Prentice-Hall, 1986.

[53] K. Nowka and T. Galambos, “Circuit Design Techniques for a Gigahertz Integer

Microprocessor,” inProc. Intl. Conf. Comp. Design, pp. 11-16, October 1998.

[54] D. Noice,A Clocking Discipline for Two-Phase Digital Integrated Circuits, Stanford

University Technical Report, Jan. 1983.

[55] J. Ousterhout, “A Switch-Level Timing Verifier for Digital MOS VLSI,”IEEE

Trans. Computer-Aided Design, vol. CAD-4, no. 3, pp. 336-349, July 1985.

[56] H. Partovi,et al., “Flow-Through Latch and Edge-Triggered Flip-flop Hybrid Ele-

ments,”ISSCC Dig. Tech. Papers, pp. 138-139, Feb. 1996.

[57] W. Penny and L. Lau,MOS Integrated Circuits: Theory, Fabrication, Design and

Systems Applications of MOS LSI, New York: Van Nostrand, Reinhold, 1973, Chap-

ter 5.

[58] J. Rabaey,Digital Integrated Circuits, Upper Saddle River, NJ: Prentice Hall, 1996.

[59] B. Razavi, ed.,Monolithic Phase-Locked Loops and Clock Recovery Circuits, New

York: IEEE Press, 1996.

124

[60] P. Restle and A. Deutsch, “Designing the Best Clock Distribution Network,”Proc.

VLSI Symp., pp. 2-5, June 1998.

[61] J. Rubinstein, P. Penfield, and M. Horowitz, “Signal Delay in RC Tree Networks”,

in IEEE Trans. Computer-Aided Design, vol. CAD-2, no. 3, pp. 202-211, July 1983.

[62] K. Sakallah, T. Mudge, and O. Olukotun, “Analysis and Design of Latch-Controlled

Synchronous Digital Circuits,”IEEE Trans. Computer-Aided Design, vol. 11, no. 3,

pp. 322-333, March 1992.

[63] The National Technology Roadmap for Semiconductors, Austin, TX: SEMATECH,

1997. (http://notes.sematech.org/97melec.htm)

[64] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli, “A Pseudo-Polynomial

Algorithm for Verification of Clocking Schemes,” inTau 92, 1992.

[65] N. Shenoy,Timing Issues in Sequential Circuits, Ph.D. dissertation, University of

California, Berkeley, 1993.

[66] K. Shepard,et al., “Design Methodology for the S/390 Parallel Enterprise Server G4

Microprocessors,” IBM J. Research and Development, vol. 41, no 4-5, pp. 515-547,

July-Sept. 1997.

[67] M. Shoji, Electrical Design of BELLMAC-32A Microprocessor,”Proc. IEEE Int’l

Conf. Circuits and Computers, pp. 112-115, Sept. 1982.

[68] M. Shoji, “Elimination of Process-Dependent Clock Skew in CMOS VLSI,”IEEE J.

Solid-State Circuits, vol. SC-21, no. 5, pp. 875-880, Oct. 1986.

[69] M. Shoji,High-Performance CMOS Circuits, Englewood Cliffs, NJ: Prentice Hall,

1988.

[70] I. Sutherland, R. Sproull, and D. Harris,Logical Effort, San Francisco, CA: Morgan

Kaufmann, 1999.

125

[71] T. Szymanski, “LEADOUT: A Static Timing Analyzer for MOS Circuits,” in

ICCAD-86 Dig. Tech. Papers, 1986, pp. 130-133.

[72] T. Szymanski, “Computing Optimal Clock Schedules,” inProc. 29th Design Auto-

mation Conf., pp. 399-404, 1992.

[73] T. Szymanski and N. Shenoy, “Verifying clock schedules,” inICCAD Dig. Tech.

Papers, pp. 124-131, Nov. 1992.

[74] T. Thorp, G. Yee, and C. Sechen, “Domino Logic Synthesis Using Complex Gates,”

Proc. Intl. Conf. Computer-Aided Design, Nov. 1998.

[75] R. Tsay, “An Exact Zero-Skew Clock Routing Algorithm,” IEEE Trans. Computer-

Aided Desi., vol. 12, no. 2, pp. 242-249, Feb. 1993.

[76] S. Unger and C. Tan, “Clocking Schemes for High-speed Digital Systems,”IEEE

Trans. Comput., vol. C-35, pp. 880-895, Oct 1986.

[77] N. Weste and K. Eshraghian,Principles of CMOS VLSI Design, Reading, MA: Add-

ison-Wesley, 1993, p. 351.

[78] T. Williams,Self-timed rings and their application to division, Ph.D. dissertation,

EE Department, Stanford University, Stanford, CA, May 1991.

[79] T. Williams and M. Horowitz, “A Zero-Overhead Self-Timed 160-ns 54-b CMOS

Divider,” IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1651-1661, Nov. 1991.

[80] S. Unger and C. Tan, “Clocking Schemes for High-Speed Digital Systems,”IEEE

Trans. Comput., vol. C-35, no. 10, pp. 880-895, Oct. 1986.

[81] N. Vasseghi,et al., “200 MHz Superscalar RISC Processor,” IEEE J. Solid State

Circuits, vol. 31, No. 11, pp. 1675-1686, Nov. 1996.

[82] A. Vittal and M. Marek-Sadowska, “Crosstalk Reduction for VLSI,” IEEE Transac-

tions on CAD, vol. 16, no. 3, pp. 290-298, March 1997.

126

[83] Y. Ye, “Interior Point Algorithms: Theory and Analysis,” New York: Wiley, 1997.

[84] J. Yuan and C. Svensson, “High Speed CMOS Circuit Technique,”IEEE J. Solid-

State Circuits, vol. 24, no. 1, pp. 62-69, Feb. 1989.

[85] J. Yuan, C. Svensson, and P. Larsson, “New domino logic precharged by clock and

data,”Electronics Letters, vol. 29, No. 25, pp.2188-2189, Dec. 1993.

[86] J. Yuan and C. Svensson, “New Single-Clock SMOS Latches and Flipflops with

Improved Speed and Power Savings,”IEEE J. Solid-State Circuits, vol. 32, no. 1,

pp. 62-69, Jan. 1997.

